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Abstract. We present a novel approach to the pricing of financial instruments in emission markets—
for example, the European Union Emissions Trading Scheme (EU ETS). The proposed
structural model is positioned between existing complex full equilibrium models and pure
reduced-form models. Using an exogenously specified demand for a polluting good, it
gives a causal explanation for the accumulation of CO2 emissions and takes into account
the feedback effect from the cost of carbon to the rate at which the market emits CO2.
We derive a forward-backward stochastic differential equation for the price process of
the allowance certificate and solve the associated semilinear partial differential equation
numerically. We also show that derivatives written on the allowance certificate satisfy
a linear partial differential equation. The model is extended to emission markets with
multiple compliance periods, and we analyze the impact different intertemporal connecting
mechanisms, such as borrowing, banking, and withdrawal, have on the allowance price.
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1. Introduction. Global warming has been recognized by policy makers as a key
21st century problem. The phenomenon is widely believed to be the result of a green-
house effect that is caused by increases in atmospheric gases such as carbon dioxide
(CO2), methane, ozone, and water vapor. Forced to address this issue, 37 countries
ratified the Kyoto Protocol on December 11, 1997, in Kyoto, Japan. Under this agree-
ment, binding limits, expressed in assigned amount units (AAUs) and measured in
metric tons of CO2 equivalent greenhouse gas (GHG),1 are imposed on the emissions of
participating countries. To meet their obligations, countries may draw upon—among
other mechanisms—any of the following three market-based mechanisms:

1. The Clean Development Mechanism (CDM), defined in article 12 of the Kyoto
Protocol, allows countries to implement emission-reduction projects in devel-
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1The CO2 equivalent of a given greenhouse gas denotes the amount of CO2 that has the same
global warming potential over a specified timescale.
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96 SAM HOWISON AND DANIEL SCHWARZ

oping countries. For this they receive certified emission-reduction (CER)
credits, each worth one metric ton of CO2 equivalent, which can be used for
meeting Kyoto targets.

2. The Joint Implementation (JI) mechanism, defined in article 6 of the Ky-
oto Protocol, allows countries to earn emission-reduction units (ERUs), each
worth one metric ton of CO2 equivalent, from establishing emission-reduction
projects in other Kyoto countries. Like CERs, these units can be used to meet
Kyoto targets.

3. Emissions Trading, as defined in article 17 of the Kyoto Protocol, allows mar-
ket participants that have AAUs, CERs, or ERUs to spare to sell their excess
capacity to other participants. This creates the so-called carbon market.

The Kyoto Protocol merely constitutes a global framework that encourages par-
ticipating countries to put in place platforms on which CERs, ERUs, and AAUs can
be traded. Subject to broad provisions, the market design of any local implementation
of an emissions trading system is left to the hosting countries.

In this paper we present a simple model for emissions trading. Our model incorpo-
rates market design features which are commonly found in successful implementations
of such trading schemes—for example, the SO2 and NOx trading programs in the US
or the European Union Emissions Trading Scheme (EU ETS). Because of its pioneer-
ing role, we choose the latter example to illustrate the working principle of emissions
trading.

1.1. Emissions Trading in the EU ETS. The limit on emissions during one com-
pliance period, also referred to as the cap on emissions, is realized through an initial
allocation of allowance certificates—each worth one EU allowance unit (EUA) and
permitting its holder to emit one metric ton of CO2 equivalent2 GHGs—by the gov-
ernment to firms in the market. At the end of each compliance period, firms must
offset their accumulated emissions by submitting an adequate number of certificates.
If they fail to do so (the event of noncompliance), they must pay a monetary penalty
for each unit of excess emissions. Throughout a compliance period allowances are
traded actively, and this leads to the formation of a price, which represents the cost
of carbon. Firms can then buy allowances to avoid the penalty, or exploit their own
pollution-light production by selling them.

In practice, an emissions trading scheme consists of multiple compliance periods,
each with its own distinct cap and penalty. Subsequent periods are joined by con-
necting mechanisms, which regulate the transition from one compliance period to the
next. The key mechanisms go by the names of banking, borrowing, and withdrawal.
The banking mechanism allows market participants to carry forward allowance cer-
tificates, allocated for compliance at the end of the current period, to the next com-
pliance period. Similarly, borrowing enables firms to use the next period’s certificates
for compliance at the end of the current trading period. The withdrawal mechanism
constitutes additional punishment for noncompliance: it prescribes that, in addition
to the monetary penalty payment, one allowance certificate from the next period’s
allocation is withdrawn for each unit of excess emissions at the end of the current
period.

Since the Linking Directive came into force, the EU has been accepting credits
from the CDM and the JI mechanism for compliance in its trading scheme. Because
one EUA is equivalent to an AAU, the base unit of the Kyoto Protocol, CERs, ERUs,

2For simplicity, from now on we write CO2 whenever we mean CO2 equivalent GHGs.
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RISK-NEUTRAL PRICING IN EMISSION MARKETS 97

and EUAs can all be traded within the same system straightforwardly. In practice,
this takes place mostly on platforms such as the European Energy Exchange (EEX),
where EUA and CER spot and future contracts are traded actively.

Emission reduction as part of a trading scheme occurs in two ways. The immediate
consequence is to shift production within the existing fleet of resources to pollution
friendlier ones—an effect we refer to as load shifting. The cost of carbon also makes it
attractive for firms to invest in long-term abatement measures if the cost of reducing
their emissions by one unit lies below the value of an allowance certificate. Even if a
firm has sufficient allowances to cover its emissions, it should make use of all available
emission-reduction measures whose marginal abatement cost (MAC) lies below the
value of the allowance certificate. It can then sell spare certificates to companies
whose MAC is above the market price of allowances and make a profit. For this
reason it has been argued that cap-and-trade schemes provide emission reduction at
the lowest cost to society. However, there is also evidence which suggests that the
implied cost of carbon to make long-term investment in renewables such as solar cells
worthwhile is $196 per metric ton of CO2; this is far above current allowance prices
(cf. [15]).

1.2. Electricity Generation: A Pollution-Intensive Process. The primary pro-
cess that releases CO2 emissions is the burning of fossil fuels. Since this is heavily used
for the generation of electric power, electricity offers itself as an exemplary good for
the academic study of emission markets. A wide spectrum of technologies, including
nuclear fission, wind turbines, hydropower, and the burning of fossil fuels, are used for
the generation of electricity. Because these technologies differ substantially in their
emission rates it is important to identify which generators are used in the market at
any point in time. In principle, this can be deduced from the electricity bid stack.

The bid stack, introduced in [2, 21, 1, 11], aggregates the bidding behavior of
firms that supply electricity. A bid is the amount of electricity a single generator
is willing to supply at a specific price. Firms submit their Pareto-optimal bids for
each hour of the next trading day to a central market administrator. An example
would be a generator submitting bids (600MW, 100e), (200MW, 120e), and (200MW,
200e). This generator offers to sell its first 600MW for the specified hour at a price
of 100e, the next 200MW at a price of 120e, and a further 200MW at a price of
200e. Consequently, each firm submits an increasing simple (step) function that
maps electricity supply to its marginal price. The market administrator aggregates
the bids for each price level and arranges them in increasing order of price. Using
the cheapest bids first, electricity is supplied at the marginal price of the last unit of
electricity that is needed in order to satisfy demand.

The bids of generators reflect their production costs (cf. [11]). In particular,
firms consider fixed and variable costs when deciding upon their bid levels. In the
absence of emissions trading—a scenario called business-as-usual—the latter costs
consist predominantly of the price to be paid by a particular plant for the amount
of fuel necessary to generate each unit of electricity (the plant’s heat rate multiplied
by the price of the utilized fuel). The introduction of a cap-and-trade system levies
a cost on emissions. In principle, firms may remain idle and sell unused certificates
to the market. Therefore, if they choose to produce and to utilize their certificates
for compliance purposes, this forgone profit constitutes an opportunity cost, which
leads to an increase in variable costs. As a consequence bids increase by an amount
equal to the marginal emissions rate of the plant (measured in metric tons of CO2

per MWh) multiplied by the allowance price.
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98 SAM HOWISON AND DANIEL SCHWARZ

Although not a requirement for the model that we propose, in the absence of
emissions trading, pollution-intensive fuels have historically gathered on the left end
of the bid stack because they are cheaper to use, whereas environmentally friendlier
technologies tend to be more expensive and are concentrated further to the right.3

The rationale behind cap-and-trade is that for sufficiently high carbon costs, pollution-
intensive technologies become more expensive than environmentally friendlier ones.
The market administrator rearranges bids to preserve the increasing order, and as
a result environmentally friendly technologies are now called upon before pollution-
intensive ones, leading to cleaner production of electricity.

Example 1. Consider a simple market with one coal generator and one gas gen-
erator, who each bid at only one price level. We illustrate the influence of emissions
trading on the bid stack in Figure 1. Initially the cost of carbon is low, and bids
from coal generators are cheaper than those from gas generators. Accordingly, coal
bids come first in the bid stack, and the marginal emissions corresponding to bids
further to the left in the stack are relatively higher than those corresponding to bids
on the right. As emissions become more costly, the bid levels from coal and gas gen-
erators increase, more so for coal bids than for gas bids. This results in the market
administrator rearranging the bid stack and placing gas first. The result of the higher
allowance price is lower emissions, as intended.
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Fig. 1 A schematic of the rearrangement of the bid and the emissions stacks as the cost of carbon
increases.

The price setting mechanism described above applies directly to day-ahead spot
prices set by uniform auctions, as is the case at most exchanges today. For example,
the power spot price for Germany, Austria, Switzerland, and France is determined by
such auctions organized by the EEX. Although, since the onset of electricity market
deregulation in 1998, the auction-based trading volume at the EEX has increased
substantially—from 49 TWh in 2003 to 279 TWh in 2010 (cf. [16])—a large share of
electricity in Europe is still traded over-the-counter or on a forward basis. However,
we believe that in a competitive market with rational agents the day-ahead auction

3An exception to this rule of thumb is must-run bids, which are always placed on the left end of
the bid stack and may, for example, contain bids from nuclear generators that do not emit.
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RISK-NEUTRAL PRICING IN EMISSION MARKETS 99

price also serves as the key reference point for real-time and over-the-counter prices
(cf. [29]).

