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Abstract

We consider the pricing of a range of volatility derivatives, including volatility
and variance swaps and swaptions. Under risk-neutral valuation we provide
closed-form formulae for volatility-average and variance swaps for a variety
of diffusion and jump-diffusion models for volatility. We describe a general
partial differential equation framework for derivatives that have an extra de-
pendence on an average of the volatility. We give approximate solutions of
this equation for volatility products written on assets for which the volatility
process fluctuates on a time-scale that is fast compared with the lifetime of
the contracts, analysing both the “outer” region and, by matched asymptotic
expansions, the “inner” boundary layer near expiry.

1 Introduction

In this paper we discuss derivative products that provide exposure to the realised
volatilities or variances of asset returns, while avoiding direct exposure to the under-
lying assets themselves. These products are attractive to investors who either wish
to hedge volatility risk or who wish to take a view on future realised volatilities.
Indeed, much of the investor interest in volatility products seems to have been pro-
vided by the LTCM collapse in 1998, which was accompanied by a dramatic increase
in volatilities. As a result, a number of recent papers [4, 8, 9, 12, 15] address the
evaluation of volatility products; see also Chapter 13 of [17].

Like several of these authors, we take a stochastic volatility model as our starting
point; we also provide formulae for the case that the volatility follows a jump-
diffusion process of the type described in [18]. The fact that stochastic volatility
models are able to fit skews and smiles, while simultaneously providing sensible
Greeks, have made these models a popular choice in the pricing of exotic options.
Under this framework, we present a number of formulae for the “fair” delivery
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price for volatility and variance swaps, and show how other related contracts can be
priced. In addition to providing formulae for a range of volatility and variance swaps,
we consider an asymptotic analysis under which we derive approximate solutions
for volatility and variance swaptions (options on the realised average volatility or
variance). The main motivation for this approximation is the empirical evidence
that volatility is mean-reverting over a time-scale which is fast compared with the
typical lifetime of options and other contracts. That is, when considering the time-
scale of months, stock and index volatility is observed to fluctuate rapidly, see for
example the discussion in [10] or [19] and references therein. In this way, we show
how to calculate accurate approximations to the price both at O(1) times before
expiry and in a temporal boundary layer near expiry.

In what follows, the asset S is assumed to follow the usual log-normal process

dSt

St

= µt (t, · · · ) dt + σt (t, · · · ) dWt, (1)

where Wt is Brownian motion. For the rest of the paper we fix notation as follows:
the conditional expectation at time t is denoted by Et = E[·|Ft] where Ft is the
filtration up to time t and E0 is thus the initial value of the expectation. All expec-
tations are considered with respect to the risk-neutral probability measure. Within
a stochastic volatility framework, the market is typically incomplete, admitting an
infinite number of equivalent martingale measures. This is to say, the market price
of volatility risk is not unique, and it is an open question how one chooses in an
optimal way the appropriate measure to price derivatives. The view we take in the
present investigation, which is the standard machinery for many practical purposes,
is that the risk-neutral probability measure is chosen by the market and this has
a number of immediate implications for calibration issues, mainly that parameter
estimation is not possible from stock data but may be possible using derivatives.
Except from a brief discussion in §4.6 we do not further address these issues here.

The rest of the paper is organized as follows: we begin section §2 by briefly
discussing the contracts, while the stochastic volatility framework is introduced in
§3, and the general pricing equation is given in §3.3. In §4 we present in depth
the asymptotic analysis which concludes with second order approximations for the
volatility derivatives of interest. In §4.5 we concentrate on pure volatility products,
in which case the analysis greatly simplifies. Then we give examples in §5. We
conclude in §6.

2 Variance and volatility swaps

The variance swap is a forward contract in which the investor who is long pays a fixed
amount Kvar/$1 nominal value at expiry and receives the floating amount vR/$1
nominal value, where Kvar is the strike and vR = (σ2)R, where σ is the volatility, is
the realized variance. The entering price must be zero, that is, it costs nothing to
enter the contract; we use this condition to find the fair value Kvar. The measure
of realized variance to be used is defined at the beginning of the contract; a typical
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formula for it is

1

T

M∑
i=1

(
Si − Si−1

Si−1

)2

,

which in continuous time we approximate by

vR =
1

T

∫ T

0

σ2
t dt.

