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The problem of solidification or melting under the action of a forced hydrodynamic flow
is considered. In the appropriate parameter régime, the problem admits a formulation
in terms of analytic functions. It is shown that a crystal with parabolic tip propagates
without change of shape at a steady velocity. Some novel explicit solutions are presented.

1. Introduction

The problem of pattern formation in two-dimensional free boundary problems has re-
ceived much attention; see for example Bensimon et al. (1986), Langer (1986), Kessler
et al. (1988), Brener & Melnikov (1991), Howison (1992). One such problem is that of
dendritic crystallisation in the diffusion-limited régime, when the growth velocity is deter-
mined by the rate of diffusion of latent heat away from the front (Langer (1986), Kessler
et al. (1988), Brener & Melnikov (1991)). As was first shown by Ivantsov (1947), a
dendrite of parabolic shape propagates into a uniform temperature field at a constant
velocity; however, the tip radius [ and velocity v cannot be selected uniquely within the
framework of Ivantsov’s approach. In experiments the existence of hydrodynamic flow
can play a significant role in the selection process and very little is known about the
action of imposed flow on crystal growth. Bouissou et al. (1989) considered the influence
of hydrodynamic forced flow on the growth process, because the results for this problem
help one to understand the selection problem better. Recent theoretical studies (Benamar
& Pelce (1988), Dash & Gill (1984), Ananth & Gill (1989), Ananth & Gill (1991), Xu
(1993)) have been performed to extend the Ivantsov parabolic solution to potential and
viscous flows. In particular, it has been found that the full Navier-Stokes model does not
have an exact similarity solution for forced convection (Ananth & Gill (1989), Ananth
& Gill (1991), Xu (1993)); there is however an exact solution when the flow is driven
by a density change at the interface (Howison (1988)). On the other hand, solidifica-
tion/melting in the presence of a potential flow does admit an Ivantsov-like solution
(Benamar & Pelce (1988), Dash & Gill (1984)). Such problems arise, for example, in the
context of models of artificial freezing and thawing of flows in porous media (Maksimov
(1965), Maksimov (1976), Goldstein & Reid (1978), Kornev & Mukhamadullina 1994))
assuming that pore-size within the medium is small relative to the size of the frozen
body, and are applicable to the study of crystal solidification and melting in a Hele-Shaw
cell. In fact, the behaviour of our solutions bears a close resemblance to solutions of the
one-phase zero-surface-tension Hele-Shaw problem, melting being analogous to the stable
case where fluid is injected into the cell, and crystallisation to the unstable suction case,
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FIGURE 1. Schematic diagram of the geometry (in the dimensionless variables)

and we return to this analogy later. However it should be noted that crystallisation in a
rectangular cell or capillary, and solidification of a binary system or a pure material, may
radically change the selection principle. Bouissou et al. (1989) consider a binary system
in a rectangular cell, while other theoretical studies (Ananth & Gill (1989), Ananth &
Gill (1991), Benamar & Pelce (1988), Dash & Gill (1984), Xu (1993)) operate with flows
of pure melt. As experimentally shown by Lee et al. (1993), the results for a pure material
solidifying within a cylindrical capillary are opposite to those of Bouissou et al. (1989),
so the theoretical treatment of existing experimental data should be approached with
caution.

Briefly, the layout of this paper is as follows: we first formulate the problem of qua-
sistatic two-dimensional solidification and melting in potential flows in terms of analytic
functions. Such a formulation allows us to calculate more complicated evolution than sim-
ple travelling waves, and enables us to show a relationship between solidification problems
and the purely hydrodynamical Hele-Shaw flow. Semi-infinite frozen bodies will be con-
sidered, and as examples, the steady growth of a parabolic dendrite, a flat interface, and
the unsteady growth of irregularities which we call ‘cracks’ will be discussed.

2. Mathematical model

We consider a situation in which part of a saturated porous medium is frozen, at the
melting temperature T}, (assumed constant), while in the remainder the unfrozen liquid
flows according to Darcy’s law (see Figure 1 for a sketch). The unfrozen liquid flows
from left to right, and the frozen region grows from the right. We assume that the liquid
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is incompressible, and that the thermophysical parameters of the matter are constant.
The temperature and the velocity at infinity are denoted by 7., and V. respectively.
The former is taken to be constant, while the latter represents a far-field flow and may
vary spatially. In the case T, > T, the frozen region recedes, and solutions describe a
melting dendrite in a warm flow, and when T, < T,,, we have the opposite situation of
a dendrite growing into an oncoming supercooled liquid.

In the dendrite cross-section we introduce the co-ordinate system z = x + iy and the
complex flow potential W = ¢+ i1, where ¢ is the velocity potential and v is the stream
function. The variables z,y and function W are dimensionless, so & = lz, § = ly and
W = VooIW where the hatted variables are dimensional, and [ is a characteristic dendrite
size, which must be determined. The velocity potential is related to the pressure p by
w0 = —kp/(Voosl) where k is the permeability of the medium and p is the viscosity of the
fluid. Gravity is neglected. The mathematical model in the dimensionless variables then
has the form

V-V =0, V =V, PeV - V4 = V20, z € Qt);

_99 _ 9 _

6=0, on 0w on

0, z€d(t); (2.1)

V-V, as|z|l—ooo ;

lim 6 =60, lim %:O;
T — —00 y—+oo ay

Qt)],_, = Q.

