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1. Introduction

The impact of a nearly-flat rigid body moving toward a liquid half-space is a canon-
ical model for a range of physical applications, ranging from ship slamming and inkjet
printing, to asteroid impact. The foundations for the theory of water-entry were first
discussed by von Kármán (1929) and Wagner (1932), who were both concerned with the
hydrodynamics of an alighting seaplane.
Even when neglecting physical effects such as the influence of gravity, air cushioning,

surface tension, viscosity and compressibility, the normal impact of a rigid body into a
fluid is a nonlinear problem and analytic progress is far from simple. However, when the
impacting body is almost parallel to the undisturbed fluid free surface, that is, when the
deadrise angle of the body is small, progress can be made using Wagner’s idea that the
bulk of the fluid motion can be approximated as that experienced due to the presence
of an expanding flat plate on the undisturbed planar free surface, as explained in, for
example, Armand & Cointe (1987) and Howison et al. (1991).
The majority of analytic oblique water-entry studies consider two-dimensional impacts.

In particular, there is a wealth of work concentrating on the constant-speed oblique water
entry of a wedge, for which there is a similarity solution. Garabedian (1953) derives the
similarity solution under the assumption that the leading and trailing free surfaces sepa-
rate from the wedge sides either perpendicularly or tangentially. Chekin (1989) looks at
more general wedge impacts and solves the similarity problem by adapting the numerical
approach of Dobrovol’skaya (1969) for normal impacts. More recently, Semenov & Yoon
(2009) use complex variable techniques to solve the general constant-speed wedge impact
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problem, solving the resulting integral equations numerically. Judge et al. (2004) look
at the breakdown of oblique wedge entry and use the method of vortex distributions to
approximate the impact. They compare their results to experimental observations. Both
Judge et al. (2004) and Semenov & Yoon (2009) are interested in the onset of ventilation
on the trailing edge of the wedge, when the fluid detaches from the apex of the wedge
above a certain tangential impact speed.
Korobkin (1988) looks at the small-time asymptotics of the oblique entry of a rigid

parabola. He uses a Lagrangian description to note that to leading order, the problem
reduces to the normal impact problem.
For more general impactors, Howison et al. (2004) employ the method of matched

asymptotic expansions to consider two-dimensional small-deadrise impacts, where the
tangential component of impact velocity is on the order of the inverse of the deadrise
angle. They utilise the ideas of Korobkin (1982) by reformulating the problem using the
displacement potential, thereby revealing how the instabilities described in Howison et al.

(1991) apply to the flow when the trailing boundary of the wetted region is effectively
exiting the fluid.
In the current paper, we concentrate on three-dimensional oblique impacts. One of the

few theoretical works on three-dimensional oblique water-entry is that of Miloh (1991),
where the impact of a rigid sphere is considered at small times after impact. The method-
ology builds on the ideas for the two-dimensional oblique water-entry of a parabola as
described in Korobkin (1988). Miloh deduces that the addition of an oblique component
of impact velocity reduces the maximum downward force on the sphere, compared to the
purely normal impact, suggesting that the pressure on the sphere decreases. Moreover,
for moderate angles of attack (which is an indicator of the relative sizes of the oblique and
normal components of the impact velocity), Miloh notes that there is very little change
in the downward force on the sphere. This observation bears similarities to the analysis
of Howison et al. (2004), where for horizontal impact velocities comparable to the normal
impact velocity, the leading-order outer problem reduces to that for normal impact. A
recent consideration of the general impact of an elliptic paraboloid is given by Scolan &
Korobkin (2012), who use Galin’s theorem to write down the solution. It is shown that
for any impact, even with oblique velocity components or rotations, to leading order the
boundary of the wetted region is an ellipse.
Bird et al. (2009) look at the similar problem of oblique droplet impact onto a solid

surface. They perform experiments in which the oblique component of impact velocity
is realised by either inclining or moving the surface. They conclude that this component
of velocity acts to inhibit the splash of the droplets in the direction opposite the oblique
velocity while accentuating the splash in the direction of oblique velocity.
The present paper extends the work of Moore et al. (2012), which uses the displacement

potential formulation of the problem to simplify the leading-order analysis. This enables
us to solve the problem of impact by a general three-dimensional body and in particular,
an axisymmetric body. We are able to predict the pressure on the impactor and the
singular behaviour at points at which Wagner theory breaks down. We will conclude the
analysis by describing the dynamics of the splash sheet (ejecta) for general axisymmetric
impactors.

2. Formulation of the problem

We consider the impact of a rigid, smooth (except possibly at its minimum), convex
body onto an initially quiescent body of fluid occupying z∗ 6 0 in three-dimensional
Euclidean space, with axes denoted by (x∗, y∗, z∗). The impact is assumed to begin at
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ẑ = h(x̂, ŷ, t)

t = ω(εx̂−X(t), εŷ − Y (t))

t = c(εx̂−X(t), εŷ − Y (t))

ŷ
t > ω(εx̂−X(t), εŷ − Y (t))

x̂

ẑ

ẑ = f(εx̂−X(t), εŷ − Y (t))− Z(t)

Figure 1. The splashing configuration for t > 0. The turnover curve has projec-
tion t = ω(εx̂ − X(t), εŷ − Y (t)) on the (x̂, ŷ)-plane, with the contact set given by
t > ω(εx̂ − X(t), εŷ − Y (t)). The curve forming the edge of the splash sheet has projection
t = c(εx̂−X(t), εŷ − Y (t)) on the (x̂, ŷ)-plane.

time t∗ = 0 at the origin. The fluid is assumed to be ideal and incompressible and the
region not occupied by the impactor or the fluid to be a vacuum. The impactor has
components of impact velocity in the positive x∗-, y∗- and z∗- directions denoted by
(L/T )Ẋ(t∗/T ), (L/T )Ẏ (t∗/T ) and −(L/T )Ż(t∗/T ) respectively, where a dot indicates
differentiation with respect to time, so that the body profile is defined by
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where f is smooth and convex, f(0, 0) = 0, f has its minimum at (0, 0), T is a typical
impact timescale and LZ is a typical penetration depth. Throughout this paper we
assume that the deadrise angle of the impactor is small, that is to say that the impactor
is almost flat, so that ε is a small positive constant. The prescribed smooth functions of
time X, Y and Z satisfy X(0) = 0, Y (0) = 0, Z(0) = 0 and Ż(0) > 0. Moreover, we
assume that (L/T )Ẋ, (L/T )Ẏ and (L/T )Ż are of order unity independent of ε. Note
that the components of impact velocity in the x∗- and y∗- directions are O(1/ε) larger
than that in the z∗-direction. We will neglect the influence of compressibility, gravity and
surface tension throughout.
We consider the dimensionless model where distances are scaled with L, velocities with

the typical normal impact velocity L/T , time with T , velocity potential with L2/T and
pressure with ρL2/T 2, where ρ is the fluid density. Using these scalings, the position of
the impactor is given in dimensionless variables by