1.3. Literature Review. The first academic treatment of emission markets can
be traced back to [13, 28]. Early models of allowance trading in discrete and in con-
tinuous time were proposed in [12, 25, 27, 31, 32, 34]. More recently, emission markets
have been treated from two different angles. On the one hand are full equilibrium mod-
els that derive the price processes of allowances and goods (the production of which
causes pollution) from the preferences of individual firms and additional sources of
uncertainty. These have proved to be insightful but rather cumbersome in their com-
plexity (cf. [8, 9]). On the other hand are approaches that rely on the concept of
absence of arbitrage (i.e., ruling out the possibility of making a profit starting from
nothing) to specify the allowance price evolution directly as the expectation of the
discounted future cash flows under a probability structure which, in the mathematical
finance literature, is called risk-neutral (cf. [20]); then the parameters in the model are
calibrated to market data. In these models, the event of noncompliance is described
exogenously, and no causal explanation is given for the accumulation of emissions in
the economy. Within this class of models, one can distinguish between those that
ignore the feedback from the allowance price to the rate at which firms emit (cf. [10])
and those that take this feedback effect into account through an exogenously specified
abatement function (cf. [3, 6, 22]).

1.4. The Current Paper. In this paper we propose a structural model which
draws upon elements of the equilibrium approach but still retains the simplicity of the
risk-neutral approach. We take as a starting point an exogenously specified stochastic
process representing demand for electricity,4 and we regard allowances as derivatives
(that is, contingent claims: securities whose value at a specified future date is deter-
mined by the state of the world at that time, but whose value now is to be found) on
demand and cumulative emissions. The demand process is translated into an emis-
sions process via the bid stack, which allows us to deduce which generators are active
at any point in time. As noted above, the bid stack both influences and is influenced
by the allowance price. This leads naturally to a formulation of the allowance price as
the backward part of a forward-backward stochastic differential equation (FBSDE).
To solve the problem numerically, we derive a semilinear partial differential equation
(PDE) for the allowance price as a function of demand and cumulative emissions, and
we give a formal asymptotic description of the solution behavior near the end of a
compliance period, highlighting the way in which the nonlinearity in the governing
PDE—which is a consequence of the feedback from allowance prices to the behavior of
energy producers—leads to a nonzero probability that the total cumulative emissions
hit the cap exactly (cf. [6, 5]). In a sense, the market functions so as to produce
the maximum emissions possible without incurring the penalty and this is an impor-
tant practical consequence of our analysis. We extend our model to emission markets
with multiple compliance periods and analyze the impact of different intertemporal
connecting mechanisms such as borrowing, banking, and withdrawal on the allowance
price. The last section is devoted to the pricing of European derivatives written on the
allowance certificate. Throughout the analysis we focus on the trading of AAUs only.

4Although we have formulated the problem in terms of electricity generation (which is, indeed,
responsible for a large proportion of the emissions covered by the Kyoto Protocol), we may at least
conceptually extend our model to all emissions covered by Kyoto if we view the formation of the
equilibrium price for energy as equivalent to the action of the market regulator’s arrangement of the
bid stack in increasing price order.

D
ow

nl
oa

de
d 

03
/0

9/
15

 to
 1

29
.6

7.
18

7.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

100 SAM HOWISON AND DANIEL SCHWARZ

The joining of multiple markets using CERs and ERUs in the present setting is left
to future research and is addressed from a different point of view in, for example, [7].

2. From Electricity Markets to Carbon Emissions. In this section we develop
our approach to modeling the interaction between electricity and emission markets.
We introduce the random factors and the key parameters that are later shown to
drive the price formation of allowance certificates. An important part is played by
the merit order—the rule by which available resources with the lowest marginal costs
of production are called upon first to supply electricity. We introduce the electricity
bid stack, which is modeled as a continuous map from the supply of electricity to its
marginal price, and analogously define the emissions stack as a continuous map to the
marginal emissions caused by the production of the last unit. Using an equilibrium
assumption, we relate supply to demand; we show how this allows us to deduce which
technologies are used to meet demand at any point in time and the total market
emissions rate this production schedule implies. Finally, we illustrate the impact the
introduction of a cost of carbon has on the bid and emissions stacks. In the context of
an emissions trading scheme the merit order assumption very naturally leads to load
shifting, the reallocation of energy production from emission-intensive to pollution
friendly resources.

2.1. Market Setup. We consider a finite time interval [0, T ], which initially cor-
responds to one compliance period; later we will consider multiperiod markets. We
denote by (Ω,F , (Ft)t∈[0,T ],P) a filtered probability space satisfying all the usual as-
sumptions, where (Ft)t∈[0,T ] is generated by a standard Brownian motion (Wt)t∈[0,T ],
the only source of randomness in the market. In order to simplify the notation, we
omit the subscript that restricts a stochastic process to the time interval [0, T ] from
now on. We deviate from this habit only in section 3.2, where it becomes important
as part of a multiperiod setting, and in section 4, where we discuss the pricing of
derivatives.

Agents in our market demand a good, the production of which causes emissions;
as discussed above, we take this good to be electricity. Firms can produce electricity
using different technologies that vary in their costs of production and their emissions
intensity. The market is subject to an emissions trading scheme, as follows. Each
registered firm receives an initial allocation of allowances, which can be used to offset
its cumulative emissions at the end of the compliance period. If a firm is unable
to submit a sufficient number of certificates, its excess emissions are subject to the
payment of a monetary penalty. Allowances are represented by printed certificates.
Because their cost of carry is negligible, we consider them to be liquidly traded finan-
cial products in which long and short positions can be taken. Consequently, if a firm
believes its initial allocation to be incorrect, it can buy or sell allowances as needed.
This leads to a liquid market and the formation of a price at which allowances are
traded.

Analogous to the idea of a representative agent, we ignore the aggregation problem
and instead take the point of view of the whole market. Our goal then becomes to
determine the arbitrage-free price of emission permits as a function of the aggregate
forces that act in the market. As will be shown in section 3, this price directly and
crucially depends on the accumulated emissions during the compliance period and on
the aggregate demand for electricity.

The actions of consumers in the market result in an exogenously given Ft-adapted
demand process (Dt). Firms respond to this demand by generating electricity. In
particular, at any time 0 ≤ t ≤ T , the aggregate of all firms supplies an amount (ξt)
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RISK-NEUTRAL PRICING IN EMISSION MARKETS 101

of electricity. We assume that the market uses only currently available information
to decide on its production level and that this level is always nonnegative and below
a constant maximum production capacity ξmax ≥ 0. Therefore, ξt is Ft-adapted, and

0 ≤ ξt ≤ ξmax for 0 ≤ t ≤ T.

Moreover, we assume that there are always sufficient resources in the market to meet
demand so that

0 ≤ Dt ≤ ξmax for 0 ≤ t ≤ T.

The demand process is assumed to be perfectly inelastic, as is frequently justifiable
in electricity markets (cf. [8, 11]), and demand and supply are related by a Walrasian
equilibrium assumption (cf. [35]). This concept is realized by the market adminis-
trator, who ensures that aggregate demand for and aggregate supply of energy are
matched on a daily basis, namely, that

(1) Dt = ξt for 0 ≤ t ≤ T.

Typically, spot data for demand and supply is quoted in megawatts. For example, a
demand of 60MW for one hour is equivalent to 60MWh.

The production of electricity causes CO2 emissions in a way that we describe more
precisely in sections 2.2 and 2.3. The total (cumulative) emissions during the time
interval [0, t] are described by the process (Et), which is measured in metric tons of
CO2. Moreover, since emission-intensive production resources are finite and demand
is bounded, (Et) is also bounded; i.e.,

0 ≤ Et ≤ Emax for 0 ≤ t ≤ T.

The regulator decides on an acceptable maximum level of cumulative emissions
during the compliance period (the cap) and issues a corresponding number of al-
lowance certificates, 0 ≤ Ecap ≤ Emax, measured in metric tons of CO2. At the
end of the compliance period, cumulative emissions in the market are offset against
the initial allocation of allowances. Certificates that are not used for this purpose
expire worthless in the case of the single-period setup, whereas unaccounted-for emis-
sions are subject to a monetary penalty payment at a rate Π ≥ 0. Thus, an amount
(ET − Ecap)

+ of emissions is penalized.
The allowance certificates constitute traded assets in the market. Their value

is represented by the process (At). We shall also consider options written on the
certificate and assume the existence of a riskless money market account with constant
risk-free rate r ≥ 0.

2.2. The Bid and Emissions Stacks. We turn to the modeling of the cumulative
emissions. We begin with the business-as-usual market and analyze the impact of an
emissions trading scheme in the next subsection.

Key to our analysis is the following assumption, which summarizes the actions of
the central market administrator as introduced above.

Assumption 1. The market administrator ensures that resources are used accord-
ing to the merit order. This means that the cheapest production technologies are
called upon first to satisfy a given demand, and hence electricity is supplied at the
lowest possible price.
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As explained in section 1.2, bid levels are mostly determined by variable costs.
Therefore, these costs play an integral part in determining the merit order arrange-
ment in Assumption 1. The resulting increasing map from market supply of electricity
to marginal price forms the bid stack. As explained in the introduction, the bid stack
is, strictly speaking, an increasing simple function. In practice, however, it consists
of sufficiently many steps to be approximated by a smooth function. This leads us to
the following definition.

Definition 1. The business-as-usual bid stack is given by the continuous func-
tion

bBAU(ξ) : [0, ξmax] �→ [0,∞),

where bBAU(·) ∈ C1(0, ξmax) and dbBAU/dξ > 0.
Here and throughout the rest of the paper, the variable ξ represents the supply

of electricity (measured in MW). Correspondingly, bBAU(ξ) denotes the bid level of
the marginal production unit (measured in e per MWh).

