Semisimplicity, EDPC and discriminator varieties of bounded commutative residuated lattices with S4-like modal operator

National Institute of Advanced Industrial Science and Technology (AIST),
Research Center for Verification and Semantics (CVS)
Hiroki TAKAMURA
Outline of my talk

• Substructural logics & Residuated lattices
 – Substructural logics
 – Residuated lattices
 – Extensions: +modality

• Main result:
 \(V \subseteq \Box_{BCRL} \), semisimple = discriminator
Substructural logics
&
Residuated lattices
Substructural logics

- Substructural logics: LJ (or LK) – structural rules,

 - rules

 - linear logic, relevant logic, fuzzy logic
Basic substructural logic : FL

No structural rules

FL = LJ – \{e, w, c\}

(CFL = LK – \{e, w, c\})

\[\Gamma, A, B \vdash C \quad \Gamma \vdash C \quad \Gamma, A, A \vdash C \]

\[\Gamma, B, A \vdash C \quad \Gamma, A \vdash C \quad \Gamma, A \vdash C \]
Sequent system: FL

\[
\begin{align*}
a & \vdash a, & 1, 0 & \vdash \\
\Gamma & \vdash A, & \Gamma & \vdash \\
\Delta, \Gamma, \Sigma & \vdash C & \Gamma, \Delta & \vdash C \\
\Delta, \Gamma, \Sigma & \vdash C & \Gamma, 1, \Delta & \vdash C \\
\Gamma & \vdash A, & \Delta, B, \Sigma & \vdash C & A, \Gamma & \vdash C \\
\Delta, \Gamma, A \rightarrow B, \Sigma & \vdash C & \Gamma & \vdash A \rightarrow C & \Gamma, A & \vdash C \\
\Gamma & \vdash A, & \Delta, B, \Sigma & \vdash C & \Delta, B & \vdash A, \Gamma, \Sigma & \vdash C \\
\Gamma, A & \vdash C & \Gamma & \vdash C & \Gamma & \vdash C \leftarrow A \\
\end{align*}
\]
Sequent system : FL

\[
\begin{align*}
\frac{\Gamma, A, B, \triangle \vdash C}{\Gamma, A \otimes B, \triangle \vdash C} & \quad \frac{\Gamma \vdash A \quad \triangle \vdash B}{\Gamma, \triangle \vdash A \otimes B} \\
\frac{\Gamma, A(B), \triangle \vdash C}{\Gamma, A \land B, \triangle \vdash C} & \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \\
\frac{\Gamma, A, \triangle \vdash C \quad \Gamma, B, \triangle \vdash C}{\Gamma, A \lor B, \triangle \vdash C} & \quad \frac{\Gamma \vdash A \quad B}{\Gamma \vdash A \lor B}
\end{align*}
\]
Basic substructural logics

- FL, FLe, FLw, FLew, ...

- FLew = FL + \{e, w\} = LJ – \{c\}

 Monoidal logic (Fuzzy logic)

- FLe = ILL – \{!, ?\}
Basic results

• Cut elimination theorem:
 FL, FLe, FLw, FLew, FLe, FLecw (= LJ)
 (CFLe, CFLew, CFLec, CFLecw (= LK))
Residuated lattices

- **Definition**: \(A = (A, \cdot, \rightarrow, \leftarrow, \land, \lor, 1) \)
 - \((A, \cdot, 1) \): monoid
 - \((A, \land, \lor) \): lattice
 - \(x \cdot y \leq z \iff x \leq z \leftarrow y \iff y \leq x \rightarrow z \)

- **Pointed residuated lattice = FL-algebra**
 - \(A = (A, \cdot, \rightarrow, \leftarrow, \land, \lor, 1, 0) \)
 - \(0 \): arbitrary but fixed element of \(A \)
Basic facts

• The class of residuated lattices forms a variety: \mathbf{RL}

• Subvarieties:
 – \mathbf{FL}, \mathbf{CRL}, \mathbf{IRL}, …
 – Commutativity, integrality, increasing-idenpotency
Substructural logics & Residuated lattices

• Completeness theorem:
 Algebras for FLx is FLx-algebras
 \((x = e, w, ew, \ldots)\)