ẑ = f(εx̂−X(t), εŷ − Y (t))− Z(t). (2.1)

The wetted extent of the impactor is defined by the curve ∂C(t), which has projection
t = c(εx̂ − X(t), εŷ − Y (t)) on the (x̂, ŷ)-plane. The multivalued free surface is given
by ẑ = h(x̂, ŷ, t). The turnover curve, where ẑ = h becomes vertical, is given by ∂Ω(t),
with projection t = ω(εx̂ − X(t), εŷ − Y (t)) on the (x̂, ŷ)-plane. The turnover curve is
a direct three-dimensional generalisation of the turnover points as discussed in Howison
et al. (1991). The set Ω(t) lying inside ∂Ω(t) has projection t > ω(εx̂−X(t), εŷ − Y (t))
in the (x̂, ŷ)-plane. We call this the contact set. A schematic of the configuration is given
in figure 1.
The fluid is at rest initially, so that the fluid velocity is u = ∇φ̂ in terms of the

potential φ̂(x̂, ŷ, ẑ, t), where

∇2φ̂ = 0 (2.2)
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in the fluid region. The kinematic condition at the body is

εf,1
∂φ̂

∂x̂
+ εf,2

∂φ̂

∂ŷ
− ∂φ̂

∂ẑ
= Ż + Ẋf,1 + Ẏ f,2 (2.3)

on ẑ = f(εx̂−X(t), εŷ − Y (t))− Z(t), t > c(εx̂−X(t), εŷ − Y (t)), where the subscript
, i denotes differentiation with respect to argument i. At the free surface, the kinematic
boundary condition is

∂φ̂

∂n̂
= vn on ẑ = h(x̂, ŷ, t), t < ω(εx̂−X(t), εŷ − Y (t)), (2.4)

where ∂/∂n̂ represents the normal derivative and vn denotes the outward normal velocity
of the free surface. The dynamic boundary condition is given by

p̂ = −∂φ̂

∂t
− 1

2
|∇φ̂|2 = 0 on ẑ = h(x̂, ŷ, t), t < ω(εx̂−X(t), εŷ − Y (t)), (2.5)

in the absence of surface tension, where p̂(x̂, ŷ, t) is the fluid pressure relative to atmo-
spheric.
Finally, assuming that the free surface is planar prior to impact, the initial and far-field

conditions are given by

φ̂(x̂, ŷ, ẑ, 0) = 0 for −∞ < x̂, ŷ < ∞, ẑ 6 0, (2.6)

φ̂ = O
(

1/R̂
)

as R̂ =
(

x̂2 + ŷ2 + ẑ2
)1/2 → ∞, (2.7)

h(x̂, ŷ, 0) = 0 for −∞ < x̂, ŷ < ∞, (2.8)

h → 0 as (x̂2 + ŷ2)1/2 → ∞. (2.9)

Moreover, ω(0, 0) = 0 and c(0, 0) = 0.

2.1. Asymptotic structure

The asymptotic structure described in Howison et al. (1991) for two-dimensional im-
pacts at small deadrise angles extends readily to three-dimensional impacts. The prob-
lem breaks down into three distinct regions. In the outer region, of size of O(1/ε), the
boundary conditions can be linearised onto the plane z = 0, with the kinematic condi-
tion on the body applied on the expanding contact set. This is the generalisation of the
flat-plate model proposed by Wagner (1932) for the constant-velocity two-dimensional
impact of a wedge. Locally to ∂Ω(t), there is an inner region of size of O(ε) in a plane
perpendicular to ∂Ω(t) in which the free surface turns over. The flow in this region is
quasi-two-dimensional provided that ∂Ω(t) is smooth. The final region is the splash sheet
emanating from the inner region with extent of O(1/ε) and thickness of O(ε).
Since the inner region is quasi-two-dimensional, we can state the matching condi-

tions that must hold for the leading-order outer and splash sheet problems. For three-
dimensional impacts, these conditions are simply a generalisation of those given in, for
example, Howison et al. (1991) or Oliver (2007).

3. Outer region

We neglect the splash sheet and make the outer scalings x̂ = x/ε, ŷ = y/ε, ẑ = z/ε,

φ̂ = φ/ε and p̂ = p/ε, so that (2.3) becomes

εf,1
∂φ

∂x
+ εf,2

∂φ

∂y
− ∂φ

∂z
= Ż + Ẋf,1 + Ẏ f,2, (3.1)
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on z = ε [f(x−X(t), y − Y (t))− Z(t)] , t > ω(x−X(t), y − Y (t)). Thus our scaling has
had the desired effect that the oblique components of the velocity influence the leading-
order outer problem for Ẋ, Ẏ of order unity; for slower horizontal velocity components,
the flow would be as for normal impact, to lowest order.
When we expand φ, p, h and ω in powers of ε, we can linearise the boundary conditions

(2.3), (2.4) and (2.5) and impose them on z = 0 at leading-order. The resulting leading-
order outer problem is given by

∇2φ0 = 0 in z < 0, (3.2)

∂φ0

∂z
= −Ż − Ẋf,1 − Ẏ f,2 on z = 0, t > ω0(x−X(t), y − Y (t)), (3.3)

∂φ0

∂z
=

∂h0

∂t
on z = 0, t < ω0(x−X(t), y − Y (t)), (3.4)

φ0 = 0 on z = 0, t < ω0(x−X(t), y − Y (t)), (3.5)

subject to the initial and far-field conditions (2.7)-(2.9). A subscript 0 denotes a leading-
order variable. Note that (3.5) is derived by integrating the leading-order Bernoulli equa-
tion and applying (2.6). In the outer region, h refers only to the lower free surface (below
the turnover curve) from §2 and is hence not multivalued.
As described by Howison et al. (1991), in each plane perpendicular to the turnover

curve, the flow in the turnover region is approximately two-dimensional and occupies
a region of size of O(ε). The resulting switch from Dirichlet to Neumann boundary
conditions in the codimension-two leading-order outer free boundary problem has an
important consequence: it demands that the velocity potential has square-root behaviour
in distance from the turnover curve as we approach it in any perpendicular plane. Our
final requirement is that the Wagner condition must hold at the turnover curve:

h0(x, y, t) = f(x−X(t), y − Y (t))− Z(t) on t = ω0(x−X(t), y − Y (t)). (3.6)

This states that the leading-order outer free surface meets the impactor at the leading-
order turnover curve.