Here v,, is the normal (outward with respect to the liquid region) velocity of dendrite
growth, in which time has been made dimensionless with the thermal time [?pL/(k|Ts —
T,n|), in which £ is the dimensional time; L is the latent heat, and & is the thermal
conductivity of the liquid. The function 8 = (T —T,,,)/|Toc — Trm| describes the tempera-
ture field within the liquid; with this normalization the two possibilities we consider are
0o = 1 (melting, and crystallisation with supercooling, respectively). The Peclet num-
ber Pe = VI/D is a measure of the intensity of heat transfer by convection compared
with conduction, and D is the thermal diffusivity of the liquid. The region (2 is occupied
by liquid, 02 is its boundary, and {2y is the corresponding initial domain.

In fact we only need consider one of the two problems (melting or crystallisation),
since reversing the sign of the temperature (6 — —0) leaves the model unchanged apart
from the kinematic boundary condition and the condition on € at infinity, which are both
reversed. Hence, if we can obtain the free boundary evolution of, say, a melting dendrite
using the model (2.1) with 6., = 1, reversing time in this evolution describes a solid
dendrite growing in a supercooled liquid. We shall assume this ‘time-reversibility’ freely
in our solutions.

Note that we have assumed a quasistatic model for the heat flow, which is why the
normal velocity in the Stefan condition ‘—98/9n = v, on 9Q’ has been scaled using the
timescale 1?pL/(k|Ts — Tyn|) instead of with Va,. This model is therefore applicable to
the common situation in which the volume heat capacity is negligible compared with
the latent heat (Goldstein & Reid (1978), Glicksman et al. (1986)). We also assume
that the imposed hydrodynamic velocity is much greater than the velocity caused by
the solid-liquid density difference, and the stronger condition that the velocity of the
forced flow is much greater then the velocity of crystallisation (we comment briefly on
this assumption in the Conclusions). Then the frozen body at any instant of time serves
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FIGURE 2. Diagram of the problem in the Boussinesq plane

as a quasistatic obstacle for the flow; this is why the boundary condition for the potential
does not involve v,. When hydrodynamic and crystallisation velocities are comparable
the problem is more complicated and we cannot directly apply the technique proposed
below. However the experimental situation described above is widespread (Bouissou et
al. (1989), Goldstein & Reid (1978)), and the model is reasonable.

3. Uncoupling of the problem

It is remarkable that the moving boundary problem (2.1) may be split into two inde-
pendent subtasks (Maksimov (1965), Maksimov (1976), Goldstein & Reid (1978), Kornev
& Mukhamadullina 1994)), the first of which is the problem of heat exchange between a
semi-infinite isothermal knife, and a homogeneous flow. The second subtask contains all
the ‘free boundary’ aspects of the problem. The split is effected by applying the Boussi-
nesq transformation (Boussinesq (1905)) to the convective heat transfer equation, which
is equivalent to a conformal mapping from the liquid region in the physical plane onto a
domain in the complex potential (W) plane, or using ¢, ¥ as independent variables. The
equation for the temperature field # remains invariant under this transformation, and is

2 2
e % = 70 + ﬂ (3.1)
Op 2 2
The body cross-section maps into the cut directed along the positive real axis ¥ = 0,
¢ > 0 in the complex potential W-plane (figure 2). In accordance with the above we have

00
lim 6=1, i =
g0—1>r£1<>o ¢~l>r£oo 8’/7[}

0; =0 onepel0o0), =20 (3.2)
Introducing the further transformation (¢, ¢) — (£, 7), given in complex form by
W =w?, w =& +1n,

(in the complex variable interpretation we have mapped from the cut W-plane to the
upper-half w-plane) we look for a similarity solution 8 = f (7).t This leads to the ordinary

1 There are several possible ways of deriving the resulting temperature field; see for instance
Benamar & Pelce (1988), Dash & Gill (1984), Wijngaarden (1966).
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differential equation and boundary conditions

f"() +2nPef'(n) =0 (n=0),  f(0)=0,f(c0) =1,

and the explicit solution is then easily obtained as

0=f(n)= 2\/§/0n exp(—Pe s%)ds. (3.3)

We remark here that the ‘backward problem’, in which the flow direction is reversed,
is much more difficult. The Peclet number changes sign in the dimensionless model,
corresponding to heat being convected in the opposite direction, and we cannot expect
to be able to impose the same boundary conditions at infinity (it is easily checked that
there is no similarity solution of the kind proposed above). We must specify conditions
upstream, not down, but which conditions? This Pe < 0 problem is essentially the (local)
rear stagnation-point problem for flow past a finite body, whereas the Pe > 0 problem
is the (local) forward stagnation-point problem, which is much simpler. To solve for the
rear problem we must solve (i) the forward problem; (ii) the outer problem (matching
onto the solution of (i)); and finally, the rear problem, matching onto (ii). We do not
consider such complications in this paper.

