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The dynamical evolution of many economic, sociological, biological, and physical systems tends to
be dominated by a relatively small number of unexpected, large changes (“extreme events”). We study
the large, internal changes produced in a generic multiagent population competing for a limited resource,
and find that the level of predictability increases prior to a large change. These large changes hence
arise as a predictable consequence of information encoded in the system’s global state.
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Populations comprising many “agents” (e.g., people,
species, data packets, cells) who compete for a limited
resource are believed to underlie the complex dynamics
observed in areas as diverse as economics [1–4], sociol-
ogy [5], internet traffic [6], ecology [7], and biology [8,9].
The reliable prediction of large future changes (“extreme
events”) in such complex systems would be of enormous
practical importance, but is widely considered to be im-
possible [10].

In this paper, we examine the predictability of large
future changes produced within an evolving population of
agents who compete for a limited resource. We find that
the level of predictability in the system increases prior to
a large change, implying that such a large change arises
as a predictable consequence of information encoded in
the system’s global state, as opposed to being triggered by
some isolated random event.

We consider a generic multiagent system comprising a
population of Ntot agents of which no more than L , Ntot
agents can win at each time step; an everyday example
would be a popular bar with a limited seating capacity L
[5]. For the purpose of this paper, we consider a specific
case of such a limited-resource problem with Ntot odd and
L � �Ntot 2 1��2 [11], hence there are more losers than
winners, noting that similar dynamics can also occur for
more general L [12]. Each agent is therefore seeking to be
in the minority group: for example, a buyer in a financial
market may obtain a better price if more people are selling
than buying; a driver may have a quicker journey if she
chooses the route with less traffic. At each time step, an
agent decides whether to enter a game where the choices
are option 0 (e.g., buy, choose route A) and option 1 (e.g.,
sell, choose route B). Each agent holds a finite number
of strategies and only a subset N � N0 1 N1 # Ntot of
the population, who are sufficiently confident of winning,
actually play: N0 agents choose 0 while N1 choose 1. If
N0 2 N1 . 0, the winning decision (outcome) is “1” and
vice versa. If N0 � N1 the tie is decided by a coin toss.
Hence N and the “excess demand” N021 � N0 2 N1 both
fluctuate with time. In contrast to the basic minority game
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(MG) [11], this variable-N model has the realistic fea-
ture of accounting for agents’ confidence [13,14]. Fur-
thermore the variable-N model can be used to generate
statistical and dynamical features similar to those observed
in financial markets (archetypal examples of complex sys-
tems) [2,13]. Therefore, demonstration of predictability
of extreme events in the present multiagent model would
open up the exciting possibility of predictability of extreme
events in real-world systems. Such predictability goes be-
yond the standard economic paradigm of the efficient mar-
ket hypothesis [10].

The only global information available to the agents is
a common bit-string “memory” of the m most recent out-
comes. The agents can thus be said to exhibit “bounded
rationality” [5]. Consider m � 2; the 2m � 4 possible his-
tory bit strings are 00, 01, 10, and 11. A strategy consists
of a response, i.e., 0 or 1, to each possible bit string; hence
there are 22m

� 16 possible strategies. At the beginning
of the game, each agent randomly picks q strategies and,
after each turn, assigns one (virtual) point to a strategy
which would have predicted the correct outcome. Agents
have a time horizon T , over which virtual points are col-
lected, and a threshold probability level t; strategies with
a probability of winning greater than or equal to t, i.e.,
having $Tt virtual points, are available to be used by the
agent. We call these active strategies. Agents with no ac-
tive strategies within their individual set of q strategies do
not play at that time step. Agents with one or more active
strategies play the one with the highest virtual point score;
any ties between active strategies are resolved using a coin
toss. The excess demand N021, which can be identified as
the output from the model system, can be expressed as

N021 �
X

i

ni�1 2 2si� , (1)

where si is the prediction of the ith strategy, e.g., 0 or 1,
and ni is the number of agents using this strategy; the sum
is taken over the set of active strategies at that time step.

Because of the feedback in the game, any particular
strategy’s success is short lived. If all the agents begin to
© 2001 The American Physical Society 017902-1



VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002
use similar strategies, and hence make the same decision,
such a strategy ceases to be profitable. The game can be
broadly classified into three regimes: (i) The number of
strategies in play is much greater than the total available:
groups of traders will play using the same strategy and
therefore crowds should dominate the game [15]. (ii) The
number of strategies in play is much less than the to-
tal available: grouping behavior is therefore minimal.
(iii) The number of strategies in play is comparable to the
total number available: this represents a transition regime
and is of the most interest, since it produces seemingly
random dynamics with occasional large movements.
Remarkably, however, we find that large changes over
several consecutive time steps can be predicted with
surprising accuracy.