3.1. Displacement potential formulation

It is convenient to transform the problem (2.7)-(2.9), (3.2)-(3.6) using the leading-order
displacement potential, as first introduced in the context of impact problems by Korobkin
(1982), which is defined by

Ψ(x, y, z, t) = −
∫ t

0

φ0(x, y, z, τ ) dτ. (3.7)

By the definition of the turnover curve, the contact set is given by t > ω0(x−X(t), y−
Y (t)) and the free surface by t < ω0(x−X(t), y−Y (t)). Hence, under the transformation
(3.7), the kinematic boundary condition on the body, (3.3), becomes

∂Ψ

∂z
(x, y, 0, t) = −

∫ ω0

0

∂h0

∂τ
(x, y, τ ) dτ +

∫ t

ω0

Ż(τ ) + Ẋ(τ )f,1 + Ẏ (τ )f,2 dτ,

= −h0 (x, y, ω0) + [Z(t)− Z(ω0)]−
[f(x−X(t), y − Y (t))− f (x−X (ω0) , y − Y (ω0))] ,

= Z(t)− f(x−X(t), y − Y (t)),

where in the first line, the range of integration is split into τ < ω0(x−X(τ ), y − Y (τ )),
where we apply (3.4), and τ > ω0(x−X(τ ), y−Y (τ )), where we use (3.3); in the second
line we have used (2.8); and in the final line we have applied (3.6).
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Thus it is readily shown that the displacement potential problem is given by (dropping
the subscripts on the leading-order variables)

∇2Ψ = 0 in z < 0, (3.8)

∂Ψ

∂z
= Z(t)− f(x−X(t), y − Y (t)) on z = 0, t > ω(x−X(t), y − Y (t)), (3.9)

∂Ψ

∂z
= −h on z = 0, t < ω(x−X(t), y − Y (t)),(3.10)

Ψ = 0 on z = 0, t < ω(x−X(t), y − Y (t)),(3.11)

subject to

Ψ = O(1/R) as R =
(

x2 + y2 + z2
)1/2 → ∞, (3.12)

and the far-field condition on h given by (2.9). Finally, as φ has square-root behaviour,
the smoothing effect of integration in (3.7) means that we require Ψ to have 3/2-power
behaviour in distance from the turnover curve as we approach it in any perpendicular
plane.
The problem (2.9), (3.8)–(3.12) contains no time derivatives. Therefore, under the

transformation

x−X(t) 7→ x, y − Y (t) 7→ y, (3.13)

the displacement potential formulation reduces exactly to the equivalent normal impact
formulation. Hence, given a solution to the normal impact problem we are able to write
down the solution to the corresponding oblique impact. In particular, if Ψ(x, y, z, t),
z = h(x, y, t) and t = ω(x, y) are, respectively, the leading-order outer displacement
potential, free surface and turnover curve for the normal impact of the body profile
z = f(x, y) − Z(t), then Ψ(x − X(t), y − Y (t), z, t), z = h(x − X(t), y − Y (t), t) and
t = ω(x−X(t), y−Y (t)) are the leading-order outer displacement potential, free surface
and turnover curve for the oblique impact of the body z = f(x−X(t), y− Y (t))−Z(t).
This is a direct analogue of the conclusion for two-dimensional oblique impact problems,
given in Moore et al. (2012). Moreover, it confirms the conclusion reached for elliptic
paraboloids via an application of Galin’s theorem in Scolan & Korobkin (2012). We
note, however, that the leading-order outer velocity potential and leading-order outer
pressure do not have such a simple relation with their normal-impact counterparts, due
to the time-dependency of this moving frame.
We now exploit this analysis to investigate the oblique impact of axisymmetric bodies.

4. Axisymmetric impactors

4.1. Normal impact

Normal axisymmetric water-entry is considered in Schmieden (1953) and briefly discussed
in Howison et al. (1991). In our analysis it is most appropriate to follow the approach
of Korobkin & Scolan (2006) (see §4 and Appendix A in that paper) by solving the
displacement potential formulation, setting X(t) = 0 = Y (t) in (2.9), (3.8)-(3.12). In
cylindrical polar coordinates (r, θ, z), Laplace’s equation for the displacement potential
becomes

1

r

∂

∂r

(

r
∂Ψ

∂r

)

+
∂2Ψ

∂z2
= 0 in z < 0. (4.1)

The boundary conditions (3.9)-(3.11) reduce to

∂Ψ

∂z
= Z(t)− f(r) on z = 0, r < d(t), (4.2)
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∂Ψ

∂z
= −h on z = 0, r > d(t), (4.3)

Ψ = 0 on z = 0, r > d(t), (4.4)

where f(r) is the axisymmetric body profile and r = d(t) is the leading-order position of
the turnover curve. These are subject to

Ψ = O(1/R) as R =
(

r2 + z2
)1/2 → ∞, (4.5)

h → 0 as r → ∞, (4.6)

and d(0) = 0. We also have the requirement that Ψ has 3/2-power behaviour as we
approach the turnover curve r = d(t), z = 0 in any plane perpendicular to it.
We can find separable solutions and hence write the general solution as a superposition

of these of the form

Ψ(r, z, t) =

∫

∞

0

α(λ)eλzJ0(λr) dλ, (4.7)

where J0(λr) is the Bessel function of the first kind of order zero. The unknown function
α(λ) can be determined by applying (4.2) and (4.4). We deduce the following dual integral
equations:

∫

∞

0

α(λ)J0(λr) dλ = 0 for r > d(t), (4.8)

∫

∞

0

λα(λ)J0(λr) dλ = Z(t)− f(r) for r < d(t), (4.9)

which can be solved by adapting the method of Sneddon (1966, pp. 76-77) to show that

α(λ) =

∫ d(t)

0

χ(σ) sinλσ dσ, (4.10)

where

χ(σ) =
2

π

∫ σ

0

r(Z(t)− f(r))√
σ2 − r2

dr. (4.11)