An alternative method of solution is given by Wijngaarden (1966): by using the Green’s
function for the Helmholtz equation, the problem (3.1)- (3.2) can be reduced to the
integral equation

00
= [ 55 (e -0) k(e -€l) de

where Ky(z) is the modified Bessel function. This integral equation can be solved in
closed form using the Wiener-Hopf technique.

Tt is easily seen from the solution (3.3) (and it can be deduced from the above integral
equation formulation) that on the cut 1 = 0,

00 Pe
’aw _ \/: (3.4)

The combination /Pe/m arises many times in the following, so henceforth we write

o =+/Pe/m.

Using the relation (3.4), the heat flux at the unknown boundary is transformed to
00| _|o0||ov| _|o8||ow| _ o |ow .
on| |ov||on|  |0v|| 0=z | o| 0z | '

This condition enables us to reformulate the initial problem in terms of analytic functions,
just as for the Hele-Shaw problem (Bensimon et al. (1986), Kessler et al. (1988), Howison
(1992)).

4. The Polubarinova-Galin equation

We again consider the auxiliary plane w = £ + in (the plane of canonical variables) so
that the upper half of the plane corresponds to the flow region, recalling that W = w?.
We take the origin at the stagnation point and the corresponding point in the auxiliary
plane is also placed at w = 0. Let the function f map the upper half of the w-plane
onto the region (t) : z = f(w,t). The unit vector normal to the moving interface
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O0(t) = xo(t) + iyo(t) can be expressed as

P -1
n:nx+iny:i—f

ow

of
Oow

)

on the boundary w = £. The normal velocity of the interface then has the form
Vn = (Fona + ony) = %{(:ﬁco + o) (g — iny)}

-1

:%{af'ﬂ‘lf } £ € (—00,00), 7 — +0. (4.1)

al&u ow

On the other hand, the boundary of the frozen region is a streamline, so at the dendrite
interface we have

|00 | ——=5= |00 | oW
+1 % (Vt - Zvy) =+ % E = —v,N, ¢ = 40. (42)
Combining equations (3.4)-(4.2) we get the condition
of 0fy o OW
%{EZ%}_ T e S n— 40 (4.3)

In (4.3) we have taken into account the multivalence of the square root, whereby the
heat fluxes at different sides of the cut have different signs. Finally using

W =w?, (4.4)
we obtain the Polubarinova-Galin (P-G) equation (Howison (1992))

%{%i%} =2, £€(~00,00),n=0. (4.5)
(This same equation arises in the zero surface tension Hele-Shaw problem with an im-
posed pressure gradient; see for instance Howison (1992).) In the dimensional (hatted)
variables the factor of 20 on the right-hand side of (4.5) becomes 2LpVool/(K|Too —
T, |V7D).

In addition to the boundary condition (4.5), we must specify the asymptotic behaviour
of the function f at infinity, and the initial dendrite shape. For the former, we can use
the boundary condition for the velocity at infinity. We specify the initial dendrite shape
as

f(wv O) = fO(w)7 (46)

where fy is the mapping of the upper half-plane onto the initial region 4. Thus, the
boundary value problem (2.1) is reduced to the nonlinear boundary value problem (4.5)-
(4.6) for analytic functions f, together with a boundary condition at infinity.

We observe (for later use in §8) that there is another simple situation which leads to the
same P-G equation. Consider an asymptotically-flat semi-infinite solid region, and a flow
which is roughly parallel to it, so that in the dimensional variables 7,/; — Veoyas g — oo
(in contrast to the oncoming, stagnation-point flow assumed so far). Suppose further that
a constant temperature gradient is imposed across the flow, so 9T/9§ — A as § — o0
(A > 0 gives rise to melting, A < 0 to freezing; but again the ‘time-reversibility’ means
that we need only consider A > 0).

In the Boussinesq plane the flow domain will be exactly the upper half plane ¥ > 0.
Replacing |Too — T),| by |A|l in the scalings of §2, the solution for the dimensionless
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temperature is exactly § = 1. This satisfies the boundary condition on ¢ = 0 and, since
(in the dimensionless variables) ¥ — y as y — oo, does indeed give rise to a constant
temperature gradient at infinity in the physical plane. The analogue of equation (3.4) is
then [00/0¢| = 1, and (3.5) becomes |00/0n| = |0W/0z|. In this geometry the variables
w and W coincide, and following through the argument which led to (4.5) we find

of .of
A 4.
%{ ot 0w } ’ S
which is exactly the same P-G equation (if ¢ = 1/2). In the dimensional form of the
right-hand side, the factor of 1 is replaced by pLv/Vao /(k|A[V).

