Relational Semantics for Distributive Substructural Logics

SUZUKI Tomoyuki

Japan Advanced Institute of Science and Technology

6th August 2007 @ Oxford, UK

- 1 Our Logics
 - Distributive Substructural Logics
- 2 Relational semantics for DFL logics
 - Relational Semantics for DFL Logics
 - Basic results for DFL-frame
 - Contracts with other relational semantics
 - Int-frame vs. DFL_{cew}-frame
- 3 Description
 - General DFL-frame
 - Priestley-type Duality
 - Topological Characterization of descriptive DFL-frame
- 4 Future Work

- 1 Our Logics
 - Distributive Substructural Logics
- 2 Relational semantics for DFL logics
 - Relational Semantics for DFL Logics
 - Basic results for DFL-frame
 - Contracts with other relational semantics
 - Int-frame vs. DFL_{cew}-frame
- 3 DESCRIPTION
 - General DFL-frame
 - Priestley-type Duality
 - Topological Characterization of descriptive DFL-frame
- 4 Future Work

- 1 Our Logics
 - Distributive Substructural Logics
- 2 Relational semantics for DFL logics
 - Relational Semantics for DFL Logics
 - Basic results for DFL-frame
 - Contracts with other relational semantics
 - Int-frame vs. DFL_{cew}-frame
- 3 Description
 - General DFL-frame
 - Priestley-type Duality
 - Topological Characterization of descriptive DFL-frame
- 4 Future Work

- 1 Our Logics
 - Distributive Substructural Logics
- 2 Relational semantics for DFL logics
 - Relational Semantics for DFL Logics
 - Basic results for DFL-frame
 - Contracts with other relational semantics
 - Int-frame vs. DFL_{cew}-frame
- 3 Description
 - General DFL-frame
 - Priestley-type Duality
 - Topological Characterization of descriptive DFL-frame
- 4 Future Work

DISTRIBUTIVE SUBSTRUCTURAL LOGICS

$$\mathsf{Language} = \left\{ \begin{array}{ll} p,q,r,\dots & \mathsf{Propositional\ variables} \\ \mathbf{t},\mathbf{f},\top,\bot & \mathsf{Constants} \\ \lor,\land,\circ,\backslash,/ & \mathsf{Logical\ connectives} \end{array} \right.$$

DFL = LJ - Structural rules + Distributivity

Contraction, Exchange, Left-(Right-)weakening

DFL: the set of provable formulas in DFL

L is a DFL logic, if L is an extension of DFL.

Basic DFL logics

 DFL , DFL_c , DFL_e , DFL_w , DFL_{ce} , DFL_{ew} , DFL_{cew}

IMPORTANT CLASSES OF DFL LOGICS

- 1 Our Logics
 - Distributive Substructural Logics
- 2 Relational semantics for DFL logics
 - Relational Semantics for DFL Logics
 - Basic results for DFL-frame
 - Contracts with other relational semantics
 - Int-frame vs. DFL_{cew}-frame
- 3 Description
 - General DFL-frame
 - Priestley-type Duality
 - Topological Characterization of descriptive DFL-frame
- 4 Future Work

RELATIONAL SEMANTICS FOR DFL LOGICS

DEFINITION

A tuple $\mathfrak{F} = \langle W, W_t, W_f, R_{\circ} \rangle$ is a DFL-frame, if \mathfrak{F} satisfies the following.

- \bullet $R_{\circ}(w, t_1, w)$ and $R_{\circ}(w, w, t_2)$ for some $t_1, t_2 \in W_t$.
- ② If $R_{\circ}(w, v, u)$, $w \leq w'$, $v' \leq v$ and $u' \leq u$, then $R_{\circ}(w', v', u')$.
- ③ $R_{\circ}(w, x, s)$ and $R_{\circ}(x, v, u)$ for some $x \in W$, if and only if $R_{\circ}(w, v, y)$ and $R_{\circ}(y, u, s)$ for some $y \in W$.

Abbreviation: $w \leq w' \iff R_o(w', t, w)$ or $R_o(w', w, t)$, for some $t \in W_t$.

Up(W): the set of all subsets of W upward closed under \preceq .