Then (4.7), (4.10) and (4.11) give the displacement potential solution for the normal
impact of the body z = f(x, y)− Z(t).
To solve for the location of the turnover curve, we must meet the requirement that

the displacement potential have (3/2)-power behaviour in distance as we approach the
turnover curve. Upon evaluating the displacement potential on z = 0 and writing r =
d(t)− δ, we find that

Ψ(d(t)− δ, 0, t) = δ1/2
∫ 1

0

χ(d(t))
√

2d(t)(1− S)
dS +

δ3/2
∫ 1

0

χ(d(t))(S + 1)− 4Sd(t)χ′(d(t))

4d(t)
√

2d(t)(1− S)
dS +O(δ5/2) (4.12)

as δ ↓ 0. The coefficient of the δ1/2 term must vanish, so that we require

χ(d(t)) = 0, (4.13)

where χ(σ) is given by (4.11). We note that it follows that

Ψ(r, 0, t) = −4χ′(d(t))

3
√

2d(t)
(d(t)− r)3/2 +O

(

(d(t)− r)5/2
)

, (4.14)



8 M. R. Moore, S. D. Howison, J. R. Ockendon and J. M. Oliver

as r ↑ d(t), which extends the results of Korobkin & Scolan (2006). Thus, having deduced
expressions for Ψ(r, z, t) and d(t), we can find the leading-order outer free surface by using
(4.3) to deduce that

h(r, t) = −
∫ d(t)

0

χ′(σ)√
r2 − σ2

dσ. (4.15)

4.2. Oblique impact

With these expressions for Ψ(r, z, t), h(r, t) and d(t) in the case of the normal impact
of the body z = f(r)− Z(t), we can use the argument at the end of §3.1 to deduce the
form of the leading-order displacement potential, leading-order outer free surface and
leading-order turnover curve in the impact of the body z = f(x−X(t), y− Y (t))−Z(t)
by making the change of variables given in (3.13) in reverse. Hence, we simply have to
write

r =
√

(x−X(t))2 + (y − Y (t))2, (4.16)

in the expressions (4.7), (4.10), (4.11), (4.13) and (4.15).
Clearly, the turnover curve is simply a circle moving in the direction (X(t), Y (t)) in the

(x, y)-plane. However, we must remember that, as in the case of two-dimensional oblique
impacts, this analysis is only valid if the turnover curve is everywhere advancing. This
is a consequence of the local-in-space-and-time linear stability analysis of Howison et al.

(1991), who argue that not only does the two-dimensional problem become unstable to
out-of-plane perturbations in the vicinity of the turnover curve when the turnover curve
is retreating, but also that solving the hyperbolic equation for the leading-order outer
free surface is no longer possible, as we lose causality when we try to find the boundary
of the contact set. Therefore, our analysis is only valid during the stage of impact when
the outward normal speed of the turnover curve is positive. In particular, if the turnover
curve is defined by F (x, y, t) = 0, then its outward normal speed is given by

vn = − 1

|∇F |
∂F

∂t
,

so that with F (x, y, t) =
√

(x−X(t))2 + (y − Y (t))2 − d(t), we have

vn(θ, t) = ḋ(t) + Ẋ(t) cos θ + Ẏ (t) sin θ, (4.17)

where θ represents polar angle around the turnover curve. Hence, it is possible that there
are values of Ẋ, Ẏ , θ and t such that vn 6 0. To get a clearer picture of this, we consider
two different examples of oblique impact. For the sake of simplicity, we assume that
X(t) = Ut, Y (t) = 0 and Z(t) = t, where U > 0, in both of the examples, although our
results generalise readily.

4.3. Oblique impact of a cone

We consider the oblique impact of a cone defined by z = βr − t where β > 0. For the
moment we ignore the fact that, as in the two-dimensional oblique entry of a wedge,
there is an infinite negative pressure at the apex of the cone, but we discuss cavitation
in §5.
Upon integrating (4.11), we find that

χ(σ) =
2

π

(

σt− βσ2
π

4

)

, (4.18)
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so that upon applying the consistency condition, (4.13), we find

r =
√

(x− Ut)2 + y2 =
4t

βπ
= d(t), (4.19)

defines the location of the turnover curve. Note that, when U = 0, this reduces to the
normal impact case as deduced from the velocity potential solution in Shiffman & Spencer
(1951) and Howison et al. (1991). Using (4.17), we deduce that the outward normal speed
of the turnover curve is given by

vn =
4

βπ
+ U cos θ. (4.20)

The normal impact speed is independent of t, reflecting the fact that, in this example,
the problem (2.9), (3.8)-(3.12) admits a similarity solution. More interestingly, the ob-
tained solution is valid only if vn > 0 for any θ, that is for U < 4/(βπ). Thus, we expect
the turnover curve to stop advancing at its trailing edge, θ = π, when U = 4/(βπ).
Hence, the solution is valid for all time for 0 < U < 4/(βπ), but breaks down at a

critical horizontal velocity.

4.4. Oblique impact of a blunt power-law body

We consider a blunt power-law body with profile of the form z = βrn − t, where β > 0
and n > 1. Integrating (4.11) for χ(σ), we deduce that

χ(σ) =
2

π

(

σt− β2nσn+1B

(

n+ 2

2
,
n+ 2

2

))

, (4.21)

where B(·, ·) is the beta function. Therefore, the turnover curve is given by

r =
√

(x− Ut)2 + y2 =

(

t

β2nB((n+ 2)/2, (n+ 2)/2)

)1/n

= d(t). (4.22)

We note that the right-hand side of this equation is simply the turnover curve position
for the normal impact of a general axisymmetric power-law body as given in Korobkin
& Scolan (2006).
Its outward normal speed is

vn =
1

n

(

1

2nβB((n+ 2)/2, (n+ 2)/2)

)1/n

t1/n−1 + U cos θ, (4.23)

so that vn > 0 for all U , when t > 0 is sufficiently small, but the normal speed of the
turnover curve vanishes when

t = tc = min
θ∈(π/2,3π/2)

[

−nU cos θ (2nβB((n+ 2)/2, (n+ 2)/2))1/n
]n/(1−n)

.

Again, this first occurs on θ = π, and hence the turnover curve stops advancing on the
ray θ = π at time

tc =
[

nU (2nβB((n+ 2)/2, (n+ 2)/2))1/n
]n/(1−n)

. (4.24)

For large values of n with U, β fixed, the asymptotic form of the critical time is

tc ∼
1

n

(

2

π

)1/2n

(n+ 2)1/2n, (4.25)

so that the flatter the body profile, the more rapid the breakdown. A plot of the critical
time as a function of the exponent, n, is shown in figure 2.
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Figure 2. The time of breakdown tc as a function of the exponent of the power-law impactor
profile, n. The dotted line indicates the asymptotic form of the critical time, as given in (4.25).