• Lindenbaum construction:
 \(\text{Frm} / \sim \quad A \sim B \equiv A \vdash B \text{ and } B \vdash A\)
Algebra - Logic

• commutativity ⇔ exchange
• integrality ⇔ weakening
• increasing-idempotency ⇔ contraction

• FLe, FLw-, FLew-algebra, …
• FLe, FLw, FLew, …
Book

- Residuated Lattices: an algebraic glimpse at substructural logics, P. Jipsen, T. Kowalski, N. Galatos and H. Ono
 - Residuated Lattices: an algebraic glimpse at logics without contraction, T. Kowalski and H. Ono (starting point for the book)
Extensions

- **Substructural logics + modalities**
 - What is natural modalities in substructural logics?
 - H. Ono, Modalities in substructural logics, a preliminary report
- Algebras for modal substructural logics = Residuated lattices + operators
 (cf. BAO’s)
\(\square \text{FLe} (\square \text{BCRL}) \)

- \(\square \text{FLe} = \text{FLe} + \text{S4-like modality} \)

\[
\begin{align*}
\square \Gamma & \vdash A \\
\square \Gamma & \vdash \square A \\
A, \Gamma & \vdash B \\
\square A, \Gamma & \vdash B
\end{align*}
\]

Cut elimination theorem holds for \(\square \text{FLe} \)
□FLe-algebras (□BCRL)

• $A = (A, \cdot, \rightarrow, \land, \lor, 1, 0, T, \perp, □)$
 – $(A, \cdot, \rightarrow, \land, \lor, 1, 0, T, \perp) : \text{FLe-algebra}$
 – S4-like modality
 – $1 \leq □1$,
 – $□x \cdot □y \leq □(x \cdot y)$
 – $□x \leq x$
 – $□x \leq □ □x$
 – $x \leq y \Rightarrow □x \leq □y$

• The class of □FLe-algebras forms a variety
☐ FLe & Modal FLe-algebras

• Completeness theorem:
 – Algebras for ☐ FLe is ☐ FLe-algebras
Congruence filter of □FLe-algebra

• F is a congruence filter:
 – 1 ∈ F
 – x, y ∈ F ⇒ x ∧ y ∈ F
 – x, x → y ∈ F ⇒ y ∈ F
 – x ∈ F ⇒ □x ∈ F
• <S> = \{x ∈ A: x ≥ □(s_1 ∧ 1) \ldots □(s_k ∧ 1), s_i ∈ S\}
Algebra basics

• V: variety is semisimple
 – All its algebras are semisimple

• A in \Box_{BCRL}, $x \in \text{Rad}_A \iff \forall n \geq 1 \exists m$ s.t.,
 \[(\Box \neg (\Box (x \land 1))^n)^m = \bot, \neg x = x \rightarrow \bot\]

• A is semisimple:
 \[\forall x \in A, \text{not greater than } 1, \exists n \geq 1, \text{s.t.},\]
 \[(\Box \neg (\Box x \land 1))^n)^m \neq \bot \text{ for any } m\]
Algebra basics

• V: variety is discriminator
 – The **ternary discriminator** is a term operation on every si algebra in V
 \[t(x, y, z) = x \text{ if } x=y \]
 \[z \text{ otherwise} \]
 – Algebra with discriminator term is simple
Algebra basics

• Discriminator variety \Rightarrow semisimple variety
• Discriminator variety $V \Rightarrow V$ has the CEP
• **DPC** (definable principle congruence)
 – A first order formula Φ, a,b,c,d in A
 – (c,d) in $\Theta(a,b) \iff A \models \Phi(a,b,c,d)$
• **EDPC** (equational definable principle congruence)
 – If Φ can be taken a finite set of equations
Facts

- V is congruence-permutative \Rightarrow discriminator = semisimple + EDPC

If semisimple \Rightarrow EDPC
then discriminator = semisimple
Some historical remarks

• Every free classical FLew-algebras is semisimple (Grishin)
• The variety of FLew-algebras is generated by its finite simple members (Kowalski & Ono)
• Every free FLw-algebras is semisimple
• The variety of □FLew-algebras is generated by its finite simple members
Some historical remarks