5. Reformulation as an Integral Equation

Assuming that z = f(w,t) is an acceptable parametrization of the moving boundary
at least for small t, i.e., that f is a univalent function on the upper half-plane, one can
rewrite the condition (4.5) in the form

w5 = o

The application of the Schwarz (Poisson) formula to this latter condition enables one
to determine the analytic function (9f/0t)/(0f/0w) in the upper half-plane n > 0 via
its real part on the real axis (the boundary of the upper half-plane). One can express
condition (4.5) in the form of a nonlinear, non-local partial differential equation for the
Riemann mapping function f(w,?):

of  of 2 /°° of

-2
) 56(—00700), 77:0

(—w’
We call (5.1) a Lowner-Kufarev type equation because of the analogy with the well-known
linear partial differential equation which appears in univalent function theory (Aleksan-
drov (1976), Pommerenke (1973)). The kinematic condition on the moving boundary
0N)(t) is represented in the form (4.5) for the boundary values of the Riemann map-
ping function z = f(w,t) if and only if the Lowner-Kufarev type equation (5.1) holds
for the analytic mapping function z = f(w,t) in the upper half-plane. In fact, as well
as the above mentioned conclusion (that equation (5.1) follows from (4.5)), it can be
shown conversely that, taking the limit as w tends to £ on the real axis, and using the
Sokhotsky—Plemelj formulae (Mushkhelishvili (1968)), the equation (5.1) becomes equiv-
alent to the kinematic condition in the form (4.5). We return to this formulation of the
problem in §8.

7(C7t)

5= as ) _|ac S(w) > 0. (5.1)

6. The Schwarz function

The integro-differential equation (5.1) for the function of time and spatial variable is
complicated and can be used only for numerical calculations of the dendritic shape. A
useful alternative approach enabling many exact solutions to be constructed is provided
by considering the Schwarz function of the free boundary.

We first recall some properties of the Schwarz function (Howison (1992), Davis (1974)).
It is obtained by substituting for © = (2 + 2)/2, y = (2 — Z)/2i into the equation
F(x,y,t) =0, describing the boundary of the dendrite. Solving the latter equation for Z
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in the form
E:g(zﬂf)a (61)

we obtain the Schwarz function of 02(t) (Howison (1992), Davis (1974)). It only exists for
analytic curves in (z,y)-space, and is itself an analytic function in some neighbourhood
of the curve. The following relations will be useful:

dz _ 991/

C =, (62)
_ 19999\ 12,

o= o) (63)

hereafter s is arclength and all the formule hold for z € 9Q2. We can now relate g to
the complex potential W(z,t). Because the boundary of the dendrite is a streamline, we
have

diw — dﬂ(%),l — (@)1/2%.

dz ds “ds 0z on
Expressing 0¢/0n in (6.4) via the heat flux and the normal velocity of the moving
boundary (equations (3.5) and (3.4)), and then using (6.3), we arrive at the equation

1L dW i dg

VW dz 200t

Both sides are analytic on 092 and hence (6.5) holds wherever both functions exist.

Equation (6.5) differs from the ordinary Hele-Shaw equations for the Schwarz function

given by Richardson (1972), Lacey (1982) and Millar (1989), though the analogy is very
close.

We can write g(z,t) in terms of the mapping function f(w,t), which allows us to

use the above result to construct explicit solutions. By definition, the function f(w,t)

maps 1 > 0 onto Q(t) and n = 0 onto JQ(t). Then, on the moving boundary, we have
zZ = f(w,t) = f(©,t) = f(w,t), i.e., the equation

(6.4)

(6.5)

g(z,t) = fw,1), (6.6)
holds on 9. But since f is analytic on the (closed) upper half-plane, f is analytic on
the closed lower half-plane, so both sides of this equality are analytic in some neighbour-
hood of the boundary (considering z as a function of w, or vice-versa). Hence (6.6) may
be analytically continued away from the boundary, and holds wherever both sides are
defined. It follows that g has singularities in the upper half-plane at the complex conju-
gates of those of f in the lower half-plane. Hence, since W is analytic in n > 0 (except
possibly at infinity), (6.5) implies that any singularities of the Schwarz function are com-
pletely determined by ¢g(z,0) and must necessarily be constant both in magnitude and
in position. The Schwarz function method is well-suited to functions which have poles or
logarithmic branch points in the lower half-plane. It offers a basis for the construction
of novel classes of explicit nontrivial solutions. We shall demonstrate the efficacy of the
statement in terms of analytic functions by giving some simple examples.