5. Breakdown and cavitation in the outer region

Given the expansion of the displacement potential as we approach the turnover curve
in (4.14), we can work out the coefficient of the square-root singularity in the leading-
order outer velocity potential and the corresponding coefficient of the inverse square-root
singularity in leading-order outer pressure on the body. By noting that φ = −Ψt, we have

that φ(r, 0, t) = S(θ, t) (d(t)− r)1/2 +O((d(t)− r)3/2) as r ↑ d(t), where

S(θ, t) =

√

2

d(t)
χ′(d(t))vn(θ, t). (5.1)

Therefore, we can express the leading-order outer pressure on the impactor in the vicinity
of the turnover curve in terms of S(θ, t) and vn(θ, t) by

p(r, 0, t) = −1

2
S(θ, t)vn(θ, t) (d(t)− r)

−1/2
+O((d(t)− r)1/2), (5.2)

as r ↑ d(t). Hence, when vn = 0, the coefficients of the inverse square-root singularities
in the leading-order outer velocity and pressure vanish. This is also the case in the
breakdown of two-dimensional impacts, as discussed by Moore et al. (2012).
Explicit forms of (5.2) are:
• for a cone f(r) = βr

p(r, 0, t) = −U2β

2
cosh−1

(

4t

βπr

)

+
2t

π

√

(4t/βπ)2 − r2

(

(

4

βπ

)2

+
2U

t
r cos θ + U2 cos2 θ

)

,

for 0 < r =
√

(x− Ut)2 + y2 < d(t) = 4t/(πβ). We plot the cone pressure profile in
figure 3 for various values of U , where we have chosen β = 4/π so that breakdown occurs
at U = 1. When we give the cone a forward velocity component, there is a region of
negative pressure on the impactor inside the turnover curve. This forms for any U > 0
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Figure 3. Isobars of the leading-order outer pressure on a cone for different values of U . The
turnover curve is depicted in bold black. We have truncated the contour domain for ease of
viewing the more interesting behaviour on the interior of the turnover curve. As we increase
U from zero, corresponding to the normal impact of a cone (in the top-left corner), to 1, cor-
responding to the critical forward velocity (bottom-right), we see a significant change in the
pressure profile. The region of negative pressure spreads on the trailing side of the cone. At
breakdown, the isobar of zero pressure touches the turnover curve.

due to the aforementioned local corner flow at the apex of the cone. As U increases, the
isobar of zero pressure gradually spreads further from the apex, until at breakdown, it
touches the turnover curve on the ray θ = π.
• for a paraboloid f(r) = βr2

p(r, 0, t) =
1

√

3t/2β − r2

(

3

2βπ
+

4rU cos θ

π

+
8βU2r2 cos2 θ

3π

)

− 8βU2

3π

√

3t

2β
− r2,

for 0 < r =
√

(x− Ut)2 + y2 < d(t) =
√

3t/(2β). We plot the paraboloid pressure profile
in figure 4. We consider the case where U = 1 and the parameters are chosen so that
the corresponding breakdown time is given by tc = 1. Prior to breakdown, a region of
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Figure 4. Isobars of the leading-order outer pressure on a paraboloid for different times. The
turnover curve is depicted in bold black. We have again truncated the contour domain for ease
of viewing the more interesting behaviour on the interior of the turnover curve. As we increase
time, a region of negative pressure forms on the trailing side of the paraboloid. This region
appears before breakdown occurs and grows in size as we increase time. At breakdown, the
isobar of zero pressure touches the turnover curve.

negative pressure forms on the trailing side of the paraboloid. As we approach breakdown,
the zero pressure isobar touches the turnover curve; this behaviour indeed occurs for all
the geometries discussed in §4.
These observations suggest that it is possible that cavitation occurs before the turnover

curve stops advancing, as has been suggested in the case of elliptic paraboloid impact in
Scolan & Korobkin (2012). In particular, there is the possibility of a patch cavity forming
in the region of negative pressure. The introduction of such a cavity into the model would
make the solution of the leading-order outer problem somewhat more complex. We do
not consider ideas of cavitation any further here, but we will propose a model that could
allow for cavitation in the Appendix.
Even though we have restricted our analysis to axisymmetric profiles in §§4–5, our

results regarding the relationship between the leading-order outer oblique and normal
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Figure 5. Breakdown for a non-axisymmetric body profile. The turnover curve for the impact of
an elliptic paraboloid is an ellipse and the angle, α, at which the breakdown of the leading-order
Wagner theory first occurs on this ellipse is plotted as a function of the angle the oblique speed
makes with the major semi-axis of the ellipse, θ. Clearly, the breakdown does not always initiate
in the direction opposite the motion. The eccentricity of the plotted ellipse is 0.933.

impact problems also hold for non-axisymmetric impactors. For the normal impact of
an elliptic paraboloid, Scolan & Korobkin (2001) show that the turnover curve is an
ellipse. Our results show that this also holds for oblique impact, as was shown by a
different methods in Scolan & Korobkin (2012). Here, the normal impact problem is not
axisymmetric and so we must consider the relationship between the horizontal velocity
of the impactor and the orientation of the ellipse. In figure 5 we plot the angle at which
breakdown first occurs on the turnover curve ellipse as a function of the angle between
the oblique velocity and the major semi-axis of the ellipse. In particular, the breakdown
only occurs in the direction directly opposite the motion when the oblique velocity is in
the direction of one of the semi-axes of the ellipse.

