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@ Conditional Logic/Nonmonotonic Logics/Belief Revision ‘if it had
been the case that ¢, it would have been the case that .

wEp>1 & yistruein all closest ¢-worlds.
Mostly interpreted in distance spaces with limit assumption:

d(P,Q) =inf{d(v,w) | veP,weQ} =min{d(v,w)|vePweQ}



continued..

@ Comparative Similarity Logic: ‘more similar to a P-object than
any Q-object’

weP=Q & dw,P)<dw,Q).



continued..

@ Comparative Similarity Logic: ‘more similar to a P-object than
any Q-object’

weP=Q & dw,P)<dw,Q).

@ Absolute Similarity Logic: ‘similar to a P-object with degree at
least a € RZ0!

we ISP < Jvd(w,v)<anveP.



continued..

@ Comparative Similarity Logic: ‘more similar to a P-object than
any Q-object’

weP=Q & dw,P)<dw,Q).

@ Absolute Similarity Logic: ‘similar to a P-object with degree at
least a € RZ0!

we ISP < Jvd(w,v)<anveP.

@ Metric Temporal Logic over R: ‘within a time-units P.
weIUP s qvv>wAad(v,w)<aAveP

Topology:
IP=S(P,T)APAU(P,T).



A modal logic framework covering large parts of these lines of

research, thus enabling a comparison of logics for distances
and a systematic investigation of their semantics, expressive
power and complexity.
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Distance models

A distance space is a structure (A, d) with d : A x A — R0
such that

@ d(x,y)=0iffx=y.

(A, d) is a metric space if we have, in addition,
@ triangle inequality: d(x, z) < d(x,y) + d(y, 2);
@ symmetry: d(x,y) = d(y, x).

A distance model is a relational structure
M= (A,d,pM . .),

in which (A, d) is a distance space and p}"’ CA.
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Operators on metric/distance spaces

ae R0
@ I8P ={w|3vd(w,v)<aArveP}

V<P ={w|Vvd(w,v)<a—veP}
VEP={w|W¥WO0<d(w,v)<a—veP}
Interior of P: IP = IxV<*P

Universal box: OP = VxV<*P

Derived set of P: 9P = Vx355P

Closer operator P &= Q = 3Ix(I<*P M —-3<*Q)

Conditional implication (with and without limit assumption):
P>Q = -3Ix3¥PUIXE¥PN-3IX(P1-Q))
P>Q = 3x3%P — Ix(IP A-3X(PA-Q) V (P A -Q))).
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General framework: qualitative metric system QMS

Distance variables Xy, Xo, ...
Set variables  pq,po,...
Constraints on relations between distance variables like, e.g.,

@ the set X of inequalities  x; < x;,

@ the set X ¢ of linear rational equalities
aiXy + -+ anXn = an1,

OMS|[X]-terms 7, for a set X of constraints s:
T o= pi| x| o1 | M0 | x| 3N | I | N |E|§j((]':7'

‘Syntactic sugar:’ 71 C 1 = VXV<¥(=7y U 72).



Expressive completeness

FMI[Z], the two-sorted first-order language FM[X] with
@ individual variables xi,xp,... of sort R=0
@ individual variables wjq, wo,... of sort object

FM[Z]-formulas ¢:

e u= Pi(wp) | 5 | d(wi, W) <Xk | ¢ | o1/p2 | 3xip | Iwip

FMsy[X] is the fragment of F M[X] with only two variables of
sort object.



Expressive completeness

For each QMS[X]-term 7, there is an F M,[X]-formula ¢ with one
free variable of sort object such that, for all models M with
assignments aand all o0 € A,

oerMe iff (M, a) = ¢[o] ()

Conversely, for each F Ms[X]-formula ¢ with one free variable of sort
object, there is a QMS[X]-term 7 such that (%) holds for all M with
assignments a and all o € A.

FMs[X] is, however, exponentially more succinct than QMS[X].
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@ Logics without distance variables (constants for distances);
@ The operators 3<¥ and 3= (and their duals):
e Logics of topology and absolute distance: operators

38, 358 3xVFr, VT, VXV, VXYSRT

e Logics of topology and comparative distance: operators
IxBool(V<*7, V=¥, 3%%7, %1, p),

where 7 is a set variable or again of the form 3xBool(- - - ).

9/23
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Fragments without distance variables

Terms 7 are defined as (a € Q=9):

T o= pi | ot | N | 378 | 3%% | 7% |33

Theorem Expressively complete for corresponding 2-variable
fragment of FO-Logic. Satisfiability decidable for (symmetric)
distance space. Undecidable for spaces with triangle inequality
(three variables)!.

| Operators | Space | Complexity |
35 | Metric spaces/R/R? | undecidable/PSpace/undecidable
3<a 3=2 | Metric Spaces/R/R? ExpTime/PSpace/undecidable
3>a 3=2 | Metric Spaces/R/R? | in NExptime/PSpace/undecidable
372, 0F R undecidable

10/23



Topology and absolute distance

Terms 7 are defined as (a € Q2°):
T= pi |7 | VXY | N | IV | 38 | 3587
equivalently:

r= pi |- | Or | qnNme | Ir | 358 | 3597
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Topology and absolute distance

Terms 7 are defined as (a € Q2°):
= pi |7 | VXY | O | 3xVXr | 38 | 3587
equivalently:
T=pi |7 | Or | mNm | Ir | 3%%r | 3597

Interaction axioms:

Cp_>5|<ap7 E|<a(cp_>5|<ap'

11/23



Topology and absolute distance

The set of terms valid in metric spaces coincides with the set of
terms valid in (finite) relational models of the form

F = (A7R78a<78as)7
where, for example,

uRv = uSsv, uSsVvRw = uSsv
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Topology and absolute distance

The set of terms valid in metric spaces coincides with the set of
terms valid in (finite) relational models of the form

F = (A7R78a<78as)7
where, for example,

uRv = uSsv, uSsVvRw = uSsv

Representation Theorem: For every finite model F there exists
a metric space M such that F is a ‘p-morphic image’ of M.
Complexity: Satisfiability is ExpTime-complete. For R it is
PSpace-complete.