We note immediately that in reality business-as-usual bid levels are stochastic.
Most importantly, fuel prices, which are key drivers of variable costs, fluctuate contin-
uously. In principle the model that we propose can be extended to include stochastic
fuel prices as part of the variable costs that determine firms’ bids. The business-
as-usual bid stack bBAU would then become a function of additional independent
variables (the prices of the fuels used in the production process), and the dimension-
ality of the allowance pricing problem (9) would increase. Such an extension should
be considered when one is interested in pricing contracts such as, for example, clean
spread options, which explicitly feature the prices of electricity, fuels, and emissions in
their payoff. In this case the subtle dependence of electricity spot prices on fuel prices
becomes important. Since we are predominantly interested in the price formation of
allowance certificates, we only mention the possibility of this extension and leave its
investigation to future research.5

In the current paper we are interested only in the relative positions of the different
technologies in the bid stack. Fluctuations in fuel prices become important only if
they induce merit order changes. From historic data observations this is relevant
only in the long run, and we prefer not to consider it for now. Hence, we model the
business-as-usual bid stack as a deterministic function (cf. [2]), allowing us to focus
exclusively on the impact of emissions trading on variable costs and the merit order
in section 2.3.

Remark 1. As pointed out in the introduction, emission-intensive technologies
tend to be cheaper than environmentally friendly ones as a means to produce elec-
tricity. Therefore, we find that bids associated with a small level of electricity supply
stem mostly from emission-intensive generators, while bids at the right end of the
interval [0, ξmax] stem mostly from environmentally friendly ones (as remarked ear-
lier, exceptions to this rule are nuclear plants, which do not cause any CO2 emissions
and are generally placed at the very left end of the bid stack). In between exists a
spectrum in which a mixture of technologies contributes to bids. This assumption has
been confirmed (cf. [11]) by analyzing the correlation between production costs and
bid levels.

Analogous to the bid stack, we construct an emissions stack by creating a map
from the supply of electricity to the marginal emissions associated with the supply of
the last unit.

5Since the original publication of this article [23] research in this direction has been undertaken
(cf. [4]).
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RISK-NEUTRAL PRICING IN EMISSION MARKETS 103

Definition 2. The marginal emissions stack is given by the continuous function

e(ξ) : [0, ξmax] �→ (0,∞),

where e(·) ∈ C1(0, ξmax).
With the above definition, e(ξ) associates with a specific supply of electricity ξ

the emissions rate of the marginal unit (measured in metric tons of CO2 per MWh).
Proposition 1. The business-as-usual market emissions rate μBAU

E is given by

μBAU
E (D) := κ

∫ D

0

e(ξ) dξ for 0 ≤ D ≤ ξmax,

where the scaling constant κ is the ratio of the emissions period T to that of the time
unit associated with the marginal emissions stack e (typically, T is measured in years
and κ is the number of hours per year).

Proof. The Walrasian equilibrium assumption (1) for our inelastic model implies
that the market produces the exact amount of electricity consumers demand and
that—under business-as-usual—the generation capacity associated with the interval
[0, D] is used for this purpose. The market emissions rate per hour is then obtained
at any time by integrating over the marginal emissions stack up to the current level
of demand. We rescale this rate with κ so that μBAU

E is the market emissions rate per
unit of T .

2.3. Load Shifting: A Short-Term Abatement Measure. We now analyze the
effects of emissions trading on the business-as-usual economy introduced above. As
explained in the introduction, emissions trading puts a price on carbon and thereby
increases the production costs of firms. In particular, it makes it more expensive for
firms that rely on emission-intensive technologies to produce. For each unit of CO2

that these firms emit in excess of their initial allocation, they must buy an allowance
contract in order to avoid penalization; the cost of carbon is a real cost. Alternatively,
if a firm owns more allowances than it requires, it can sell spare ones in the market.
In this case, the cost of carbon represents an opportunity cost.

We ignore the possibility that firms might invest in long-term abatement projects
and focus only on the direct impact on the bid stack. We assume that, in order to
maintain their profit margin, firms pass the emissions-related increase in production
costs on to consumers. Because the cost of carbon is represented by the price of an
allowance certificate, the business-as-usual bids of each firm increase by an amount
equal to the allowance price multiplied by the marginal emissions rate of that firm.
On an aggregate level this means that, for a given allowance price A, the bid stack
now becomes the function g, where

(2) g(A, ξ) := bBAU(ξ) +Ae(ξ) for 0 ≤ A < ∞, 0 ≤ ξ ≤ ξmax.

For A = 0, (2) is equivalent to the business-as-usual bid stack. For positive certificate
prices emissions trading may cause the mapping ξ �→ g(·, ξ) to lose its monotonicity. In
particular, we observe that bids associated with large marginal emission rates become
relatively more expensive, as the cost of carbon makes it relatively more costly for
firms relying on dirty fuels, such as coal, to produce.

By the merit order assumption the market administrator calls upon generators in
increasing order of their bid levels. We define the set of active generation units at a
given allowance and electricity price P by

(3) S(A,P ) := {ξ ∈ [0, ξmax] : g(A, ξ) ≤ P} for 0 ≤ A < ∞, 0 ≤ P < ∞.
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104 SAM HOWISON AND DANIEL SCHWARZ

By the definition of a sublevel set, P �→ λ(S(·, P )), where λ denotes the Lebesgue
measure, is strictly increasing; under the following assumption, it is also continuous
and therefore invertible.

Assumption 2.

λ

({
ξ ∈ (0, ξmax) :

∂bBAU

∂ξ
(ξ) +A

∂e

∂ξ
(ξ) = 0

})
= 0 for 0 ≤ A < ∞.

Using (3), for observed values of the allowance price, the market bid stack b is
now defined by

b(A, ξ) := λ(S(A, ·))−1(ξ) for 0 ≤ A < ∞, 0 ≤ ξ ≤ ξmax.

This immediately yields the market price of electricity P , which is given by

P := b(A,D) for 0 ≤ A < ∞, 0 ≤ D ≤ ξmax.

Whereas under business-as-usual demand D is met using the generation capacity
[0, D] (considered a subset of the domain of the emissions stack e), emissions trading
may shift this interval further to the right, or, depending on the shape of the marginal
emissions stack, split it up into multiple sets with combined Lebesgue measure D—an
effect we refer to as load shifting. We make the impact of load shifting on the market
emissions rate μE precise in the next proposition.

Proposition 2. In the presence of cap-and-trade and given an allowance price
A and demand level D, the market emissions rate μE is given by

(4) μE(A,D) = κ

∫
Sp(A,D)

e(ξ) dξ for 0 ≤ A < ∞, 0 ≤ D ≤ ξmax,

where Sp(A,D) := S(A, b(A,D)).
Proof. The proof is immediate from the discussion above.
We note that the business-as-usual market emissions rate is, of course, a special

case of (4), which is obtained by setting A = 0, in which case Sp(0, D) = [0, D].
Remark 2. As described earlier, in reality the bid and marginal emissions stacks

are step functions whose finitely many constant values correspond to firms’ bids and
their corresponding marginal emissions. To model the impact of a positive allowance
price on the bid stack in this case, one would add the cost of carbon to bids as usual,
and then the resulting step function is rearranged in increasing order. Because of the
discrete nature of the problem, the rearrangement induces a permutation ν on the
bids, which is then applied to the marginal emissions stack. Instantaneous emissions
are now obtained by integrating the rearranged emissions stack over the closed interval
[0, D]. We prefer to work with the continuous limit of the bid and marginal emissions
stacks. In this case the permutation ν cannot be defined explicitly, and we identify
active firms with the set Sp.

In the following lemma we prove some technical properties of μE , which show
that the model we propose for the market emissions rate makes intuitive sense and
leads to a suitably regular function.

Lemma 1. The market emissions rate μE satisfies the following:
(L.1) The map D �→ μE(·, D) is

(i) strictly increasing and
(ii) Lipschitz continuous.
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(L.2) The map A �→ μE(A, ·) is
(i) nonincreasing and
(ii) Lipschitz continuous.

(L.3) μE is bounded.
Proof.
(L.1) (i) By Assumption 2 and the definition of a sublevel set, for 0 ≤ D1 <

D2 ≤ ξmax, Sp(·, D1) ⊂ Sp(·, D2). Since e(ξ) > 0 on [0, ξmax], the
result follows.

(ii) For 0 ≤ D1 < D2 ≤ ξmax and with the definition ΔDSp(D2, D1) :=
Sp(·, D2) \ Sp(·, D1),

μE(·, D2)− μE(·, D1) = κ

∫
ΔDSp(D2,D1)

e(ξ) dξ

≤ λ
(
ΔDSp(D2, D1)

)
κmax

ξ
e(ξ)

= (D2 −D1)κmax
ξ

e(ξ).

The case D2 < D1 is treated similarly.
(L.2) (i) For 0 ≤ A1 < A2 < ∞ and with the definition ΔASp(A1, A2) :=

Sp(A1, ·) \ Sp(A2, ·),

μE(A1, ·)−μE(A2, ·) = κ

∫
ΔASp(A1,A2)

e(ξ) dξ−κ

∫
ΔASp(A2,A1)

e(ξ) dξ.

Since λ(ΔASp(A1, A2)) = λ(ΔASp(A2, A1)), the result follows from
the observation that, for a given 0 ≤ D ≤ ξmax, e(ξ) = (g(A2, ξ) −
g(A1, ξ))(A2−A1)

−1 > (b(A2, D)−b(A1, D))(A2−A1)
−1 on ΔASp(A1, A2)

and e(ξ) = (g(A2, ξ) − g(A1, ξ))(A2 − A1)
−1 ≤ (b(A2, D) − b(A1, D))

(A2 −A1)
−1 on ΔASp(A2, A1).

(ii) From above we know that

μE(A1, ·)− μE(A2, ·) ≤ C1λ(Δ
ASp(A1, A2))

for some constant C1 ≥ 0. It is also clear that ΔASp(A1, A2) (and
similarly ΔASp(A2, A1)) can be written as the union of a finite number
of intervals. As A1 increases to A2, there are three possibilities: (a)
existing intervals grow or shrink; (b) new intervals appear, or existing
ones disappear (by Assumption 2 this always happens at a point); and
(c) the intervals remain unchanged. Differentiating the level curves
g(A, ξ) = b(A,D) with respect to ξ, for a given level of demand, we
find that

dξ

dA
= −

(
∂g

∂A
− ∂b

∂A

)/
∂g

∂ξ
.