The corresponding payoff is then

vR −Kvar. (2)

It is also possible to construct contracts on the realised volatility. One measure of
this is

(
1

T

M∑
i=1

(
Si − Si−1

Si−1

)2
) 1

2

derived from the standard deviation of the asset price random walk, and the corre-
sponding continuous-time payoff for a volatility swap is

(vR)1/2 −Ks/d =

(
1

T

∫ T

0

σ2
t dt

) 1
2

−Ks/d; (3)

we term this contract a standard deviation swap. However, this is not the only
possible measure of realised volatility. As discussed in [1], a more robust measure is

√
π

2MT

M∑
i=1

∣∣∣∣
Si − Si−1

Si−1

∣∣∣∣, (4)

and the associated continuous-time contract has payoff

σR −Kvol-ave =
1

T

∫ T

0

σt dt−Kvol-ave, (5)

which involves the average of realised volatility, rather than the square root of the
average realised variance as in (3). We term this contract a volatility-average swap.
In addition, we shall consider products based on an average of a suitable implied
volatility, for example the implied volatility σi

t of the at-the-money call options
with the same expiry as the volatility derivative; this implied volatility swap has
continuous-time payoff

σi
R −K i-vol =

1

T

∫ T

0

σi
t dt−K i-vol. (6)

We could also use a single option throughout the life of the contract, for example
the option that is initially at-the-money; we could further construct implied variance
swaps, and so on.
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Generalizing further, we consider variance and volatility swaptions [17], a typical
payoff being

max(σR −K, 0), max(K − σR, 0)

for volatility call and put swaptions, or

max(vR −K, 0), max(K − vR, 0)

for variance swaptions. We can also contemplate contracts whose payoff depends on
both a realised volatility or variance and the asset; for example, the payoff

max(ST e(σ0−σR)
√

T −K, 0)

is a call option which pays more if the asset rises steadily without much volatility
than if it rises in a volatile way; here σ0 is a reference volatility and T is the contract’s
lifetime.

3 Risk-neutral pricing techniques

Working within the standard risk-neutral pricing framework, we now outline three
approaches to the valuation of volatility derivatives. In the case of volatility or
variance swaps, this shows that we need to choose

Kvar = E[vR] = E0

[
1

T

∫ T

0

σ2
t dt

]
,

and for a standard-deviation swap we need Ks/d = E[v
1/2
R ] (which may be less easy

to calculate explicitly; an approximation in terms of higher moments of vt is given
in [4, 15]). For the volatility-average swap, we have

Kvol−ave = E[σR] = E0

[
1

T

∫ T

0

σt dt

]

and similarly, for the more complicated implied volatility average swap. Volatility
swaptions and so forth are priced in the usual manner; for example, the price of a
volatility swaption is

E0

[
max

(
1

T

∫ T

0

σt dt−K, 0

)]
.

There are, however, various approaches to the calculation of these prices, which we
now consider.

3.1 Pricing independently of the volatility model

As observed by [8], it is possible to derive risk-neutral prices for average-variance
products without making any assumption on the evolution of the volatility, although
the asset is still considered to follow the risk-neutral geometric Brownian motion

dSt

St

= r dt + σt dWt.
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Since

d(log St) = (r − 1

2
σ2

t ) dt + σtdWt,

we have that

log ST − log S0 =

∫ T

0

(r − 1

2
σ2

t ) dt +

∫ T

0

σtdWt.

Taking expectations to get risk-neutral prices, we have

1

2
E0

[∫ T

0

σ2
t dt

]
= rT + log S0 − E0 [log ST ] ,

and the final term on the right-hand side is the value of a log-contract, which can
be decomposed into a continuously parametrised strip of call and put options in a
standard way. Hence variance swaps can be easily priced in terms of vanilla options.
However, this method does not allow us to compute the Greeks, nor does it give
straightforward explicit formulae.

3.2 Pricing by expectations in a stochastic volatility frame-
work

It is possible to derive values for the quantities

E[vR] = E0

[
1

T

∫ T

0

σ2
t dt

]
=

1

T

∫ T

0

E0[σ
2
t ] dt

and

E[σR] = E0

[
1

T

∫ T

0

σt dt

]
=

1

T

∫ T

0

E0[σt] dt

when either the volatility σt or the variance vt follows a quite general random walk.
In this way, we can immediately give risk-neutral prices for variance and volatility-
average swaps, although standard-deviation swaps are less straightforward in this
framework.

In Appendix 1 we show how to calculate E[vR] and E[σR] when σt follows the
(risk-adjusted) process

dσt = (a1 + a2σt)dt + (a3 + a4σt)dWt + (a5 + a6σt)dNt, (7)

where Nt is a standard compound Poisson process with constant intensity λ and
zero correlation with Wt, and a1, · · · , a6 are constants.1 We also calculate E0[vR]
(but not E0[σR]) when vt, instead of σt, follows a similar process; lastly we calculate
E0[vR] and E0[σR] for the process

dσt = (b1 + b2σt)dt + b3σ
1/2
t dWt (8)

1We expect a1 > 0, a2 < 0, to model mean-reversion, and we note that for certain choices of
the parameters this model allows negative values of σt. Models of volatility with jumps have been
considered by [18].
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and, as above, E0[vR] if vt follows a similar process. Specific results for the mean-
reverting log-normal process

dσt = α(σ̄ − σt)dt + βσtdWt, (9)

for constants α, σ̄ and β, are reported in [13]. These, and the more general formulae
of the Appendix, serve to check the asymptotic approach developed in the following
sections.