6. Splash sheet region

The three-dimensional oblique splash sheet problem is a generalisation of that de-
scribed for normal impact problems in Oliver (2002). The splash sheet is ejected from
the turnover region and lies an order unity distance from the leading-order turnover curve
t = ω0(x, y), z = 0.
The splash sheet is slender, with thickness of the order of the deadrise angle and extent

of the order of the inverse of the deadrise angle. Hence, if (ξ1, ξ2) are local orthogonal
curvilinear coordinates based on the impactor (scaled with 1/ε), then (ū, v̄), which are
the velocity components in the ξ1- and ξ2-directions respectively (scaled with 1/ε), and
the sheet thickness h̄ (scaled with ε) must satisfy the zero-gravity shallow water equations

∂h̄

∂t
+∇ ·

(

ūh̄
)

= 0,
∂ū

∂t
+ (ū · ∇) ū = 0, (6.1)

to leading-order, where the gradient operator, ∇, is based on the local coordinates. It can
be shown that these are the leading-order equations governing the splash sheet problem
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even if the frame is accelerating, provided that the components of acceleration are of
order unity as ε → 0. Since we will only consider splash sheets whose lateral extent is
much smaller than the principal radii of curvature of the impactor, to leading-order we
can, without loss of generality, take (ξ1, ξ2) to be Cartesian with the same orientation
and origin as in the outer region.
The boundary conditions for the problem are found through matching with the inner

region. As described in Oliver (2002), this implies

(ū, v̄) = 2vnn at t = ω(x−X(t), y − Y (t)), (6.2)

where n is the outward-pointing normal to the turnover curve, and

h̄ =
πS2

16v2n
at t = ω(x−X(t), y − Y (t)), (6.3)

where S is the coefficient of the square root in the leading-order outer velocity potential,
as given in (5.1).
For axisymmetric impactors given by z = f(r)−t where r =

√

(x−X(t))2 + (y − Y (t))2,
the system (6.1) can be solved using the method of characteristics subject to the bound-
ary conditions

ū = 2vn cos θ, v̄ = 2vn sin θ, h̄ =
πχ′(d(T ))2

8d(T )
, (6.4)

on

x = X(T ) + d(T ) cos θ, y = Y (T ) + d(T ) sin θ (6.5)

where T > 0 parametrises time, 0 6 θ < 2π parametrises the angle around the turnover
curve, χ(σ) is given by (4.11) and vn is given by (4.17).
If τ parametrises time-of-travel along a characteristic, then we find that ū, v̄ and sub-

sequently h̄ are given by

ū = 2vn cos θ, v̄ = 2vn sin θ, h̄ =
πχ′(d(T ))2

8d(T )

J(0, θ, T )

J(τ, θ, T )
, (6.6)

where

t = τ + T, x = X(T ) + (2vnτ + d(T )) cos θ, y = Y (T ) + (2vnτ + d(T )) sin θ (6.7)

and the Jacobian, J(τ, θ, T ), is given by

J(τ, θ, T ) = −4vn
∂vn
∂T

τ2 + 2

(

2v2n − ḋ(T )vn − d(T )
∂vn
∂T

−Ẋ

(

vn cos θ +
∂vn
∂θ

sin θ

)

+ Ẏ

(

cos θ
∂vn
∂θ

− vn sin θ

))

τ

+2vnd(T )− Ẋd(T ) cos θ − Ẏ d(T ) sin θ − d(T )ḋ(T ). (6.8)

The Jacobian is clearly bounded for all τ, T > 0 and 0 6 θ < 2π. However, we also
require it to be non-zero for the solution to be valid; when the Jacobian vanishes, the
solution becomes multivalued and the characteristics intersect. We will now illustrate
this singularity formation by returning to the examples of §§4.3–4.4.

6.1. Splash sheet of an obliquely impacting cone

For the constant-speed oblique impact of a cone, the thickness of the splash sheet is given
by

h̄ =
βT

8

J(0, θ, T )

J(τ, θ, T )
, (6.9)
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Figure 6. Cone splash sheet for (from left to right) U = 0, 0.5, 1. The turnover curve is depicted
by the bold circle in each plot. The figures represent a top-down view of the splash sheet between
the touchdown curve and turnover curve. In each figure, the shading represents the thickness
of the splash sheet. We can clearly see the breakdown of the splash sheet as we approach the
critical value U = 1. The touchdown curve forms a cusp, which touches the turnover curve at
θ = π, where θ = 0 is the direction of motion.

where

J(τ, θ, T ) =

(

32

β2
π
2
+

16U

βπ
cos θ + 2U2

)

τ +
4T

βπ

(

4

βπ
+ U cos θ

)

. (6.10)

Since β, τ , T , U are all positive, it is evident that

min
θ

J(τ, θ, T ) = J(τ, θ, T )|θ=π
= 2

(

4

βπ
− U

)2

τ +
4T

βπ

(

4

βπ
− U

)

.

Therefore, when 0 < U < 4/(βπ) we must have that J(τ, θ, T ) > 0 for all τ, T > 0,
0 6 θ < 2π , so that the splash sheet solution is valid for all time. However, when
U = 4/(βπ), J(τ, θ, T ) ≡ 0 on the ray θ = π and the solution breaks down immediately
when the turnover curve stops advancing, a consequence of the root of the splash sheet
collapsing.
To visualise the breakdown, we consider the touchdown curve, defined to be the tip of

the splash sheet which is thrown out at time t = 0. In the above solution, this corresponds
to the curve of points where h̄ = 0. We find that

x = 2t cos θ

(

U cos θ +
4

βπ

)

, y = 2t sin θ

(

U cos θ +
4

βπ

)

, (6.11)

gives the touchdown curve parametrically. In particular, when U = 0, this is the circle

x2 + y2 = 4d(t)2,

which is consistent with the normal impact of a cone. For U = 4/(βπ), (6.11) is the
cardioid

x =
4t

βπ
(cos 2θ + 2 cos θ + 1) , y =

4t

βπ
(sin 2θ + 2 sin θ) ,

with cusp at θ = π. For all intermediate values of U , the touchdown curve is a limaçon.
To help visualise the breakdown, we plot the splash sheet for different values of U in

figure 6. Since the cone admits a similarity solution in which distance scales linearly with
time, t, it is sufficient to plot at one instant only. Moreover we have chosen 4/(βπ) = 1
to fix the critical velocity at U = 1.
In figure 6 we see the nature of the breakdown. As we approach the critical value of

U , a cusp forms on the touchdown curve, which touches the turnover curve on the ray
θ = π when U = 1. Thus, when the turnover curve stops advancing on this ray, the
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small-aspect-ratio assumption we made when deriving the splash sheet equations breaks
down. We can check this by noting that, from (6.11), the extent of the splash sheet along
the ray θ = π is given by

|2 cosπ (U cosπ+ 1)− (U + cosπ)| = 1− U.

The maximum thickness of the splash sheet along that ray is on the turnover curve and
is equal to 1/(2π). Clearly, as U ↑ 1, the aspect ratio tends to infinity.
We also note that at U = 1, the turnover curve has stopped advancing for θ = π, so

that (ū, v̄) = 0 at this point.
This breakdown is analogous to that found in the oblique small-deadrise impact of a

two-dimensional wedge; there the length of the trailing splash jet vanishes as we approach
the critical horizontal velocity, as described in Moore et al. (2012).