By Assumption 2, the right-hand side is bounded by a constant,6 say,
C2 ≥ 0. Therefore, as A changes, in each case (a)–(c), the endpoints of
the intervals defining ΔASp(A2, A1) do not move faster than C2(A2 −
A1). Therefore, λ(Δ

ASp(A1, A2)) ≤ C2(A2 −A1) also. The case A1 >
A2 is treated similarly, and the result follows.

6Throughout this proof we allow C2 to change from occurrence to occurrence.
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106 SAM HOWISON AND DANIEL SCHWARZ

(L.3) Boundedness of μE follows from the boundedness of e and the fact that
Sp(A,D) ⊆ [0, ξmax] for all A ≥ 0 and 0 ≤ D ≤ ξmax.

From the definition of instantaneous emissions we derive cumulative emissions by
integrating over (4), up to the current time t.

Figure 2 illustrates the effect of load shifting and the resulting reduction in the
market emissions rate under the assumption that under business-as-usual dirtier pro-
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Fig. 2 Under business-as-usual conditions, the bid stack bBAU implies that resources associated with
the interval [0, D] are used to meet demand. Therefore, instantaneous emissions are obtained
by integrating over the emissions stack from 0 to D. Under the influence of a cap-and-trade
scheme, the function b leads to resources being shifted to the interval [ξ1, ξ2]. Instantaneous
emissions are now given by the (smaller) integral over the emissions stack from ξ1 to ξ2.
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duction technologies are placed further to the left in the bid stack than cleaner ones
(see Remark 1).

3. Risk-Neutral Pricing of Allowance Certificates. In this section we address
the problem of determining the arbitrage-free price of an allowance certificate given the
current demand for electricity and the cumulative emissions to date in the economy.
(Recall that the notion of an arbitrage-free price rules out the possibility of making
a profit starting with no initial investment.) We do this initially in the setting of an
emission market with one compliance period; subsequently we generalize the model
to deal with markets that consist of multiple consecutive compliance periods and
examine the impact that connecting mechanisms, namely, banking, borrowing, and
withdrawal, have on the certificate price. One of the groundbreaking results in the
field of mathematical finance was the realization that the absence of arbitrage is in
fact equivalent to the existence of a very particular probability measure, say Q, on
(Ω,F) (cf. [20, 14]). This measure is equivalent to P, meaning that P(N) = 0 if and
only if Q(N) = 0, and it has the property that the discounted prices of all tradable
assets (the allowance certificates in our case) are martingales under Q. This motivates
our next assumption.

Assumption 3. There exists an equivalent martingale measure Q ∼ P under
which, for 0 ≤ t ≤ T , the discounted price of any tradable asset is a martingale. We
refer to Q as the risk-neutral measure.

We begin by making some additional assumptions about the demand and cumu-
lative emissions processes (Dt) and (Et). We assume that at time t = 0 demand
for electricity is known. Thereafter, it evolves according to an Itô diffusion; i.e., for
0 ≤ t ≤ T , under the measure Q, demand for electricity is given by the stochastic
process

(5) dDt = μD(Dt)dt+ σD(Dt)dW̃t, D0 = d ∈ (0, ξmax),

where (W̃t) is Ft-adapted and a Q-Brownian motion (we postpone the discussion of
the relevance of the regularity of the coefficients to section 3.1). The assumption
that demand is perfectly inelastic is reflected in the fact that both coefficients are
functions of demand only. Note that if there were a feedback from price to demand
in the model, then additional nonlinearities to those we see below would arise. Note
also that in practice demand for electricity exhibits seasonal periodicity, an attribute
that would cause μD to depend on time explicitly. For simplicity we choose to ignore
this feature.

Cumulative emissions are measured from the beginning of the compliance period
when time t = 0, so that E0 = 0. Subsequently, they are determined by integrating
over the market emissions rate μE derived in Proposition 2. Consequently, the cumu-
lative emissions process is represented by an absolutely continuous process; i.e., for
0 ≤ t ≤ T ,

(6) dEt = μE(At, Dt)dt, E0 = 0.

Note that with this definition the process (Et) is nondecreasing, which makes intuitive
sense considering that it represents a cumulative quantity.

3.1. One Compliance Period. To formulate the pricing model, it remains to
characterize the allowance certificate price process (At). This is different from the
specification of (Dt) and (Et), because its value at time t = 0 is unknown. An arbi-
trage argument, however, allows us to determine its value at the end of the compliance
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108 SAM HOWISON AND DANIEL SCHWARZ

period. The event of noncompliance is {ET ≥ Ecap}; then the value of the allowance
certificate at time t = T is given by the terminal condition

(7) AT =

{
0 for 0 ≤ ET < Ecap,

Π for Ecap ≤ ET ≤ Emax.

From Assumption 3 we know that the discounted allowance price is a martin-
gale under the measure Q. Therefore, the allowance price is given as the discounted
conditional expectation of its terminal condition under this measure; i.e.,

(8) At = e−r(T−t)ΠEQ
[
I[Ecap,∞)(ET )

∣∣Ft

]
for 0 ≤ t ≤ T,

which shows that the allowance price process (At) takes values in [0,Π] only.
Proposition 3. For 0 ≤ t ≤ T , the price of an allowance certificate (At) in a

market with one compliance period is described by the following FBSDE:

(9)

⎧⎪⎨
⎪⎩

dDt = μD(Dt)dt+ σD(Dt)dW̃t, D0 = d ∈ (0, ξmax),

dEt = μE(At, Dt)dt, E0 = 0,

dAt = rAtdt+ ertZtdW̃t, AT = Π I[Ecap,∞)(ET ).

Proof. Because the filtration (Ft) is natural, it is a consequence of the Mar-
tingale representation theorem (cf. [24]) that the discounted allowance price can be
represented as an Itô integral with respect to the Brownian motion (W̃t). It follows
that

(10) d
(
e−rtAt

)
= ZtdW̃t for 0 ≤ t ≤ T

for some Ft-adapted process (Zt).
Combining the processes (5) and (6) for demand and cumulative emissions with

(10) and the terminal condition (7), the pricing problem becomes that described by
(9).

Remark 3. The existence and uniqueness of a solution to the FBSDE (9) is
a delicate question. The nonstandardness of this kind of equation arises from the
degeneracy of one of its forward components (the emissions process (Et) in our case)
combined with the singularity of the terminal condition. Together, these features
conspire to cause the random variable ET to develop a point mass at the cap Ecap,
as shown in [5]. In the same paper it is also shown that under the assumptions that
μD and σD are Lipschitz continuous and exhibit at most linear growth, and that μE

is Lipschitz continuous and strictly decreasing in A, a unique solution to (9) exists
satisfying the initial conditions D0 = d, E0 = 0 and the relaxed terminal condition

Π I(Ecap,∞)(ET ) ≤ AT ≤ Π I[Ecap,∞)(ET ).

Moreover, it is shown that there exists a continuous function α such that At =
α(t,Dt, Et) for 0 ≤ t < T . Under considerably more restrictive conditions on the
coefficients, but preserving the distinctive features of the problem (degeneracy of the
forward component and a singularity in the terminal condition), the value function α
is actually smooth (cf. [6]). Since the original acceptance of this paper for publication
(cf. [23]), new results have been obtained which affirmatively answer the question of
existence and uniqueness of a solution to the FBSDE (9) under weaker conditions
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on the regularity of the coefficients μD and σD than required in [5] and [6]. In fact,
it is sufficient for μD and σD to exhibit sufficient regularity to guarantee that the
stochastic differential equation for (Dt) has a strong solution. We refer the interested
reader to the thesis [33] for the precise statement and proof of the theorem.

Based on the previous remark, we assume that in our Markovian setting there
exists a function α(t,D,E) : [0, T ] × [0, ξmax] × [0, Emax] �→ [0,Π] such that At =
α(t,Dt, Et) for 0 ≤ t < T , suitably regular on [0, T ) to be a classical solution to the
PDE

Nα = 0 on U, 0 ≤ t < T,

α = Π I[Ecap,∞)(E) on U, t = T,(11)

where U := (0, ξmax)× (0, Emax) and

N· := ∂·
∂t

+
1

2
σ2
D(D)

∂2·
∂D2

+ μD(D)
∂·
∂D

+ μE(·, D)
∂·
∂E

− r · .

Notice that μE depends on α; hence the PDE is semilinear (and, in the absence of
a second E-derivative, degenerate parabolic). In addition to the terminal condition,
suitable boundary conditions have to be supplied. These depend on the specification
of the coefficients of the PDE, and we postpone the issue to section 6, where we discuss
the numerical solution of the problem.

Remark 4. The intuition behind (11) is simple. We simply assume that, under
Q, At, being a traded asset, has a drift equal to the risk-neutral rate (cf. the last
equation of (9)). Then we apply Itô’s formula to At = α(t,Dt, Et) using the first
two equations of (9) and take expectations to derive (11). This procedure is purely
formal, because it assumes the existence of a classical solution to the PDE (11).

3.2. Multiple Compliance Periods. We now consider the pricing problem in an
emission market with two compliance periods. In principle, the results presented in
this section can easily be extended to an arbitrary number of periods. To ease the
presentation, however, we choose to present the canonical case. Taking 0 = T0 ≤
T1 ≤ T2 = T , we consider the two compliance periods [0, T1], [T1, T ]. For simplicity
we assume that each period corresponds to one year. As previously, the Ft-adapted
process (Dt)t∈[0,T ] represents the aggregate demand for electricity. For i ∈ {1, 2}
the Ft-adapted process (Et)t∈[Ti−1,Ti] measures the cumulative emissions from the
beginning of the ith compliance period up to time t, and (Ai

t)t∈[Ti−1,Ti] represents
the price of an allowance certificate for compliance at time Ti. Also, we denote by
E1 the cumulative emissions at the end of the first compliance period. Each year,
the regulator issues a number Ei

cap ≥ 0 of allowance certificates and sets the penalty

Πi ≥ 0.
Demand for electricity is given at time t = 0 and thereafter evolves continuously

throughout the trading period [0, T ]. Further, we assume that cumulative emissions
are measured from the beginning of each compliance period, so that

(12) ETi−1 := 0, i ∈ {1, 2}.