7. Ivantsov’s dendrite

We first reproduce the Ivantsov solution, i.e. we show that a dendrite of parabolic
shape grows at constant velocity. Thus we consider a dendrite whose transverse size
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increases at infinity not faster than /z. This solution was obtained by different means
by Benamar & Pelce (1988), Dash & Gill (1984).
To obtain such a solution we use the condition for the (dimensionless) flow velocity at
infinity given in (2.1), namely
ow_was
of  ow of 7
Equation (7.1) implicitly assumes that the symmetry axis of the dendrite is aligned in
the z-direction. Using (4.4) in (7.1), we see that

f~w?  w— oo (7.2)

Considering the problem (4.5), (4.6), (7.2) for f(w,t), we seek the steady shape of a
dendrite growing in supercooled liquid. We postulate the following parabolic ansatz for
the solution of this problem:

w — 0. (7.1)

fw,t) =w? +iA(t)w + B(t), (7.3)
with
fow) = w® + B(0).
Then the condition (7.2) is satisfied automatically and equation (4.5) leads to the formulee

. 20t
A=0; B=—. 7.4
- B=" (7.9
Without loss of generality we can take A = 1 (this means that all spatial variables are
normalized by the tip radius [). As an alternative to using the P-G equation, we can
obtain the same solution using the Schwarz function result (6.5) above. The Schwarz

function g(z,t) is given by
g(z,t) = f(w,t) = w? —iA(t)w + B(t),

where w is given as a function of z by inverting (7.3). The left-hand side of equation
(6.5) is singular only at infinity, where W(z) ~ z (a simple pole), hence we must find the
behaviour of dg/dt at infinity and match in (6.5). Inversion of the map (7.3) reveals that

g(z,t) zz—QiA\/E—AQ—i-ﬂ B—|—Af2 + 0(z73/?)
) \/E 4 *
Equating the behaviours at infinity in (6.5), we retrieve equations (7.4) again.
In dimensional form we find the velocity of propagation of the parabolic dendrite as

%o — T| [ Ve
o L wlD’

Thus, as with Ivantsov’s original solution, we have indeterminacy, in that we obtain only
a relation between the tip radius and the velocity, and no unique ‘selection principle’
telling us what both [ and v are. As expected (since we consider a different régime) our
formula (7.5) differs from Ivantsov’s, and we cannot take the limit V., — 0 because the
approximation we made in our model is not then valid. Recall that we assumed the
hydrodynamic velocity to be much greater than the crystallisation velocity v, which is
what enabled us to separate the Boussinesq problem from the free-boundary problem
itself. In the opposite limit in which the crystallisation velocity dominates, the explicit

v

(7.5)

1t We do not present Ivantsov’s formula here, since is given in a complicated implicit form
which makes a direct comparison difficult.
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solution is more complicated and has been presented by Benamar & Pelce (1988), Dash
& Gill (1984). In the latter paper the authors find a dimensionless heat flux (Nusselt
number) for the potential flow around the parabolic dendrite, which at the stagnation
point has the value Nu = /2Pe/7 (equation (93) of Dash & Gill (1984)). In our notation,
this equates to a dimensional heat flux at the stagnation point of magnitude

OT|  |To —Tn| [2Pe
-1 V= (7.6)

an
While the Stefan boundary condition that we use is not the appropriate one for their
analysis, it is worth remarking that if we naively substitute (7.6) into this condition, we
find an “effective” growth velocity

AT =Tl 2V
e L wlD’

so the result is the same as ours modulo an unimportant constant.f

8. Linear stability of flat interfaces

As a basis for a morphological stability analysis (Mullins & Sekerka (1963), Mullins &
Sekerka (1964)) we examine the growth of a flat interface at constant velocity. The first
case we consider is with an extensional-type fluid flow, i.e. a stagnation point flow against
a flat interface. Although this seems unlikely at first sight, it is obvious when we note
that there is a stagnation point at the tip of a steadily-propagating parabolic dendrite,
which is of course locally flat. Indeed, the flat interface solution could be derived by a
local expansion of the Ivantsov solution; however, it is simpler to derive it directly.

At infinity the complex potential W has behaviour W ~ —az?/2, with prescribed
velocity gradient «, so the velocity field is (u,v) ~ (—ax, ay). In this case, the boundary
condition at infinity is written in dimensional form as

oW _ oW 0w

of T dw of
The scalings used are those of §2, where the characteristic velocity Vo, is chosen as
Voo = al (the characteristic lengthscale [ is introduced for convenience, and does not

appear in the resulting formula for the moving interface).
We consider the linear mapping

f=iV2w + B(t), (8.2)

from the upper half-plane to the fluid region (all the parameters are dimensionless). This
gives a solution of equation (4.5) provided the parameter B(t) satisfies

B(t) = V20t. (8.3)

(This solution is also trivial to obtain using the ‘Schwarz function’ method.)

We now consider the stability of this interface to small periodic perturbations. It is
convenient to do this using the Lowner-Kufarev formulation of equation (5.1). We assume
the same flow conditions at infinity, and expand the mapping function in powers of the
small parameter e (which measures the deviation of the interface from the flat) as

Flw,t) = fOw,t) + efD(w, ) + O(),

1 The authors are indebted to an anonymous referee for suggesting this comparison.

—af, asw — 0. (8.1)
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where (9 is the solution to the unperturbed problem found above. Substituting into
(5.1) gives the O(e) problem

. o g fV
1) _ 2270/ de _ iafb(dl), J(w) >0, (8.4)

! —o0 C —w
(the subscripts denote partial derivatives). The interface is described by the mapping
function f(&,t) for £ € (—o0, 00), thus on the boundary,

z=1x—+iy =ivV2 + oV2t 4+ efV(E ). (8.5)
We seek the Fourier modes for the boundary values f(!) (&,t) of the form
FOE ) = Fk, )e'™;

™

the wavenumber k must be positive to ensure analyticity of f() in the upper half-plane.
When substituting in (8.4) we need the relation

R S I el S (S A (e

¢

00 ikC oo —ik(¢
:z'kF(k,t)/ ;_wdc+ikF(k,t)/ z_wdg

= 27k F (k, t)e™.