Correspondence for structural rules

Proposition

• Contraction
$$\iff$$

$$\begin{cases} \forall w \in W[R_{\circ}(w, w, w)] \\ \text{or equivalently} \\ \forall w, v \in W[w \leq v \Rightarrow R_{\circ}(v, w, w)] \end{cases}$$

- Exchange $\iff \forall w, v, u \in W[R_{\circ}(w, v, u) \Rightarrow R_{\circ}(w, u, v)]$
- Left weakening $\iff W_t = W$
- Right weakening $\iff W_f = \emptyset$

Relational Semantics for DFL Logics Basic results for DFL-frame Contracts with other relational semantics Int-frame vs. DFL_{cew}-frame

Kripke completeness for basic DFL logics

THEOREM

All basic DFL logics are Kripke complete.

We have already proved several other DFL logics.

Contracts with other relational semantics

- Kripke frame for Intuitionistic logic ← DFL_{cew}-frame

Kripke frame for Intuitionistic logic

DEFINITION (INT-FRAME)

A tuple $\mathfrak{F}_{Int} = \langle W_{Int}, R_{Int} \rangle$ is a Kripke frame for **Int**, if \mathfrak{F}_{Int} satisfies the following.

- For any $w \in W_{Int}$, $wR_{Int}w$.
- 2 If $wR_{Int}v$ and $vR_{Int}u$, then $wR_{Int}u$.

A valuation is a function from the set of propositional variables to $Up_R(W_{Int})$.

How can we consider DFL_{cew} -frame as Int-frame?

$$\mathsf{DFL}_{\mathit{cew}}$$
-frame: $\mathfrak{F} = \langle W, W_t, W_f, R_{\circ} \rangle$

Int-frame:
$$\mathfrak{F}_{Int} = \langle W_{Int}, R_{Int} \rangle$$

Int-frame vs. DFL_{cew}-frame

 $\mathsf{DFL}_{\mathsf{cew}}\text{-}\mathsf{frame} \Rightarrow \mathsf{Int}\text{-}\mathsf{frame}$

$$R_{\circ}(w,v,u) \Rightarrow v \leq w$$

- R_{\circ} -reflexivity $\Rightarrow R_{Int}$ -reflexivity
- R_{\circ} -transitivity $\Rightarrow R_{Int}$ -transitivity

Int-frame vs. DFL_{cew}-frame

 $\mathsf{DFL}_{\mathsf{cew}}\text{-}\mathsf{frame} \Rightarrow \mathsf{Int}\text{-}\mathsf{frame}$

$$R_{\circ}(w, v, u) \Rightarrow v \leq w$$

- R_{\circ} -reflexivity $\Rightarrow R_{Int}$ -reflexivity
- R_{\circ} -transitivity $\Rightarrow R_{Int}$ -transitivity

Int-frame vs. DFL_{cew}-frame

Int-frame \Rightarrow DFL_{cew}-frame

$$R_{\circ}(v, w, u)$$
, if $wR_{Int}v$ and $uR_{Int}v$.

- R_{Int} -reflexivity $\Rightarrow R_{\circ}$ -reflexivity and R_{\circ} -idempotency
- R_{Int} -transitivity $\Rightarrow R_{\circ}$ -transitivity

- 1 Our Logics
 - Distributive Substructural Logics
- 2 Relational semantics for DFL logics
 - Relational Semantics for DFL Logics
 - Basic results for DFL-frame
 - Contracts with other relational semantics
 - Int-frame vs. DFL_{cew}-frame
- 3 Description
 - General DFL-frame
 - Priestley-type Duality
 - Topological Characterization of descriptive DFL-frame
- 4 Future Work

GENERAL DFL-FRAME

DEFINITION

A tuple $\mathfrak{G} = \langle \mathfrak{F}, A \rangle$ is a general DFL-frame, if \mathfrak{F} is a DFL-frame and A satisfies the following.

- A is a subset of Up(W).
- W_t, W_f, W, \emptyset are included in A.
- **3** A is closed under \cup , \cap , *, \downarrow and \downarrow .

$$X*Y := \{ w \in W \mid R_{\circ}(w, v, u), v \in X \text{ and } u \in Y, \text{for some } v, u \in W \}$$

$$X \setminus Y := \{ w \in W \mid R_{\circ}(u, v, w), v \in X \Rightarrow u \in Y, \text{ for any } v, u \in W \}$$

$$Y \downarrow X := \{ w \in W \mid R_{\circ}(u, w, v), v \in X \Rightarrow u \in Y, \text{ for any } v, u \in W \}$$

Anti-symmetry: $w \leq v$ and $v \leq w$ only if w = v.