Finally, we note that each process (Ai
t)t∈[Ti−1,Ti] corresponds to a different vintage of

allowance certificates. If we disregard mechanisms that connect compliance periods,
a certificate issued during the first period is for compliance at time T1 only. However,
we now wish to consider mechanisms that connect compliance periods and permit
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allowances to be transferred between periods. In this case both vintages of certificates
have a more complex dependence. In particular, the second period allowance price
depends on cumulative emissions during not only the second period but also the
previous period, as we describe below. The connecting mechanism is now expressed
through the terminal condition at time T1; for now, we do not determine it explicitly
and denote it by some (possibly singular) function φ1.

Corollary 1. In a market with two compliance periods, the price (At)t∈[Ti−1,Ti]

of an allowance certificate during the ith period, i ∈ {1, 2}, is described by the following
FBSDE:

(13)

⎧⎪⎨
⎪⎩

dDt = μD (Dt) dt+ σD (Dt) dW̃t, DTi−1 = d ∈ (0, ξmax),

dEt = μE

(
Dt, A

i
t

)
dt, ETi−1 = 0,

dAi
t = rAi

tdt+ ertZi
tdW̃t, ATi = φi,

for some Ft-adapted process (Zi
t)t∈[Ti−1,Ti] and where φ1 := φ1(ET1 ) and φ2 :=

φ2(ET2 ;E
1), respectively, denote the terminal conditions at the end of the first and

second compliance periods.
Proof. The proof follows immediately from Proposition 3 and the discussion

above.
As in section 3.1, we assume the existence of suitably regular functions αi :

[Ti−1, Ti] × [0, ξmax] × [0, Emax] �→ R+ such that Ai
t = αi(t,Dt, Et) for Ti−1 ≤ t < Ti

and

Nαi = 0 on U, Ti−1 ≤ t < Ti,

αi = φi(E) on U, t = Ti.(14)

3.2.1. Banking and Withdrawal. Banking and withdrawal are two mechanisms
that connect compliance periods and are implemented in most emission markets. Both
affect the supply of certificates during the second compliance period. This leads us
to introduce Ê2

cap to denote the aggregate supply of certificates during the second
compliance period. The implementation of banking offers an additional incentive for
reducing emissions, since it specifies that spare allowance certificates, for compliance
at the end of the first period, become perfect substitutes for certificates issued during
the second compliance period. This means that in the event of compliance, a number
(E1

cap − E1) of certificates with price A1
T1

are exchanged for certificates valid during

the next compliance period, with price A2
T1
.

This incentive to reduce emissions is strengthened by the withdrawal mechanism,
which constitutes additional punishment for firms that exceed their emission limit.
Under this mechanism not only are excess emissions at the end of the first compliance
period penalized at the rate Π1, but, moreover, a corresponding number of certificates
is withdrawn from the subsequent allocation. Whereas any number of certificates can
be banked, at most the next period’s allocation can be withdrawn from the market.
Therefore, in the event of noncompliance, a number min(E1−E1

cap, E
2
cap) of certificates

with price A2
T1

is subtracted from E2
cap. In the event that the entire allocation of the

second period has been withdrawn and there remain unaccounted-for emissions (at
the end of the first period), we specify that these are penalized at the combined rate
of the first period penalty Π1 and—to compensate for the lack of certificates that can
be withdrawn—an additional penalty Π̄1 ≥ A2

T1
.
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These features imply that during the second period the aggregate supply of cer-
tificates now stems from two sources. First, the regulator issues a number of permits
E2

cap at the beginning of the period. Second, as explained above, a number of cer-
tificates are banked or withdrawn. The aggregate supply of certificates during the
second period is then given by

(15) Ê2
cap =

(
E2

cap + E1
cap − E1

)+
.

Figure 3 illustrates the banking and withdrawal mechanisms in the two-period market
under consideration. In Figure 3a compliance at t = T1 leads to the banking of a
number (E1

cap −E1) of certificates. The market is in compliance at t = T2 because of
this additional supply of certificates. In Figure 3b noncompliance at t = T1 leads to
the withdrawal of a number (E1 − E1

cap) of certificates. This leads to noncompliance
at t = T2 because of the decreased supply of certificates during the second compliance
period, even though cumulative emissions during the period [T1, T ] are below the
second-period cap.

Period 1 Period 2

E
cap
1 E1

T
1

E
cap
2

E
cap
1 −E1

T
1

E2
T

2

(a) Banking.

Period 1 Period 2
 

 

Allocated allowances
Emissions

E
cap
1 E1

T
1

E
cap
2

E
cap
1 −E1

T
1

E2
T

2

(b) Withdrawal.

Fig. 3 Compliance period connecting mechanisms in an emission market with two periods.

The terminal condition φ1 for the allowance price in an emission market with two
compliance periods connected by the mechanisms of banking and withdrawal now
follows. Banking implies that in the event of compliance, that is, if ET1 < E1

cap, the
value of the first-period allowance at time T1 equals the value of the second-period
allowance at time T1. In the event of noncompliance at time T1 with E1

cap ≤ ET1 <
E1

cap + E2
cap, the penalization of excess emissions and the withdrawal of certificates

lead to the first-period allowance certificate taking the value of the sum of the second-
period certificate and the penalty. In the event of noncompliance at time T1 with
ET1 ≥ E1

cap + E2
cap, the double penalization rule implies that the value of the first-

period allowance certificate equals the sum of Π1 and Π̄1. Therefore, φ1 is given
by

(16) φ1(ET1) :=

⎧⎪⎨
⎪⎩
A2

T1
for 0 ≤ ET1 < E1

cap,

Π1 +A2
T1

for E1
cap ≤ ET1 < E1

cap + E2
cap,

Π1 + Π̄1 for E1
cap + E2

cap ≤ ET1 ≤ Emax.

At time T2, the terminal condition φ2 for the allowance price is now the same as
in the one-period case, with the exception that the aggregate supply of certificates
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112 SAM HOWISON AND DANIEL SCHWARZ

Ê2
cap is used:

(17) φ2 (ET2) :=

{
0 for 0 ≤ ET2 < Ê2

cap,

Π2 for Ê2
cap ≤ ET2 ≤ Emax.

Note that the terminal condition φ2 uses the aggregate supply of certificates Ê2
cap,

as defined in (15), and is hence path-dependent. In particular, it depends on E1, as
mentioned earlier. In the context of pricing futures contracts on allowance certificates
in a two-period market, a similar terminal condition was introduced in [10].

3.2.2. Borrowing, Banking, and Withdrawal. In addition to banking and with-
drawal, consecutive compliance periods may also be connected by the borrowing mech-
anism. The effect of banking and withdrawal at time T1 is to increase the value of
the first-period allowance certificate from zero to A2

T1
in the event of compliance (due

to the banking mechanism) and from Π1 to (Π1 + A2
T1
) or (Π1 + Π̄1) in the event

of noncompliance (due to the withdrawal mechanism). In contrast, the borrowing
mechanism decreases the probability with which noncompliance occurs.

In an emission market in which borrowing is allowed, firms may bring forward
certificates from the second allocation E2

cap and use them for compliance at time T1.
This does not affect the aggregate supply of certificates during the first compliance
period, but whereas previously noncompliance occurred when ET1 ≥ E1

cap, this is no
longer the case, as certificates from the second period may be borrowed to supplement
the aggregate supply during the first period. Therefore, noncompliance now occurs
only if ET1 ≥ E1

cap+E2
cap, in which case the entire allocation of the second period must

be borrowed and additional units of excess emissions are penalized at the combined
rate of Π1 and Π̄1.

The borrowing mechanism is illustrated in Figure 4. Compliance at time T1 is
possible only by borrowing a number (E1 − E1

cap) of certificates from the second
compliance period. As a result these certificates are deducted from E2

cap. In our
example this leads to noncompliance at time T2.

Whereas φ2 continues to be given by (17), the terminal condition φ1 in an emission
market, which connects subsequent compliance periods with the banking, borrowing,

Period 1 Period 2
 

 Allocated allowances

Emissions

E
cap
1

E1
T

1

−E
cap
1

E1
T

1
E

cap
2

E
cap
1 −E1

T
1

E2
T

2

Fig. 4 Borrowing mechanism in an emission market with two periods.
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and withdrawal mechanisms, now follows and is given by

(18) φ1(ET1 ) :=

{
A2

T1
for 0 ≤ ET1 < E1

cap + E2
cap,

Π1 + Π̄1 for E1
cap + E2

cap ≤ ET1 ≤ Emax.

4. Risk-Neutral Pricing of European Derivatives. We now turn to the arbitrage-
free pricing of European derivatives written on the allowance certificate within our
model. For this purpose we work in the emission market of section 3.1 with one
compliance period.

Our example of choice is a European call (Ct(τ))t∈[0,τ ] with maturity τ , where
0 ≤ τ ≤ T , and strike K ≥ 0, so that its payoff is

Cτ (τ) := (Aτ −K)+ .

We know from Assumption 3 that, for 0 ≤ t ≤ τ ≤ T , the discounted call price
(e−rtCt)t∈[0,τ ] is a martingale under the measure Q. Therefore, it is given as the
discounted conditional expectation of its terminal condition under this measure; i.e.,

Ct = e−r(τ−t)Ẽ

[
(Aτ −K)+

∣∣∣Ft

]
for 0 ≤ t ≤ τ.

As we argued previously for the allowance certificate, the discounted call price can
be represented as an Itô integral with respect to the Brownian motion (W̃t)t∈[0,τ ]. It
follows that

d
(
e−rtCt

)
= ZtdW̃t for 0 ≤ t ≤ τ

and some Ft-adapted process (Zt)t∈[0,τ ].
Letting Ct = v(t,Dt, Et) for 0 ≤ t ≤ τ , where v : [0, τ ]×[0, ξmax]×[0, Emax] �→ R+,

we find that v satisfies

Lv = 0 on U, 0 ≤ t < τ,

v = (α(τ,D,E)−K)
+

on U, t = τ,(19)

where

L :=
∂

∂t
+

1

2
σ2
D(D)

∂2

∂D2
+ μD(D)

∂

∂D
+ μE(α(t,D,E), D)

∂

∂E
− r.