The last equality is obtained by two separate contour integrals, the first around a large
semicircle in the upper half-plane, since this is where e?*¢ decays, and the second around
a semicircle in the lower half-plane, where e~**¢ decays. Using this in equation (8.4) then,
in the limit 3(w) — 0 we obtain

Fy(k,t) = —ckF(k,t).
On the boundary (8.5) gives
2=z +iy =iV2 + oV2t + eF(k,t)e*t

Thus in the case of melting we have a stable solution, with perturbations decaying expo-
nentially like exp(—At), where A = ok. (Recalling the scaling used for time, the dimen-
sional dispersion is A = v/a/mD(kq|Tse —Trn|)/(pL), where the dimensional wavenumber
q is defined by ¢ = k/I.) The freezing behaviour is given by the time-reversal of this anal-
ysis, hence here we have an unstable solution. This analysis should be relevant for the
stability of the tip of a steadily-growing dendrite, which as already noted is locally flat.

The other situation we consider is the stability of a flat interface in a parallel flow,
across which a uniform temperature gradient A is imposed (this situation was considered
at the end of §4). This will be the local situation on the sides of a steadily growing
dendrite, hence this analysis should indicate the stability in this régime. As observed in
84, although this is a different physical problem it leads to the same P-G equation, and
hence the same Lowner-Kufarev formulation (5.1). It follows from this that the basic
travelling-wave solution about which we perturb must be given by (8.2) and (8.3) (with
o = 1/2), and therefore that the stability analysis carried out above follows through in
this case also. Hence we have the same result that melting is stable, and crystallisation is
unstable, with the dimensionless dispersion relation A = k/2. The dimensional relation,
showing the dependence on the temperature gradient A, is A\ = gx|A|/(2pL), where again
q = k/l. The timescales in these two situations differ, due to the different instability
mechanisms (though they will be related if we are considering the coupled problems of
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flow at the nose, and flow around the sides of the dendrite). For the stagnation point flow
the forced convection plays an important role, but for the parallel flow the instability is
caused solely by the conductivity transport (as in the ordinary Mullins-Sekerka instability
(Mullins & Sekerka (1963), Mullins & Sekerka (1964))).

Note that the dispersion relations for each case are unbounded, since they increase
linearly with the wavenumber ¢. This is due to the neglect of regularising surface effects
in the analysis; if we included the relevant effects the dispersion relations would be
modified, and presumably bounded. However, as we observe later in §10, the precise
form of the regularisation we should use for the porous medium problem is unclear.

We comment here that Brattkus & Davis (1988) have also considered the effect of forced
flow on the stability of a solidifying interface. However, they used the boundary-layer
approximation, so their analysis does not apply in the neighbourhood of the stagnation
point. In another related work, Davis (1990), the effective decoupling of hydrodynamic
disturbances and thermal disturbances is discussed in detail. It is surprising, but to our
knowledge nobody has previously studied the stability of the interface for forced potential
flow at the stagnation point.

9. Unsteady solutions

We turn now to exact unsteady solutions. As mentioned in § 6, a novel class of ex-
plicit solutions can be constructed by introducing perturbations, for example, poles or
logarithmic branchpoints, into basic polynomial solutions (such as Ivantsov’s dendrite),
provided that all the singular points of the perturbation lie in the lower half-plane (since
the mapping function f must be analytic on the upper half-plane). We consider the
solutions

N
f=w?+iw+Bt)+ Y dilnw+ak(t),  S(ax) >0, (9.1)
k=0
where the dy and ay(t) are complex parameters (dj, are specified constants), and B(t) is
real. (Similar solutions are given by Kunka (1997); they were constructed independently
of, and concurrently with, the present work.) The dj and «j are subject to various
constraints to ensure (9.1) is univalent on the upper half w-plane, the most obvious of
which is that S(ag) > 0 for all k, but we only consider the details of these constraints in
the simple case N = 1. By far the simplest way of obtaining the evolution equations is
to use the method outlined in §6, based on the fact that the singularities of the Schwarz
function in the liquid domain must remain constant in position and time. Using (6.6),

N
g(z,t) = f(w,t) = w? —iw + B(t) + Z@ln(w + ag(t)),
k=0
which has branch-points at w = —ay, in the upper half w-plane, giving the IV invariants
of the flow:
f(=axg) = const. = Cy, 1<k<N,
whence

N
a2 (t) —iag(t) + B(t) + Y _ drlog(an(t) — ax(t)) = Cy. (9.2)
r=0
These are 2N real equations for the unknown coefficients B, ayj, so we need one more

equation which comes from matching at infinity in (6.5). Since we are looking at a
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perturbation to the Ivantsov parabola, we want W (z) ~ z at infinity. For the behaviour
of dg/0t at infinity we use

dg of  Of ow

oo ow ot
where we find dw/0t from

0=%tauar

A little algebra gives the leading-order behaviour for large |z| as

dg 1 N .
Friaby {Z(dkak — dié) +iB};

k=1

matching in (6.5) then leads to
N
B =20+23(>_ dyon), (9.3)
k=1

which is trivial to integrate. We remark that the ‘flat interface’ solution of §8 is also
easily generalised in this manner, by adding on logarithmic terms to the basic mapping
function.