• $V \subseteq FL_{ew}$, V is discriminator

 = V is semisimple

 = V satisfies that $x \lor \neg(x^n) = 1$

 \[x^n = x \cdot \ldots \cdot x, \text{n-times}\]

 (Kowalski 2005)
Goal of my talk

- $V \subseteq \Box_{BCRL}$, V is discriminator
 - V is semisimple
 - $V \models \Box (x \land 1) \lor \neg (\Box (x \land 1))^n$
 for some natural number n
\[\square E(1, n) \& \square EM(1, n) \]

- \(\square E(1, n) : \)
 \[(\square (x \land 1))^n = \square (x \land 1))^{n+1} \]
 for any natural number \(n \)

- \(\square EM(1, n) : \)
 \[\square (x \land 1) \lor \neg (\square (x \land 1))^n = 1 \]
 for any natural number \(n \)
Proposition

- $V \subseteq \Box^\text{BCRL}$, V has EDPC
- $= V$ has DPC
- $= V \subseteq \Box^E(1,n)$
- for some natural number n
- $= V \models (\Box (x \land 1))^n = (\Box(x \land 1))^{n+1}$
- for some natural number n
Set up congruence

• A in V s.t. $(\Box(a \wedge 1))^n > \bot$, a an element not greater than 1

• $\alpha = Cg(a, 1)$; nonzero, nonfull, principal

$\Rightarrow \exists \beta$ subcover

Lemma $\exists m$ s.t.,

$(\Box(a \wedge 1))^{m+1} \equiv \beta (\Box(a \wedge 1))^m$

$\neg(\Box(a \wedge 1))^m \equiv \beta (\neg(\Box(a \wedge 1))^m)^2$

$(\Box(a \wedge 1))^m \equiv \beta \neg\neg(\Box(a \wedge 1))^m$
A necessary condition for semisimplicity

• V is semisimple subvariety of \Box_{BCRL},
 $\forall \models \Box ?$

$\Box \equiv \Box (x \land 1) \geq (\neg (\neg \Box (x \land 1)_r)^k)_l$

Suppose V falsifies \Box, Put $\Theta \equiv \forall V \theta_r$, $\theta_r = Cg (\neg (\neg \Box (x \land 1)_r)^K, 1)$

K is the smallest number V falsifies \Box
Some lemmas

• $0 < \Theta < \alpha$

• V is semisimple subvariety of \Box_{BCRL},
 $V \models \Box ? \quad YES!$

\[
V \models (\Box x \land 1) \geq (\neg(\neg\Box(x \land 1))^r)^k \mid_l
\]
for any k there exist r & l
Function r

- Suppose
 \[V \models (\Box x \land 1) \geq (\neg (\neg \Box (x \land 1)^{r(i)})^{i})^{l} \]
- $r : \mathbb{N} \rightarrow \mathbb{N}$,

 $r(i)$ the smallest number s.t., $\exists l \in \mathbb{N}$ with
 \[V \models (\Box (x \land 1)) \geq (\neg (\neg \Box (x \land 1)^{r(i)})^{i})^{l} \]
- Lemma: r is non-decreasing function
Semisimple forces $\square^{EM}(1,n)$

- Lemma

$V \subseteq \square^{BCRL}$, semisimple,

$V \models (\square(x \land 1))^{n+1} = (\square(x \land 1))^n$

for some natural number n
Main theorem

• \(V \subseteq \square^{BCRL} \), \(V \) is discriminator

= \(V \) is semisimple

= \(V \models \square(x \land 1) \lor \neg \square(x \land 1)^n \)

for some natural number \(n \)
Corollary 1

- \(V \subseteq \square^{FL_e} \), \(V \) is discriminator
 = \(V \) is semisimple
 = \(V \models \square(x \land 1) \lor \lnot \square(x \land 1)^n \)
 for some natural number \(n \)
Corollary 2

- $V \subseteq \Box F_{Le}w$, V is discriminator
 = V is semisimple
 = $V \models \Box x \lor \neg (\Box x)^n$
 for some natural number n
Corollary 3

• $V \subseteq FLe_w$, V is discriminator
 = V is semisimple
 = $V \models x \lor \neg x^n$
 for some natural number n