The relevant boundary conditions are discussed in section 6.4.
The key difference between the allowance certificate and the option pricing prob-

lem is that the allowance price (representing the cost of carbon) has an impact on the
rate at which firms emit. This is reflected in the fact that the drift of the cumulative
emissions process depends on the price of the allowance certificate but not on that
of the option. Consequently, the FBSDE (9) is coupled and the PDE (11), which
describes the allowance price, is nonlinear, whereas (19) is linear.

5. Asymptotics near Expiry. In this section (which is not in the original version
of the paper [23]) we examine the asymptotic behavior of the allowance price near
expiry, where the effect of the nonlinearity is most pronounced.

We recall that the allowance price α(t,D,E) satisfies the PDE

∂α

∂t
+

1

2
σ2
D(D)

∂2α

∂D2
+ μD(D)

∂α

∂D
+ μE(α,D)

∂α

∂E
− rα = 0
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114 SAM HOWISON AND DANIEL SCHWARZ

with the terminal condition

α(T,D,E) = Π I[Ecap,∞)(E).

We examine the behavior near the discontinuity and as t → T by scaling

T − t = ετ, E − Ecap = εη,

where 0 < ε � 1 is an artificial small parameter which helps with the book-keeping.
We then expand

α(t,D,E) ∼ α0(τ,D, η) + εα1(τ,D, η) + · · · .
At leading order, we obtain

(20) −∂α0

∂τ
+ μE(α0, D)

∂α0

∂η
= 0

with

α0(0, D, η) =

{
0, η < 0,

Π, η ≥ 0.

This is a standard problem and the solution has an expansion fan between the lines
η = −μ−

E(D)τ and η = −μ+
E(D)τ , where μ−

E(D) = μE(0, D) and μ+
E(D) = μE(Π, D).

We obtain

α0(τ,D, η) =

⎧⎪⎨
⎪⎩

0, η < −μ−
E(D)τ,

f(ξ;D), −μ−
E(D)τ ≤ η ≤ −μ+

E(D)τ,

Π, η > −μ+
E(D)τ,

where ξ = η/τ and the function f(ξ;D) is defined implicitly by μE(f(ξ,D);D) = −ξ,
in which D appears only as a parameter.

The characteristics of (20) are sketched in Figure 5 with D fixed, so the figure
shows a two-dimensional slice through a three-dimensional expansion fan which varies
parametrically with D. It is important to note that the fan borders (the bold lines)
vary monotonically in D, because μE(·, D) is strictly increasing in D by assumption.
This allows diffusion in the D-direction to smooth the gradient discontinuities that
occur across these lines. Let us look at the lower border—the expansion around the
upper border is similar—and construct an inner-layer expansion by changing variables
to

η = −μ−
E(D)τ + ε

1
2 y, α0(τ,D, η) = ε

1
2 a0(τ,D, y).

The term 1
2σ

2
D(D)∂2α/∂D2 in the original PDE now enters at the same order as

the leading-order terms retained above. We therefore obtain, at leading order, the
nonlinear parabolic PDE

(21)
∂a0
∂τ

=
1

2
σ2
D

(
τ
dμ−

E

dD

)2
∂2a0
∂y2

+
dμ−

E

dD
a0

∂a0
∂y

with the initial condition

a0(0, D, y) = Πmax(y, 0),
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a0 = Π

a0 = 0

a0 = f(ξ)

η

τ

Fig. 5 Sketch of characteristics for leading-order approximation near expiry.

which is the initial gradient discontinuity. (It is this condition that dictates the scaling
for α0 above.)

There is no similarity solution to (21), but its short-time (small τ) behavior is of
the form

a0 ∼ τ
3
2 g(y/τ

3
2 ) (1 +O(τ)) ,

where g(z) (writing z = y/τ
3
2 ) satisfies

3

2

(
g − z

dg

dz

)
=

1

2
Σ2

D

d2g

dz2
,

in which ΣD := σDdμ−
E/dD. The initial condition forces g(z) → 0 as z → −∞ and

g(z) ∼ Πz as z → ∞, and the solution is

g(z) = Π
(
ζN(ζ) − e−z2/2/

√
2π

)
,

in which N(·) is the cumulative density of the standard normal distribution and
ζ = z

√
3/ΣD.

The far-field behavior of (21) is more straightforward; a balance of the first and
last terms, namely,

∂a0
∂τ

∼ dμ−
E

dD
a0

∂a0
∂y

,

leads to the approximate similarity solution

a0(z, τ) ∼ − 1

dμ−
E/dD

z

τ
,

and this is readily shown to match with the inner expansion of the expansion-fan
solution.

D
ow

nl
oa

de
d 

03
/0

9/
15

 to
 1

29
.6

7.
18

7.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

116 SAM HOWISON AND DANIEL SCHWARZ

5.1. The Probability that ET = Ecap. The incentives offered by the market in
our model pull in two directions. On the one hand, in the absence of a carbon penalty,
business-as-usual offers the cheapest (but the dirtiest) means of production—this is
what the bid stack delivers—and in general reducing emissions increases prices. On
the other hand, the threat of paying the penalty should act to keep total emissions
below Ecap. It is therefore interesting to ask whether this tension leads to a nonzero
probability that Et tends to Ecap from below as t → T . Carmona and Delarue show (in
a different but related model) that precisely this occurs using techniques of Malliavin
calculus (cf. [5]). We now give a heuristic argument for why it occurs (in the framework
of our model). The nonzero probability that Et reaches Ecap from below can be
interpreted informally as saying that the feedback and the associated nonlinearity
combine to achieve the largest possible proportion of total emission trajectories that
just miss having to pay the penalty.

To make this more concrete, we start by noting that, as dEt = μE(At, Dt) dt,
continuity of the various functions and processes involved means that paths of Et are
C1. Hence, we expect paths that lie in the expansion fan in Figure 5 for t close to T to
reach E = Ecap (η = 0) tangentially to one of the characteristics in the fan (extended
in the D-direction). This suggests that a whole collection of paths is forced to the
single point ET = Ecap and that the probability mentioned above is nonzero.

A more quantitative argument is as follows. First note that, for any 0 ≤ E ≤ Emax,

Pt := P (ET > E|Et, Dt) = E
(
I(E,∞)(ET )|Et, Dt

)
.

This conditional expectation satisfies the linear equation (19) with r set to zero,
namely,

(22)
∂P

∂t
+

1

2
σ2
D(D)

∂2P

∂D2
+ μD(D)

∂P

∂D
+ μE(α(t,D,E), D)

∂P

∂E
= 0.

This is well known; one way to see it in a financial context is to write

Pt = er(T−t) × E

(
e−r(T−t)I(E,∞)(ET )|Et, Dt

)
and to note that the second multiplicand above is the value of a derivative contract,
which in the finance literature is known as a digital call option on ET with strike E ,
which therefore satisfies (19) with r included; substitution gives the result.

If we define

P±
t = P (ET > Ecap ± δ|Et, Dt) ,

then

P (ET = Ecap|Et, Dt) = lim
δ→0

(
P−
t − P+

t

)
.

Now consider the local expansion of (22) near E = Ecap, t = T , as above: at leading
order in an expansion P (t, E,D) ∼ P0(τ, η,D) + · · · , we see that

−∂P0

∂τ
+ μE(α0(τ, η,D), D)

∂P0

∂η
= 0.

This linear equation has the same characteristics as its nonlinear counterpart for α0,
and P0 is constant along them. Thus, the following hold:

• P+
0 is equal to 1 on all characteristics starting from E > Ecap + δ, that is,

from just to the right of the right-hand bold line in Figure 5 and upward, and
is equal to zero on all the others (including the expansion fan).
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• P−
0 is equal to zero on all characteristics starting from E ≤ Ecap − δ, that is,

from just to the left of the left-hand bold line and downward, and is equal to
1 on all the others (including the expansion fan).7

It is now apparent that P−
t − P+

t tends to 1 in the expansion fan, and consequently
this nonzero value is propagated out into the whole domain by (22). That is, we have
a nonzero probability that total emissions just reach Ecap from below (as indicated
by the orientation of the expansion fan).

6. Numerical Analysis. This section is dedicated to the numerical analysis of
the model. We illustrate the dependency of allowance prices on demand and the
cumulative emissions and compare prices in the setting of a single-period market
to those implied by multiperiod markets. Further, we demonstrate the dependence
structure of a European option written on the allowance certificate.

6.1. Concretizing the Model. We begin by specifying the functions and param-
eters in the model.

6.1.1. Functional Form of the Bid and the Emissions Stacks. We take the
business-as-usual bid stack to be of the form

bBAU(ξ) := b+

(
b − b

ξθ1max

)
ξθ1 for 0 ≤ ξ ≤ ξmax,

where b, b ≥ 0 and 2 < θ1 < ∞. With this choice bBAU is strictly convex and strictly
increasing on its domain of definition. The parameters b and b correspond to the
minimum and maximum prices of electricity the model can produce. Because the
range of allowed bids and typically observed market prices in many auction-based
electricity markets are well known, these are relatively easy to infer in practice. The
parameter θ1 controls the steepness of the stack and, in particular, how quickly the
marginal costs of generators increase.

Similarly, we take the marginal emissions stack to be of the form

e(ξ) := e−
(
e− e

ξθ2max

)
ξθ2 for 0 ≤ ξ ≤ ξmax,

where e, e ≥ 0 and 0 ≤ θ2 < 1. With this definition e is also strictly convex and
decreasing on its domain of definition. The parameters e and e correspond to the
minimum and maximum marginal emissions rates in the market. In a market with
coal and gas generators only, and under the reasonable assumption that coal is a more
emission-intensive technology than gas, e would represent the marginal emissions rate
of coal and e that of gas. The parameter θ2 controls the fuel mix in the market.
The smaller the value of θ2, the smaller the proportion of the market capacity that is
served by the pollution-intensive technology.