As a simple example, consider the case N = 1, with a; = ib, for which

f=w?+iw+ B(t) + dn(w + ib(t)), b>0. (9.4)

This is conformal on the upper-half w-plane provided b > 0 and b > d. We may think of
a ‘univalency domain’ in (d, b)-space, with only the region b > 0, b > d giving univalent
maps (9.4). The line b = d > 0 corresponds to cusped free boundary shapes, having a
single 3/2-power cusp at the point z = f(0,t) on 9Q(¢), so f'(0,t) = 0.Ind < 0, as the line
b = 0% is approached, free boundary shapes are generated which are basically parabolse
(with nose pointing into the liquid region), but with a parallel-sided channel of width
7|d| removed from the centre, along the axis of symmetry. Such a structure (especially
when |d| < 1) may be thought of as a liquid-filled ‘crack’ in the solid dendrite.
In the (z,y)-plane, (9.4) gives the free boundary in parametric form as

r=¢6 4 B(t) + gln(§2 + b2(1)),

b(t
y = & + darctan (5),
for £ € (—o00,00). Evolution of the dendrite shape is determined by the branchpoint
dynamics as dictated by equations (9.2) and (9.3). In this simple case, solution using the
P-G equation is also easy, leading to the (equivalent) system

B(t) = 2d(b(t) — b(0)) + 20t, (9.5)
. bo
b= ——mF—F7. 9.6
(b+1/2)(b—d) (96)
Remember that increasing time corresponds to melting, while decreasing time describes
crystallisation. For an initially univalent map we must have b(0) > 0,b(0) > d. In the
melting case (9.6) then implies b > 0 always, whether d is positive or negative. Hence in
this case the evolution is always regular, with any initial nonuniformities in the boundary
being smoothed out (figure 3), and approaches the Ivantsov solution of §7 as t — oo (this
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Direction of dendrite motion —

[ LIQUID
>l SOLID

Direction of fluid flow —

FIGURE 3. A typical solution of the form (9.4) in the case of melting. The parameter values
used are: d = —0.1, b(0) = 0.1, B(0) = 0.

behaviour may be compared to perturbing any zero surface tension (ZST) Hele-Shaw
travelling-wave solution, in the stable injection case).

For the case of crystallisation (decreasing time) we must consider the cases d > 0,d < 0
separately. When d < 0 (9.6) gives the asymptotic behaviour of b as

b(t) ~ exp(—%)7 t — —oo0, (9.7)
which consequently determines the flow pattern (the analogous asymptotic behaviour of
the general solution (9.1) is also easy to obtain). The shape of the dendrite is regular at
any instant of time, but as t — —oo the ‘crack-type’ structure referred to above inevitably
develops (figure 4). This may be thought of as a ‘tip-splitting’ event at the dendrite tip.
Such evolution may be compared with the very similar ‘fingering’ geometries which arise
in the ZST Hele-Shaw solutions of Howison (1986), Mineev—Weinstein & Ponce-Dawson
(1994) in the unstable suction case (the ‘air’ in the Hele-Shaw cell corresponds to the
solid dendrite in our problem).

For d > 0, b(0) > d, analysis of (9.6) shows that b decreases towards d as ¢ decreases,
reaching d within finite time, giving cusp formation in the free boundary, at which point
the solution breaks down (figure 5). (In reality the appropriate regularising surface effects
would become important as such a configuration is neared; see the Conclusions below.)
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«— Direction of dendrite motion

SOLID

LIQUID

(supercooled)

Direction of fluid flow —

FIGURE 4. A typical solution of the form (9.4) in the case of crystallisation, leading to a ‘crack’
type structure (a tip-splitting event). The parameter values used are: d = —0.05, b(0) = 0.1,
B(0) = 0.

Note that in the reversed melting problem, such singular initial geometry would be in-
stantly smoothed. Again, the analogy with the unstable ZST Hele-Shaw suction problem
is very close, as inward-pointing cusps (relative to the liquid) are frequently obtained in
such solutions.