6.2. Splash sheet of a blunt power-law body

In the constant-speed oblique impact of a blunt power-law body profile, the motion first
breaks down at the critical time (4.24) on the ray θ = π, which is in the direction
opposite the oblique motion. The outward normal speed of the turnover curve (4.23) can
be written as

vn(θ, t) =
d(t)

nt
+ U cos θ,

so that vn(θ, t) > 0 on θ = π as long as

d(t)

nt
> U.

The turnover curve stops advancing when U = d(t)/(nt).
Upon substituting into the general solution (6.7)-(6.8), we find that the splash sheet

profile is defined by

x = (2vnτ + d(T )) cos θ + UT, (6.12)

y = (2vnτ + d(T )) sin θ, (6.13)

h̄ =
1

π

n2T 2−1/n

(

βB

(

n+ 2

2
,
n+ 2

2

))1/n
J(0, θ, T )

J(τ, θ, T )
, (6.14)

where

J(τ, θ, T ) =
4(n− 1)

n2T 2
d(T )

(

d(T )

nT
+ U cos θ

)

τ2 +

2

(

d(T )2

nT 2
+ 2

Ud(T )

nT
cos θ + U2

)

τ + d(T )

(

d(T )

nT
+ U cos θ

)

. (6.15)

We note that as h̄ > 0 for all τ, θ, T in these ranges and as vn is unbounded for T = 0,
the splash sheet extends to infinity. This is analogous to the infinite splash jet in two-
dimensional blunt body impact.This solution is valid for 0 6 τ, T < tc, 0 6 θ < 2π
provided that J(τ, θ, T ) is non-zero.
The equation (6.15) is a quadratic in τ . As n > 1, the coefficients of the quadratic and

constant terms are non-negative when vn > 0. Moreover, we can rewrite the coefficient
of the τ -term as

2

(

(

d(T )

nT
+ U cos θ

)2

+
(n− 1)d(T )2

n2T 2

)

,

and hence, for n > 1, this is also positive. Therefore, for 0 6 τ, T < tc, 0 6 θ < 2π, the
Jacobian is non-zero, so the solution is valid for all values in these ranges.
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At breakdown on the turnover curve, that is at τ = 0 and θ = π, the outward normal
speed vanishes so that we deduce J(0,π, tc) = 0. Hence our solution is no longer valid at
breakdown.
We can interpret this physically by noting that the bicharacteristics of (6.1) are given

by particle paths, viz.

∂x

∂τ
= ū,

∂y

∂τ
= v̄,

∂t

∂τ
= 1.

At breakdown, we have ū = v̄ = 0 on the turnover curve at θ = π. Hence the bicharac-
teristics are parallel to the turnover curve at θ = π. There is no longer any fluid entering
the splash sheet at this point and we see a clear similarity to the breakdown of the splash
jet problem in two-dimensional oblique blunt body impacts as described in Moore et al.

(2012).

7. Summary and discussion

This work generalises oblique impact Wagner theory to three-dimensional body pro-
files. The leading-order outer problem is greatly simplified by working with the dis-
placement potential, which reveals that the problem can be reduced to the correspond-
ing normal impact model. Hence, given a solution for the leading-order turnover curve
projection, leading-order outer free surface and leading-order displacement potential
in the normal impact of the body z = f(x, y) − Z(t), we are able to write down
the corresponding leading-order turnover curve projection, leading-order outer free sur-
face and leading-order displacement potential for the oblique entry of the body profile
z = f(x −X(t), y − Y (t)) − Z(t) for oblique velocity components X(t), Y (t) such that
Ẋ, Ẏ = O(1). Due to the time dependence of the moving frame, more care has to be
employed in deducing the leading-order outer velocity potential and pressure.
By solving the general leading-order axisymmetric normal impact problem, the solu-

tion can be written down for an arbitrary oblique impact. The turnover curve is simply
a translation of the corresponding normal impact turnover curve. However, because the
translation affects the crucial outward normal speed of the turnover curve, there is the
possibility of the turnover curve ceasing to advance. If this occurs, an instability arises in
a neighbourhood of the retreating turnover curve and our theory breaks down. Further-
more, we are no longer able to solve for the leading-order outer free surface if the turnover
curve is retreating. Moreover, at breakdown, the coefficients of the inverse square-root
singularities in the leading-order outer velocity and pressure on the impactor vanish.
These properties of breakdown are analogous to those seen due to a retreating turnover
point in two-dimensional oblique impact problems.
We have investigated breakdown for two specific examples of axisymmetric impacts

with a constant oblique speed in the x-direction. For an obliquely impacting cone, which
has a similarity solution, we find that provided the oblique speed is less than a critical
value the solution remains valid for all time. However, at this critical value, the theory
breaks down immediately. For a smooth axisymmetric power-law body, there exists a
finite time at which the outward normal speed of the turnover curve vanishes for any

non-zero oblique speed. In such cases, the leading-order outer pressure on the body
becomes negative on part of the impactor prior to breakdown. This region grows in size
as we approach breakdown, at which the isobar of zero pressure on the impactor touches
the turnover curve. We explicitly showed that this was the case for the cone and the
paraboloid. There is the possibility that cavitation occurs prior to breakdown, which is
discussed further in the Appendix.
Assuming that cavitation can be ignored, we can solve the splash sheet problem. For
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the case of the cone with a constant oblique speed in the x-direction, the splash sheet has
finite extent, terminating on the impactor at the touchdown curve. While the turnover
curve is always a circle in the moving frame, for non-zero oblique impact speeds, the
touchdown curve is a limaçon with minimum distance from the turnover curve on the
ray in the direction opposite to the tangential motion. At the critical tangential speed,
the touchdown curve becomes a cardioid with the cusp touching the turnover curve on the
ray in the direction opposite to the tangential motion. The small aspect ratio assumption
in the splash sheet becomes invalid on this ray.
In the case of a smooth power-law impactor, the splash sheet is thrown out to infinity

at the moment of impact, so there is no touchdown curve. As we approach the critical
time, the fluid entering the splash sheet at the turnover curve has vanishing speed. This
form of breakdown in the splash sheet also holds for a more general (not necessarily
axisymmetric) body profile. This bears similarities to the inhibition of the ejecta caused
by an oblique component of velocity in droplet impact as reported by Bird et al. (2009).
In this paper we have relied crucially on the impactor not rotating about any axis.