Clearly, bBAU and e satisfy the assumptions in Definitions 1 and 2. Further,
since a linear combination of strictly convex functions is also strictly convex, so is
the function g. Therefore, Assumption 2 is also satisfied. Moreover, we note that for

7An expansion similar to that above shows that there is a diffusive smoothing of the discontinuity
in P± for τ > 0. Using the same notation as above, the solution is less complicated, being described
by the equation

∂p

∂τ
=

1

2
Σ2

Dτ2
∂2p

∂z2

with a typical solution taking the form N(z
√
3/ΣD), where again z = y/τ

3
2 .
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this choice of bid and emissions stacks the set Sp(·, ·) is always of the form [ξ1, ξ2] for
0 ≤ ξ1 ≤ ξ2 ≤ ξmax.

6.1.2. The Demand Process. We specify that under P̃ the process (Dt) follows
the stochastic differential equation

(23) dDt = −η
(
Dt − D̄

)
dt+

√
2ησ̄DDt (ξmax −Dt)dW̃t, D0 = d ∈ (0, ξmax),

where D, η, σ̄D > 0. With this definition (Dt) is a Jacobi diffusion process; it has a
linear, mean-reverting, drift component and degenerates on the boundary. Moreover,
subject to D ∈ (0, ξmax) and min(D, ξmax−D) ≥ ξmaxσ̄D, the process remains within
the interval (0, ξmax); its stationary distribution is a beta distribution, and its mean
is given by D̄ (cf. [18]).

6.1.3. Choice of Parameters. Tables 1, 2, and 3 summarize the parameter val-
ues used for the numerical study that follows. We note that they do not correspond
to a particular example of an electricity market, but they can be considered represen-
tative of a medium-sized market whose fuel mix predominantly consists of coal and
gas generators.

Table 1 specifies the parameters for the bid and the emissions stacks. Using (6)
now with At = 0 and Dt = ξmax for 0 ≤ t ≤ T , and with the assumption that there
are 24× 365 production hours in the year, we find that Emax = 1.6519× 108.

The parameters relating to demand are given in Table 2.
Calculating the cumulative emissions for At = 0 and demand at its mean level

Dt = D̄ for 0 ≤ t ≤ T , we find that ET = 1.2961 × 108. This leads us to choose
the cap slightly below this level in order to incentivize a reduction in emissions. The
parameters characterizing the emissions trading scheme are given in Table 3. We note
that here time is measured in years.

Table 1 Parameters for the bid and emissions stacks.

b b θ1 e e θ2 κ ξmax

200 0 10 1.2 0.4 0.4 8760 30000

Table 2 Parameters for the demand process and the risk-free rate.

η D̄ σ̄D r

10 21000 0.05 0.05

Table 3 Parameters characterizing the emissions trading scheme.

Ecap Π T

1.17× 108 100 1

6.2. The Allowance Price Value Function. We present the necessary boundary
conditions for the allowance price valuation equation and discuss its solution. First,
this is done in the setting of an emission market with one compliance period, and sec-
ond, we consider two periods connected by either banking and withdrawal or banking,
borrowing, and withdrawal.
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With regards to problem (11) (in the case of one period) or (14) (in the case
of two periods), the following questions arise: At which points of the boundary do
we need to specify boundary conditions in addition to the terminal condition, and
what conditions make sense given the original stochastic problem (9) or (13)? The
former question is answered by considering the Fichera function f (cf. [30]). Defining
n := (nD, nE) to be the inward normal vector to the boundary, Fichera’s function for
the operator N (and L) reads

f(t,D,E) :=

(
μD(D)− 1

2

∂

∂D
σ2
D(D)

)
nD + μE(α(t,D,E), D)nE on ∂UT

(or ∂UTi). In the case when the coefficients μD and σD are of the form prescribed in
(23), we find that

f(t,D,E) = η
((
D̄ − σ̄Dξmax

)
+ (2σ̄D − 1)D

)
nD + μE(α(t,D,E), D)nE on ∂UT

(or ∂UTi). At points of the boundary where f ≥ 0, information is outward flowing
and no boundary conditions have to be specified; at those points where f < 0 the
information is inward flowing and boundary conditions are necessary. Considering
the parts of the boundary corresponding to D = 0 and D = ξmax, we find that f ≥ 0
if and only if min(D, ξmax −D) ≥ ξmaxσ̄D, which is the same condition prescribed in
section 6.1.2 to guarantee that the Jacobi diffusion stays within the interval (0, ξmax).
At points of the boundary corresponding to E = 0, we find that f ≥ 0 always. On
the part of the boundary on which E = Emax, f < 0 except at the point (D,E) =
(0, Emax), where f = 0, an ambiguity which could be resolved by smoothing the
domain. Therefore, no boundary conditions are necessary except when E = Emax.
The nature of the condition at this part of the boundary depends on whether we
consider a market with one compliance period or with multiple periods, and we specify
it in the relevant sections below.

Given values for the demand for electricity and the cumulative emissions, the val-
uation equation representing the allowance pricing problem determines the arbitrage-
free price of an allowance certificate. We illustrate this dependency by solving the
PDE numerically, using the finite difference scheme explained in Appendix A.

6.2.1. One Compliance Period. The boundary condition at E = Emax takes
the form

(24) α(t,D,E) = e−r(T−t)Π, [0, T )× (0, ξmax)× {E = Emax}.
The condition (24) follows from the fact that as soon as the cumulative emissions

surpass the cap, every additional metric ton of CO2 is penalized at a rate Π at time T .
The numerical results are displayed in Figure 6. At time t = T/2, the allowance

price depends on the cumulative emissions to date and the current level of demand,
as shown in Figure 6a. For each fixed level of emissions E = ET/2, α(T/2, D,ET/2)
is increasing in D. This makes intuitive sense, since for higher levels of demand, the
corresponding market emissions rate is greater, and consequently it is more likely
that the cap will be reached. Similarly, fixing D = DT/2 results in α(T/2, DT/2, E)
being an increasing function of E. In particular, we can think of the current level of
cumulative emissions determining an interval for the allowance price and the demand
for electricity setting the exact price within this interval. Further, we notice that the
allowance price equals the discounted penalty if cumulative emissions exceed the cap.
At the end of the compliance period, α is given by the terminal condition (7). Figure
6b reflects the digital nature of the price at this time and its independence from D.
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(b) t = T .

Fig. 6 The two plots show the price of an allowance certificate, in an emission market with one
compliance period, at different times up to expiry (Π = 100e).

6.2.2. Multiple Compliance Periods: Banking and Withdrawal. We illustrate
the framework introduced in this section for the case of two consecutive compliance
periods. We determine the prices of the first- and second-period allowance certificates
as functions of demand and cumulative emissions. For i = 2, we solve the PDE (14)
with the terminal condition φ2 given by (17). Further, the boundary condition at
E = Emax takes the form

(25) α2 (t,D,E) = e−r(T2−t)Π2, [T1, T2)× (0, ξmax)× {E = Emax}.
The problem is equivalent to the one-period pricing problem with the exception

that the aggregate supply of certificates Ê2
cap depends on E1, the level of the cumula-

tive emissions at the end of the first compliance period. As a result, the price of the
second-period allowance certificate depends not only on the current values of t, D,
and E, but also on E1, i.e., α2 = α2(·, ·, ·;E1). We then solve (14) for i = 1 with the
terminal condition φ1 of the form (16), where A2

T1
= α2(T1, D, 0;E). The boundary

condition at E = Emax now reads

(26) α1 (t,D,E) = e−r(T1−t)
(
Π1 + Π̄1

)
, [0, T1)× (0, ξmax)× {E = Emax}.

Figure 7a plots the value of the allowance certificate at time t = T1/2. The effects
of banking and withdrawal become very clear as the value of the certificate exceeds
the penalty for a sufficiently high level of cumulative emissions. At the end of the
compliance period, α is given by the terminal condition (16), as shown in Figure 7b.
Concerning the price behavior of the second-period certificate, we note that it mirrors
the one-period model with the initial allocation Ecap replaced by Ê2

cap.

6.2.3. Multiple Compliance Periods: Borrowing, Banking, and Withdrawal.
As in the previous section, we analyze the prices of allowance certificates in this
market in the two-period setting (see Figure 8). During the second compliance period
the problem is equivalent to the market that uses only the banking and withdrawal
mechanisms as described in section 3.2.1 because in both markets the effect on the
aggregate supply of certificates during the second period is the same. Suppose the
market is in compliance at time t = T1. Then, a number (E1

cap − E1) of certificates
is banked to the second period and added to E2

cap, independently of whether or not
borrowing is allowed. Otherwise, if the market is not in compliance at time t = T1, a
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(b) t = T1.

Fig. 7 The two plots show the value of the first-period allowance certificate (A1
t )t∈[0,T1] at differ-

ent times up to compliance in an emission market with two compliance periods, which are
connected by the banking and withdrawal mechanisms (Π1 = 100e).
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(b) t = T1.

Fig. 8 The value of the first-period allowance certificate (A1
t )t∈[0,T1] at different times up to com-

pliance, with two compliance periods, connected by the borrowing, banking, and withdrawal
mechanisms.

number min(E1−E1
cap, E

2
cap) of certificates is withdrawn from E2

cap (if borrowing is not
allowed) or the same number is brought forward and hence also deducted from E2

cap

(if borrowing is allowed). Therefore, for i = 2 we solve the PDE (14) with terminal
condition (17) and obtain α2 = α2(·, ·, ·;E1). Subsequently, we solve (14) for i = 1
together with the terminal condition φ1 given by (17), where A2

T1
= α2(T1, D, 0;E).

The boundary condition at E = Emax is given by (26).

6.3. The Impact of Cap-and-Trade. The raison d’être of any cap-and-trade
scheme is to reduce emissions. More precisely, its aim is to incentivize sufficient
load shifting throughout the trading period for the cumulative emissions not to reach
the cap. In our modeling setup we illustrate the effectiveness of cap-and-trade by
calculating the expected cumulative emissions at the end of the compliance period
for different levels of the penalty Π. Recall that the penalty represents an upper
bound for the allowance price; the case Π = 0 corresponds to business-as-usual and
increasing Π to a gradually more aggressive cap-and-trade scheme.