Suppose we are given a time series H�t� with increments
DH�t� generated by a physical, sociological, biological,
or economic system (e.g., a financial market [13]), whose
dynamics are well described by the multiagent game for a
fixed unknown parameter set m, N , t, T and an unknown
specific realization of initial strategy choices. We call
this our “black-box” game. Even with complete knowl-
edge of the game’s state, subsequent outcomes are not per-
fectly predictable since the coin tosses which resolve ties
in decisions (i.e., N0 � N1) and active-strategy scores in-
ject stochasticity into the game’s time evolution. Previous
authors have demonstrated the existence of a degree of sta-
tionary predictability in the basic MG, e.g., via the his-
togram of bit-string occurrences [16]; our results are, by
contrast, dynamic. Our goal is to identify “third-party”
games which can be matched with the black-box game
[DH�t� being proportional to the excess demand N021, or
a known nonlinear function thereof] and then used to pre-
dict large future changes in H�t�. For the remainder of this
article, we focus on the following game parameters for the
black-box game: N � 101, m � 3, q � 2, T � 100, and
t � 0.53, although our conclusions are more general [17].
Since t . 0.5, an agent will not participate unless she be-
lieves she has a better than average chance of winning.
Note that it is computationally impractical to have large
values of m in the third-party game, because there are 22m

strategies. However, we have found that the reduced strat-
egy space, comprising a subset of 2m11 strategies which
are either anticorrelated or uncorrelated with each other
[11], can be used to match a black-box game which was
generated using the full strategy space [17].

We start by running H�t� through a trial third-party game
in order to generate an estimate of S0 and S1 at each time
step, the number of active strategies predicting a 0 or 1,
respectively. This is obtained from the strategy space, or
the pool of all available strategies in the third-party game,
and is independent of the distribution of agents. We wish
to predict DH�t�, i.e., N021; we will do this by linking
S and N through an appropriate probability distribution.
Provided the strategy space in the black-box game is rea-
sonably well covered by the agent’s random choice of ini-
tial strategies, any bias towards a particular outcome in
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the active strategy set will propagate itself as a bias in the
value of N021 away from zero. Thus we expect N021 to
be approximately proportional to S0 2 S1 � S021. This
is equivalent to assuming an equal weighting ni on each
strategy in Eq. (1), indicating that the exact distribution of
strategies among the individual agents is unimportant in
this regime [18]. In addition, the number of agents taking
part in the game at each time step will be related to the to-
tal number of active strategies S0 1 S1 � S011, hence the
error (i.e., variance) in the prediction of N021 using S021
will depend on S011. Based on extensive statistical analy-
sis of known simulations for the multiagent game [17], we
have confirmed that it is reasonable to model the relation-
ship by

N021 � bS021 1 ´�0, f�S011�� ,

where ´ is a noise term with mean zero and variance a
function of S011, and b is a constant. In particular, we de-
scribe the forecast for N021 as a normal distribution of the
form N021 � N�bS021, cS011�, where c is a constant. (We
seek the simplest stable distribution as a density forecast,
while acknowledging that the true distribution of N021 is
indeed fat tailed.)

The variance of our forecast density function can be
minimized by choosing a third-party game that achieves
the maximum correlation between N021 and our explana-
tory variable S021, with the unexplained variance being
characterized by a linear function of S011. We focus on
the parameter regime known to produce realistic statis-
tics (e.g., fat-tailed distribution of returns in financial mar-
kets). Within this parameter space we run an ensemble of
third-party games through the black-box series H�t�, cal-
culating the values of S021 from the reconstructed strategy
space. We then identify the configuration that achieves
the highest correlation between S021 and N021 produced
by the original black-box game. As shown in Fig. 1, the
third-party game that achieves the highest correlation is
the one whose parameters coincide with the black-box
game. From a knowledge of just H�t�, and hence N021, we
have therefore used next-step prediction to recover all the
parameters of relevance to produce a “model” game for
prediction purposes. The games reported here were all
homogeneous in T and t, but we have also carried out
studies in which the values of these parameters vary be-
tween agents [17]. Even if the black-box game is hetero-
geneous, prediction by a homogeneous third-party game
still exhibits a significant degree of correlation, indicating
the robustness of our procedure.