Rotation about the horizontal axis is important when the body responds dynamically to
the pressure forces on it. Preliminary work on this has been considered by Korobkin &
Scolan (2006) and Scolan & Korobkin (2012). Korobkin & Scolan (2006) approximate the
vertical entry of a slightly inclined cone by considering a perturbation about the normal
symmetric impact. They deduce that the turnover curve is an ellipse and calculate the
correction to the leading-order hydrodynamic force on the impactor. Scolan & Korobkin
(2012) use Galin’s theorem to consider arbitrary elliptic paraboloid impacts and in par-
ticular look at an example where the impactor begins a rotation about the (x, y)-plane.
They deduce that the turnover curve is given by an ellipse to leading-order.
We have also assumed that the liquid viscosity and surface tension are negligible

throughout our analysis. Howison et al. (2005) calculate typical Weber and Reynolds
numbers for the similar problem of droplet impact and deduced that these assumptions
are valid close to impact. However, we note that these effects may become important in
the splash jets. This is an interesting discussion in its own right.
A final point of interest is the role of an air-cushioning layer between the solid and

fluid. This has be shown to have an important influence in impact problems at times very
close to impact as reported, for example, by Xu et al. (2005), de Ruiter et al. (2012) and
Kolinski et al. (2012). Various recent theoretical studies have attempted to model the
interaction between the air layer and the fluid. However, a discussion of air-cushioning
lies beyond the scope of this paper. The reader is directed to Purvis & Smith (2004),
Hicks & Purvis (2010), Duchemin & Josserand (2011) and Mandre & Brenner (2012) and
the references within for more information.
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Appendix A. A model for cavitation

Reinhard et al. (2012) present three possible models of the non-Wagner stage after
breakdown for the two-dimensional oblique impact of a parabola. It is possible that the
negative pressure on the impactor prior to breakdown causes cavitation to occur before
this non-Wagner stage applies. Here we briefly outline the model that would need to be
solved if cavitation is assumed to occur on the impactor. We suppose that the pressure
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Ω2(t)

t = ω(x−X(t), y − Y (t))

x

Ω3(t)

Ω1(t)

y

t = σ(x−X(t), y − Y (t))

n

Figure 7. The three regions of the leading-order outer problem with the introduction of a patch
cavity on the impactor. Ω1(t) represents the cavity, Ω2(t) defines the remainder of the contact
set and Ω3(t) defines the non-contact set. The leading-order positions of the turnover curve and
the edge of the patch cavity are defined by t = ω(x−X(t), y−Y (t)) and t = σ(x−X(t), y−Y (t))
respectively. The outward-pointing normal to the cavity is denoted by n.

required for cavitation to occur is given by pc < patm in dimensional coordinates, where
patm represents atmospheric pressure. We suppose that the pressure in any cavity takes
this value. Then, provided

εT 2 (pc − patm)

ρL2
≪ 1,

the pressure in any cavity is given by p = 0 in outer variables at leading order. Thus, when
the leading-order outer pressure becomes negative in a subset of the contact region, we
assume that a patch cavity forms on the impactor about the region of negative pressure.
The dynamics and analysis of patch cavities is outlined in Howison et al. (1994). Our
model is an adaptation of the discussion in Korobkin (2003) for a decelerating, normal,
two-dimensional impact, to the oblique impact of the body profile z = f(x −X(t), y −
Y (t))− Z(t).
At the first instance the pressure on the impactor becomes negative, we assume that

a cavity grows from a single point. We assume the cavity thickness is much smaller than
its dimensions in the x- and y-directions so that in the leading-order outer problem, the
cavity boundary conditions linearise onto the plane z = 0. We sketch the key regions in
the leading-order outer problem in figure 7. The leading-order turnover curve is again
defined by t = ω(x − X(t), y − Y (t)) and the leading-order boundary of the cavity is
denoted by t = σ(x−X(t), y−Y (t)). We note that the patch cavity does not necessarily
encompass the minimum of the impactor. The region Ω1(t) defines the cavity on the
impactor, that is (x, y) such that t > σ(x − X(t), y − Y (t)). The region Ω2(t) defines
the rest of the contact set, that is (x, y) such that ω(x − X(t), y − Y (t)) < t < σ(x −
X(t), y − Y (t)). Finally, Ω3(t) defines the non-contact set, that is (x, y) such that t <
ω(x−X(t), y − Y (t)).
The leading-order outer velocity potential in the fluid, φ(x, y, z, t), the leading-order

outer free surface, h(x, y, t), and the leading-order thickness of the cavity, H(x, y, t), must
then satisfy:

∇2φ = 0 in z < 0, (A 1)
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φ = 0 on z = 0, (x, y) ∈ Ω3(t),

∂φ

∂z
=

∂h

∂t
on z = 0, (x, y) ∈ Ω3(t),

∂φ

∂z
= −Ż − Ẋf ′

1 − Ẏ f ′

2 on z = 0, (x, y) ∈ Ω2(t),

∂φ

∂z
= −Ż − Ẋf ′

1 − Ẏ f ′

2 −
∂H

∂t
on z = 0, (x, y) ∈ Ω1(t),

with the initial conditions h(x, y, 0) = 0, ω(0, 0) = 0 and σ(0, 0) = 0, and the far-field
conditions

φ → O(1/R) as R =
(

x2 + y2 + z2
)1/2 → ∞,

h → 0 as
(

x2 + y2
)1/2 → ∞.

We still require φ to have a square-root singularity in distance from the turnover curve
as we approach it in any perpendicular plane. Finally, the Wagner condition still holds
at the turnover curve, as given in (3.6).
In addition to this, we require two further pieces of information to determine the

location and size of the cavity. As described above, we must also have p(x, y, 0, t) = 0
for (x, y) ∈ Ω1(t) to leading-order. We take the second condition as in Korobkin (2003),
namely that the pressure close to the edge of the cavity is continuously differentiable (that
is we seek the solution with minimal singularity). Hence, we require that ∂p/∂n → 0 as
we approach the cavity boundary, t = σ(x − X(t), y − Y (t)). Here ∂/∂n is the normal
derivative along the wetted surface normal to the edge of the cavity. Note that this forces
∂2H/∂t2 to be bounded at the cavity edge.
It is evident that the introduction of a patch cavity makes analysis of the leading-order

outer problem much more complicated. Moreover, changing to the displacement potential
form of the problem does not appear to give any direct benefits.
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