We simulate the cumulative emissions process (Et) using the Monte Carlo scheme
explained in Appendix B, choosingD0 = 0.7ξmax. We repeat this simulation for values
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Fig. 9 Mean of the cumulative emissions ET for different values of the penalty Π. The level of the
cap is represented by the dashed line.

of the penalty ranging from zero to 200 and calculate the mean of ET , denoted by
ÊT . We note that for the present purpose of analyzing the cumulative emissions,
the simulation of demand should take place under the physical measure P, which is
related to Q by the market price of demand risk. This measure can be accurately
estimated from market data (see, for example, [17] for different approaches). In the
absence of a detailed data analysis, however, we follow the time-honored approach of
letting the market price of demand risk be constant and equal to zero. Therefore, for
the purposes of our simulation we work with the stochastic differential equation (23).

Figure 9 plots the results of the simulation of 106 paths. Under business-as-usual
the cumulative emissions are expected to exceed the cap. As emissions trading is
introduced, the market reacts by abating, but initially (at a penalty level of Π = 25)
the cumulative emissions still exceed the cap. Further increases in the penalty (close
to Π = 100) lead to sufficient load shifting in order for the market to reach a state
of compliance. More aggressive regulation now leads only to small reductions in the
cumulative emissions; i.e., our analysis confirms the well-known stylized fact that
emissions trading cannot incentivize firms to reduce cumulative emissions far below
the cap.

6.4. A Call Option on Emissions. For the numerical solution of the call option,
we specify

(27) v(t,D,E) = e−r(T−t)
(
Π− er(T−τ)K

)+

on [0, τ)× (0, ξmax)× {E = Emax}.

The condition (27) follows from recalling that when E = Emax the value of the
allowance certificate α is given by α(t,D,E) = e−r(T−t)Π. For the same reasons as
put forward in section 3.1, boundary conditions at D = 0, ξmax and E = 0 are not
necessary.

Because the PDE (19) requires the allowance price as an input parameter, it
is necessary to solve (19) and (11) in parallel in order to obtain the value of the
option. The numerical scheme that determines the price of the call as a function of
the demand for electricity and the cumulative emissions is explained in Appendix A.3,
and the resulting value surface is plotted in Figure 10.
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Fig. 10 The price of a call option, with strike K, on the allowance certificate, in an emission market
with one compliance period, at different times up to expiry.

7. Conclusion. Emissions trading has become one of the most popular policy in-
struments employed by regulators to reduce global emissions. Allowance certificates—
the key financial instruments in emission markets—and derivatives on them are traded
actively on exchanges today despite the lack of an established theoretical pricing
framework taking into account the subtleties of these markets.

The contributions of this paper are threefold. First, by appealing to the bid
stack, the key price setting mechanism in electricity markets (which we suggest is a
reasonable description of more general markets as well), we introduce the idea of load
shifting and show how the cost of carbon affects which firms are supplying electricity
to the market. This immediately allows us to deduce the rate at which emissions
accumulate during a compliance period. Because we derive the cumulative emissions
process starting with an exogenously defined stochastic process for demand, we of-
fer an explanation for the noncompliance event, which is the main price driver of
allowance certificates. Second, we embed the load-shifting mechanism in a continu-
ous time pricing framework for allowance certificates, taking the form of a forward-
backward stochastic differential equation (FBSDE). Within this setup the extension
to price derivatives on the allowance certificate is immediate. Third, in the setting
of an emission market with multiple compliance periods, we analyze the impact of
different connecting mechanisms on the allowance price.

Appendix A. Numerical Solution of the Allowance and Option Pricing Prob-
lem. We comment on the numerical scheme employed to solve the allowance and
option pricing PDEs.

A.1. One Compliance Period. We discretize the computational domain by choos-
ing mesh widths ΔD, ΔE and a time step Δt. The discrete mesh points (Di, Ej , tk)
are then defined by

Di := iΔD,

Ej := jΔE,

tk := kΔt.

The finite difference scheme we employ produces approximations αk
i,j , which are as-

sumed to converge to the true solution α as the mesh width tends to zero.
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Since the PDE (11) is posed backward in time with a terminal condition, we
choose a backward finite difference for the time derivative in order to work with an
explicit scheme.

In the E-direction we are approximating a conservation law PDE with a discon-
tinuous terminal condition. (For an in-depth discussion of numerical schemes for these
types of equations, see [26].) The first derivative in the E-direction, relating to the
nonlinear part of the PDE, is discretized against the drift direction using a one-sided
upwind difference. Because characteristic information is propagating in the direction
of decreasing E, this one-sided difference is also used to calculate the value of the
approximation on the part of the boundary corresponding to E = 0.

In the D-direction the equation is parabolic everywhere except on the boundary,
where it degenerates. Hence, we use central differences to discretize the first- and
second-order derivatives. At the boundaries corresponding to D = 0 and D = ξmax,
where the second derivative vanishes and no boundary conditions need to be specified,
we again use a one-sided difference in our numerical scheme.

With smooth boundary data on a smooth domain and with a strictly decreasing
(in α) coefficient μE , the scheme described above can be expected to exhibit first-order
convergence. In our setting, we expect the discontinuous terminal condition and the
fact that μE is merely decreasing in α to have adverse effects on the convergence rate.

We analyze the convergence of our numerical scheme in the supremum norm and
the 1-norm at t = 0; i.e., we calculate

Err∞l :=
‖αhl

− αhl+1
‖∞

‖αhl
‖∞ and Err1l :=

‖αhl
− αhl+1

‖1
‖αhl

‖1 ,

where αhl
represents the approximate solution given the vector of mesh parameters

hl at refinement level l and

‖αk
i,j‖1 :=

∑
i,j

∣∣αk
i,j

∣∣ΔDΔE.

The parameters that define the different mesh widths are displayed in Table 4; here
we have ensured that our choice honors the Courant–Friedrichs–Lewy condition for
the convergence of explicit schemes (cf. [26]). As mentioned above, we expect the
main contributions to the error to stem from the hyperbolic part of the equation.
Therefore, we choose a very fine grid in the E-direction for our analysis.

Table 5 displays the results from our convergence study. Note that the error
decays much faster in the 1-norm. This is not at all surprising, as we expect the error
from the discontinuous terminal condition to propagate in the direction of decreasing
E. This leads to a significant error on a small part of the grid, which is picked up by
the infinity norm, whereas the approximation converges much faster everywhere else,
as shown by our analysis of the error in the 1-norm.

Table 4 Parameters for the convergence analysis of the numerical scheme.

h1 h2 h3 h4 h5

Dmax/ΔD 6 12 24 48 96
Emax/ΔE 100 200 400 800 1600

1/Δt 110 440 1760 7040 28160
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Table 5 Numerical error in the supremum and the 1-norm.

l 1 2 3 4

Err∞l 0.0746 0.0355 0.0227 0.0105
Err1l 0.0066 0.0020 0.0013 0.0006

1 2 3 4

0.0105

0.0227

0.0355

0.0746

Convergence in the mesh width

l

E
rr

∞ l

 

 

Numerical error Err∞

l

Linear regression

Slope = −0.9131

Fig. 11 Illustration of the convergence of the finite difference scheme used to solve (11).

Figure 11 plots the error Err∞l as a function of the mesh width. From the slope
of the line of best fit through the error points, we estimate the convergence rate of
our scheme to be 0.9131 in the infinity norm.

A.2. Multiple Compliance Periods. To deal with the path-dependency that en-
ters the pricing problem in an emission market with multiple compliance periods—in
the case of banking and withdrawal—through the terminal condition (16) and (17),
we have introduced the extra variable E1.

The problem is then solved backward beginning with the second compliance pe-
riod, for which we solve the PDE (14) with corresponding boundary conditions and
the terminal condition (17), introducing an extra dimension for the variable E1. We
then store α2(T1, D, 0;E1).

Subsequently, we solve the PDE corresponding to the first compliance period,
using the stored values of α2 for the evaluation of the terminal condition.

We compute the numerical approximation to each αi using the scheme described
in section A.1. For a market in which banking, borrowing, and withdrawal are im-
plemented, the terminal condition at the end of the first period is modified in the
obvious way.

We note that, compared with the single-period problem, the multiperiod problem
has an extra dimension due to the variable E1. When solving the problem beginning
with the second compliance period, this increases the complexity in two ways. First,
the PDE (14) must be solved for a sufficiently large number of values of E1. Second,
we need to store α2 (T2, D, 0) since it is needed for the terminal condition of α1.
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A.3. Option Pricing Problem. We use the obvious modification of the earlier
scheme described in section A.1 to solve the option pricing PDE (19).

Appendix B. Monte Carlo Simulation of Cumulative Emissions. Let (Dk, Ek,
Ak) denote the discrete time approximation to the FBSDE solution (Dt, Et, At) on
the time grid 0 < Δt < 2Δt < · · · < nkΔt = T . At each time step we calculate Ak

by interpolating the discrete approximation αk
i,j at Dk, Ek, beginning with the initial

values D0 = d,E0 = 0. The approximations (Dk, Ek) are obtained using a simple
Euler scheme (cf. [19]). The discretized version of (Dt) is forced to be instantaneously
reflecting at the boundaries Dk = 0 and Dk = ξmax.

Using this discretization we simulate nc paths and, as usual, calculate the mean
cumulative emissions ÊT given by

ÊT :=
1

nc

nc∑
i=1

Ei
nk
,

where Ei
nk

denotes the outcome of the simulation of the ith path. The corresponding
standard error σ̂Ê is obtained by

σ̂Ê :=

√√√√ 1

nc (nc − 1)

nc∑
i=1

(
Ei

nk
− ÊT

)2

.

Table 6 displays the results of our Monte Carlo simulation.

Table 6 Monte Carlo estimate of the mean cumulative emissions ÊT and the corresponding stan-
dard error σ̂

Ê
.

Π 0 25 50 75 100 150 200

ÊT (1× 108) 1.32 1.23 1.20 1.18 1.17 1.16 1.15
σ̂
Ê

(1× 103) 5.91 7.30 6.20 5.53 5.20 4.56 4.36
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