With the more general mapping function (9.1), structures can be generated which un-
dergo several tip-splitting events. Provided all the dj have negative real parts, solutions
to the crystallisation problem can be found which exist for all time, and since the asymp-
totic behaviour of the time-dependent parameters is easy to determine, we can more or
less choose the sequence of tip-splitting events we wish to observe, by suitably choosing
the initial parameters. (Complex values of the dj will produce non-parallel ‘cracks’ in
the dendrite.) If some of the dj have positive real parts, finite-time cusp formation is in-
evitable, but judicious choice of the initial parameter values can give solutions which first
have tip-splitting events, and then break down via cusp formation ((Cummings (1996)).

10. Conclusions

We have demonstrated that the problem of quasi-static dendrite growth in a forced
potential flow can be reformulated in terms of analytic functions. This formulation gives
a method for constructing many explicit solutions, which can describe complex fingering
patterns. In our example, the appearance of ‘cracks’ (which may be interpreted as tip-
splitting events) and cusps is caused by the presence of a logarithmic branch-point in the
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«— Direction of dendrite motion

LIQUID
(supercooled) . /

SOLID

\

Direction of fluid flow —

FIGURE 5. A typical solution of the form (9.4) in the case of crystallisation, leading to a
cusped free boundary. The parameter values used are: d = 0.5, b(0) = 1, B(0) = 0.

mapping function f(w,t). Clearly, this introduction of logarithmic branch-points is not a
unique way of obtaining such patterns: many other combinations of poles and logarithms
could be added into the basic quadratic (or linear) mapping function. In terms of the
initial geometry, tip-splitting events are associated with small indentations in 99(0)
relative to the solid, while cusp formation is associated with small protruberances in
09(0). From the parallels drawn throughout this paper, it should now be clear that ZST
Hele-Shaw flow and our problem of crystallisation in a forced flow are closely related.
Throughout the paper we have ignored what we loosely refer to as “regularising surface
effects” at the moving boundary, assuming them to be small. Our vagueness here is delib-
erate, since our model may be used to describe both ordinary two-dimensional potential
flow around a frozen body (e.g. an icicle in a stream of water, or melting/freezing in a
Hele-Shaw cell) and melting/freezing within a saturated porous medium. For the case of
ordinary potential flow the Gibbs-Thomson condition (equating the temperature jump
across the interface to the curvature of the boundary times a constant incorporating the
surface tension, ordinary melting temperature and latent heat (Pamplin (1980))) is the
accepted interfacial condition; however the analogous condition for the porous medium
problem (with pore-size within the medium assumed small relative to the size of the frozen
body) remains open to debate (Dash et al. (1995))—consider for instance the small-scale
phase-change problem in the pores of the medium. Obviously, inclusion of such effects
does change the dendrite shape, but we believe that the effect will be negligible except
at points of high curvature of the boundary, such as may occur at crack tips, or, in the
case of the cusp solutions, as the cusped state is approached. In this context we recall
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the assumption made earlier, that the velocity of the forced hydrodynamic flow is much
greater than the velocity of crystallisation. Obviously this cannot be the case as cusped
configurations are approached; we also expect surface effects to become important in this
situation, and for both reasons we cannot expect the model to apply in the final stages
of cusp formation. Likewise, for flow in a saturated porous medium, the assumption that
the characteristic size of the frozen body is much greater than the pore size is clearly
violated as highly-curved geometries develop.

Returning to the the analogy with the ZST Hele-Shaw problem, we note recent work
by Siegel et al. which suggests that inclusion of even very small nonzero surface tension
v < 1 can have an unexpected effect on smoothly-evolving solutions of the ill-posed
“suction” problem (Siegel & Tanveer (1996), Siegel et al. (1996)) (in the sense that the
solution with v = 0 is not necessarily obtained as the v — 0+ limit). This issue is not yet
conclusively resolved however, and the relevance to our problem (particularly the porous
medium case) is uncertain, since there are many other neglected small effects which may
have a much greater bearing on the observed behaviour than surface tension ever does.

Nonetheless, even if we do believe our solutions capable of describing observable be-
haviour in both melting and solidification problems, the fact remains that we have con-
siderable freedom to choose the parameters in the conformal maps, which naturally gives
rise to questions of selection. In a similar context, we referred earlier to the nonuniqueness
of the travelling-wave parabolic dendrite (both ours and Ivantsov’s); only one relation
exists between the tip radius and the velocity of propagation. One possible mechanism of
dendritic shape selection is the influence of crystal anisotropy (Langer (1986), Kessler et
al. (1988), Brener & Melnikov (1991)). It has been conjectured on the basis of strong evi-
dence from ‘exponential asymptotics’ that anisotropic surface tension breaks the Ivantsov
family into a discrete set of possible shapes (Brener & Melnikov (1991)) (although it is
not clear whether anisotropy is the sole mechanism that can lead to a selection principle).
Presumably similar ideas are needed to uniquely select the dendrite in our model, and
also the appropriate tip-splitting behaviour.

Finally, it should be noted that the free boundary problem for the case of finite frozen
domains may be formulated similarly; however in this case there are no explicit solutions
to the Boussinesq problem, which involves finding the temperature field around a finite
slit. The increased difficulty of the ‘finite body’ problem was mentioned in §3. In a
subsequent paper we plan to consider some numerical solutions to such problems.
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