12/23



Topology and comparative distance

O M L-terms are constructed from set variables pq, po, ... using
M, -, and the constructor

3xBool(V<*7, VX7, 3%, 3%7 p),

where 7 is a set variable or again of the form 3xBool(. . .).
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Topology and comparative distance

O M L-terms are constructed from set variables pq, po, ... using
M, -, and the constructor

3xBool(V<*7, VX7, 3%, 3%7 p),

where 7 is a set variable or again of the form 3xBool(. . .).
Contains closure operator, universal modality and conditional
implication (with and without limit assumption):

P>Q = —3x3I~*PU 3X(3<XP M —|3<X(P I —\Q))

P>Q = 3x3™P — IX(IPA~(FT(PA-Q) V (P A-Q))).

13/23



An equivalent language

Set
Q@ T4 =10 = E|X(E|<XT1 M —E|<X7'2),
Q@7 = 1o = E|X(E|§XT1 |_|—|3§X7'2),

QT4 =T = E|X(E|§XT1 M —|3<X7'2).
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An equivalent language

Set
0 71 = mp = Ix(F¥r M ~3K7y),
@ T = 7o = Ix(I¥7 M =3%7n),
@ 7 = 1 = Ix(INTy N-ITH).
Then

HMHET = 1TSS T = T4 = 7.

14/23



Comparison and ‘inf/min’

Set
Or =7 = 7= I(3F¥T N -37)
Then
(O = {ue A |du,m™)=min{d(u,v) | verM}}.
We obtain:
o =1 = (mmeEn)U(-(eern)NOnN-0On);

QT =10 = (T1 §:7'2)|_|(—|(7’2 §:T1)|_|®T1).

15/23



Comparative distance logic

CSL-terms 7 are defined by
Tou= P o | nNn | O | m e,
or, equivalently,

T o= P TN | nEn| n=1n | e
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Comparative distance logic

CSL-terms 7 are defined by
Tou= P o | nNn | O | m e,
or, equivalently,

T o= P TN | nEn| n=1n | e

Theorem. For every QM L-term 7, there is a CSL-term 7* such
that m = *.

16/23



Proof of OML = CSL (exp blowup)

Every QM /L-term is equivalent to a term of the form

o= ElX(|_|E|<Xg0,~I_I |_|3§X<Pi|_| I_l —Elgij'_' |_| ﬁ§|<ij) n+.

i€l i€l JED jEJ
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Proof of OML = CSL (exp blowup)

Every QM /L-term is equivalent to a term of the form
= ([ |3 [|3%ein [ |30 []-3%¢) n7.
i€l i€l JED jeJ

Let/=hUl,J=dJyUdJ;. Then 7 is equivalent to the CSL-term
F= [l @edpn [] @=dpn [] (@=d)

ielo,jEJ i€l ,jEJO i€l ,jEJ1
Observation:

([ |30 -3%%p) =[ |3x (31 -3)p).
i i

17/23



OML and CSL

The complexity of checking satisfiability of QM L/CS L-terms:

] Distance spaces | Complexity |
All spaces/symmetric spaces ExpTime
Triangle inequality ExpTime

Metric spaces ExpTime

R non r.e.
Z non r.e.
finite subspaces of R nonr.e.

Proof: (i) Tree-like distance spaces are sufficient. (ii) Reduction
of Diophantine equations.

18/23



Hilbert-style Axiomatization: (sym) distance spaces

()N eEX) = (¢ EX)
(e =v)N- =x)) — (¢ = X),

“((pUy) =) U ~((pUv) = ¢), (2)
V(e =) — (e =), (©)
Opuy) = (OpuUOY), (4)

(O(eUP)N(e =) — Op (5)
OpN (Y =¢) — O(eU) (6)
V(e <) — (Op < OV), (7)
¢ = (OeN=(T = ¢)), 8)
Te 1, 9)

-1, (10)

19/23



Axiomatization for spaces with triangle inequality

Add
T=-(Cp = p).
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Axiomatization for spaces with triangle inequality

Add
T=-(Cp = p).
7 valid in distance spaces with the triangle inequality but not

valid in symmetric distance spaces: 7€ # () in the symmetric
model &, where

A® ={ab,ci|ie N},
p® ={ci|ieN},

dS(a,c)=2, ieN,
d®(a,b)=1, dS(b,c)=1/2", ieN,

and all other distances are defined by symmetry. 20/23



Axiomatization for Metric Spaces

Add
T=(p=q)—B(p=q)

7 is valid in metric spaces but not in the following non-symmetric
model ¥ satisfying the triangle inequality:

A* ={a,a,b,c | i €N},
p* ={b}, q*={c|ieN}

d(a,b)=d(b,a)=1, d(aa)=1/2,
d(aiv a) - 17 d(ai; Cl) = d(Ci, al) == 3/2, IG N,

and the other distances are computed as the lengths of the

corresponding paths in graph above.

21/23



Open problems

@ Is QML[X] ‘the’ bisimulation-invariant fragment of
OMS[X] (FM[Z])?
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Open problems

@ Is QML[X] ‘the’ bisimulation-invariant fragment of
OMSI[E] (FMIZ])?

@ Algebraic semantics for QMS[x]? Does QML[X] have
the finite model property?

@ Relational semantics for QMS[X]? Duality?

@ Other intereresting classes of metric spaces: compact,
connected?

22/23
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