We now extend this forecast an arbitrary number j of
time steps into the future, in order to address the pre-
dictability of large changes in H�t� over several consecu-
tive time steps. This is achieved by calculating the net
value of S021 along all the 2j21 possible future routes of
the third-party game, weighted by appropriate probabili-
ties. In order to assign these probabilities, it is necessary
to calculate all possible S021 values in the next j time steps.
This is possible since the only data required to update the
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FIG. 1. Estimation of the parameter set for the black-box
game. The correlation between N021 and S021 is calculated over
200 time steps for an ensemble of candidate third-party games.
The third-party game that achieves the highest correlation is the
one with the same parameters as the black-box game.

strategy space between time steps is knowledge of the win-
ning decision, and hence the third-party game can be di-
rected along a given path independent of the predictions of
the individual agents in the black-box game. The change
in N021 along a path indexed by k is given by a convo-
lution of the predictions over the j individual steps and is
distributed as

N�mk , sk� � N

µ
b

X
S021, c

X
S011

∂
,

where the summation is taken along the path represented
by k. In general, the pdf for the change in N021 during the
next j time steps is a mixture of normals:

P�DN021�i; i 1 j�� �
2j21X
k�1

pkN�mk, sk � , (2)

where pk is the probability of path k being taken.
To test the validity of the density forecast, we perform

a statistical evaluation using the realized variables. The
one-step-ahead forecasts are normal distributions, and we
define the test statistic Zi as

Zi �
xi 2 m

x
i

s
x
i

, (3)

where m
x
i and s

x
i are the mean and variance of the fore-

cast distribution, and xi is the realized value of N021 at
time step i. The Zi were found to be independent uni-
form N �0, 1� variates for 1000 out-of-sample predictions,
confirming that the predicted distributions are correct. To
compare the forecasts to a naive “no-change” prediction,
we calculate the Theil coefficient [19] which is the sum
of squared prediction errors divided by the sum of squared
errors resulting from the naive forecast. A coefficient of
less than 1 implies a superior performance compared to the
naive prediction; calculated values were typically in the re-
gion of 0.4. There is no accepted method in the literature
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for evaluating multi-step-ahead forecasts [20]. However,
the density function for an arbitrary time horizon is a mix-
ture of normal distributions, see Eq. (2), each of which
can be roughly characterized in terms of a single mean
and variance:

E�X� �
2j21X
k�1

pimi ,

Var�X� �
2j21X
k�1

pi�s2
i 1 m2

i � 2

√
2j21X
k�1

pimi

!2

.

Hence the same test statistic as Eq. (3) can be calculated.
Again, the predictions were found to be reliable.

Given that we can derive accurate distributions for the
future changes in H�t�, these will be of most practical in-
terest in situations where there is likely to be a substantial,
well-defined movement. We characterize these moments
by seeking distributions with a high value of jmj and a low
value of s at a future time step, or over a specified time
horizon. In Fig. 2 we plot jmj vs s for a number of sepa-
rate forecasts, and take a fraction of points that are farthest
from the average trend indicated by the regression line, i.e.,
we are interested in the outliers. The point with the highest
residual is thus a candidate for the game to be in a highly
predictable phase. We call these time periods predictable
corridors, since comparatively tight confidence intervals
can be drawn for the future evolution of the excess de-
mand, a typical example of which is shown in Fig. 3. A
standard autoregressive prediction AR(8), which is based
on information from the previous eight time steps, does
not pick up the large change. Furthermore, no significant
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FIG. 2. A plot of jmj vs s for 500 separate four-step density
forecasts. Items marked by “3” are forecasts with an unusually
large value of jmj�s. At these moments, the game is likely to
be in a highly predictable phase.
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FIG. 3. Comparison between the forecast density function and
the realized time series H�t� for a typical large movement. The
large, well-defined movement is correctly predicted. An AR(8)-
based prediction has been included for comparison.

linear autocorrelation (at the 95% level) exists prior to the
large movement studied. We subject these points to an
identical test as described earlier to ensure that these po-
tential outliers are well described by our probability dis-
tributions, and this is found to be true. We note that the
coin-toss frequency does not change dramatically prior to
the large movements, confirming our statement that the
large changes are global and hence cannot be traced to a
single nucleation event [17].

We performed extensive numerical simulations to check
the validity of these predictive corridors [17]. Our proce-
dure is to take a sample of 5000 time steps, then fit pa-
rameters using the first 3000 steps. We then look at the
largest changes (extreme events) in our out-of-sample re-
gion. Extreme events are ranked by the largest movements
in H�t� over a given window size W . Hence we consider
the top twenty extreme events and calculate the probability
integral transform zt of the realized variables with respect
to the forecast densities. The zt are found to be approxi-
mately uniform U�0, 1� variates, confirming that the fore-
cast distribution is essentially correct. About 50% of large
movements occur in periods with tight predictable corri-
dors, i.e., a large value of jmj�s. Both the magnitude and
sign of these extreme events are therefore predictable. The
remainder correspond to periods with very wide corridors.
Although the magnitude of the future movement is now un-
certain, the present method predicts with high probability
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the actual direction of change. Even this more limited in-
formation would be invaluable for assessing future risk in
the physical, economic, sociological, or biological system
of interest. Finally we note that some empirical support
for our claim of enhanced predictability prior to extreme
movements has very recently appeared for the case of fi-
nancial markets [21].
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