PRIESTLEY-TYPE DUALITY

DEFINITION (DUAL ALGEBRA)

Given a general L-frame $\mathfrak{G} = \langle W, W_t, W_f, R_o, A \rangle$, the tuple $\mathfrak{G}^* = \langle A, \cup, \cap, *, \downarrow, \swarrow, W_t, W_f, W, \emptyset \rangle$ is the dual algebra.

DEFINITION (DUAL FRAME)

Given a dual algebra $\mathfrak{G}^* = \langle A, \cup, \cap, *, \setminus, \checkmark, W_t, W_f, W, \emptyset \rangle$, the tuple $(\mathfrak{G}^*)_* = \langle Pf(A), Pf_{W_t}(A), Pf_{W_f}(A), R_*, \widehat{A} \rangle$ is the dual frame

$$R_*(F_1, F_2, F_3) \iff \forall X, Y \in A[X \in F_2 \text{ and } Y \in F_3 \Rightarrow X * Y \in F_1]$$

$$\widehat{A} := \{ \widehat{X} \mid X \in A \}$$

$$\widehat{X} := \{ F \in Pf(A) \mid X \in F \}$$

PRIESTLEY-TYPE DUALITY

DEFINITION (DUAL ALGEBRA)

Given a general L-frame $\mathfrak{G} = \langle W, W_t, W_f, R_o, A \rangle$, the tuple $\mathfrak{G}^* = \langle A, \cup, \cap, *, \downarrow, \swarrow, W_t, W_f, W, \emptyset \rangle$ is the dual algebra.

DEFINITION (DUAL FRAME)

Given a dual algebra $\mathfrak{G}^* = \langle A, \cup, \cap, *, \downarrow, \checkmark, W_t, W_f, W, \emptyset \rangle$, the tuple $(\mathfrak{G}^*)_* = \langle Pf(A), Pf_{W_t}(A), Pf_{W_f}(A), R_*, \widehat{A} \rangle$ is the dual frame

$$R_*(F_1, F_2, F_3) \iff \forall X, Y \in A[X \in F_2 \text{ and } Y \in F_3 \Rightarrow X * Y \in F_1]$$

$$\widehat{A} := \{\widehat{X} \mid X \in A\}$$

$$\widehat{X} := \{ F \in Pf(A) \mid X \in F \}$$

Topological Characterization of descriptive DFL-frame

DEFINITION

A general L-frame \mathfrak{G} is descriptive, if \mathfrak{G} is isomorphic to $(\mathfrak{G}^*)_*$.

THEOREM

A general L-frame \mathfrak{G} is descriptive, if and only if \mathfrak{G} satisfies R_{\circ} -tightness and Compactness.

 R_{\circ} -tightness

 $R_{\circ}(w,v,u) \iff \forall X,Y \in A[v \in X,u \in Y \Rightarrow w \in X * Y]$

Topological Characterization of descriptive DFL-frame

DEFINITION

A general L-frame \mathfrak{G} is descriptive, if \mathfrak{G} is isomorphic to $(\mathfrak{G}^*)_*$.

THEOREM

A general L-frame \mathfrak{G} is descriptive, if and only if \mathfrak{G} satisfies R_{\circ} -tightness and Compactness.

 R_{\circ} -tightness:

$$R_{\circ}(w, v, u) \iff \forall X, Y \in A[v \in X, u \in Y \Rightarrow w \in X * Y]$$

- 1 Our Logics
 - Distributive Substructural Logics
- 2 Relational semantics for DFL logics
 - Relational Semantics for DFL Logics
 - Basic results for DFL-frame
 - Contracts with other relational semantics
 - Int-frame vs. DFL_{cew}-frame
- 3 Description
 - General DFL-frame
 - Priestley-type Duality
 - Topological Characterization of descriptive DFL-frame
- 4 Future Work

FUTURE WORK

- Filtration or Finite model property
- Sahlqvist-type Theorems
- etc