This approach can also be used to calculate prices and hedge ratios at interme-
diate times. For example, if we have a volatility-average swap, with payoff

1

T

∫ T

0

σ2
sds−Kvol−ave,

the value at earlier times t (0 ≤ t < T ) is

e−r(T−t)

(
Et

[
1

T

∫ T

0

σsds

]
−Kvol−ave

)

=
e−r(T−t)

T

(∫ t

0

σsds + Et

[∫ T

t

σsds

]
− TKvol−ave

)

since the contribution
∫ t

0
σsds to the final average of the volatility is known at time

t. Using the formulae of Appendix 1, the conditional expectation

Et

[∫ T

t

σsds

]
= F (σt, t),

say, is readily evaluated, and then the Vega of the contract is

1

T
e−r(T−t)∂F

∂σ
(10)

which is also readily evaluated once σt is known.

3.2.1 Examples

Here we briefly give some examples for the price of volatility products, the derivation
of which is based on the results of the Appendix. The mean-reverting log-normal
model

dσt = α(σ̄ − σt)dt + βσtdWt,

is a special case of (7), and following the calculation of §A1, under this model, we
have

Kvol−ave =
1− e−αT

αT
(σ0 − σ̄) + σ̄. (11)

Similarly, the value at any time t ≤ T is

Vt =
e−r(T−t)

T

{∫ t

0

(σs − σ)ds +
1

α
(e−α(T−t) − 1)(σ0 − σt)

}
. (12)
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In addition, for the fair strike of the variance swap we have

Kvar =
2ασ2

(2α− β2)T

(
T − 1− e−(2α−β2)T

2α− β2

)

+
2ασ(σ0 − σ)

(α− β2)T

(
1− e−αT

α
− 1− e−(2α−β2)T

2α− β2

)

+
σ2

0

(2α− β2)T

(
1− e−(2α−β2)T

)
. (13)

The formula for the price of the contract at time t is

Vt = e−r(T−t)

{
1

T

∫ t

0

σ2
sds +

2ασ2

(2α− β2)T

(
(T − t)− 1− e−(2α−β2)(T−t)

2α− β2

)

+
2ασ(σt − σ)

(α− β2)T

(
1− e−α(T−t)

α
− 1− e−(2α−β2)(T−t)

2α− β2

)

+
σ2

t

2α− β2

(
1− e−(2α−β2)(T−t)

)
−Kvar

}
, (14)

with Kvar given in (13).
Note that if we were to consider the variance vt as the underlying process sat-

isfying the mean reverting log-normal model, then the relevant expressions for the
variance swap would be different. We can illustrate the contrast between volatility
and variance driven models by considering the two cases

dσt = −k1(σt − σ∞)dt + k2

√
σdWt,

and

dvt = −k3 (vt − v∞) dt + k4

√
vtdWt.

Then, following the calculations in §A2, we have for the volatility-average swap

Kvol−ave =
σ0 − σ∞

k1T

(
1− e−k1T

)
+ σ∞ (15)

in the first case, and we cannot price this contract explicitly in the second framework.
However, the price of the fair variance strike is

Kvar =
1

T

(
−δ1T

2b2

− δ2

b2
2

(
eb2T − 1

)
+

1

2b2

(
σ2

0 +
δ2

b2

+
δ1

2b2

) (
e2b2T − 1

))
,

for the first model and

Kvar =
ν0 − ν∞

k3T

(
1− e−k3T

)
+ ν∞ (16)

for the second; the various constants are as defined in the Appendix. It is apparent
that the second model, for vt rather than σt, leads to considerably simpler formulae.
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3.3 Pricing via partial differential equations

Explicit formulae are in general only available for pure volatility products, and un-
der the assumption that the coefficients in the process for volatility are independent
of St. For more general cases, we must use either Monte-Carlo methods or nu-
merical/asymptotic solutions of the pricing differential equation. In this section we
consider the latter.

From now on we assume that it is σt that drives the volatility; if instead the
underlying process is written in terms of vt = σ2

t the appropriate modifications are
easily made. We assume that St and σt follow the process

dSt

St

= µt dt + σt dWt,

dσt = Mtdt + ΣtdW̃t (17)

where Mt and Σt may depend on St and σt, and where the correlation coefficient of
Wt and W̃t is ρt. As with Asian options, we need to introduce a variable to measure
the average volatility to date. The payoff of the derivatives under consideration
involves an average of the form

IT =

∫ T

0

F (σs)ds;

for example,

Ivar
T =

∫ T

0

σ2
s ds

for a variance swap, for which the payoff (2) is

1

T
Ivar
T −Kvar,

and the same average is sufficient for the standard-deviation swap payoff (3), namely

(
1

T
Ivar
T

)1/2

−Ks/d.

Likewise the volatility-average swap and the implied-volatility swap have payoffs (5)
and (6), namely

1

T
Ivol−ave
T −Kvol−ave,

1

T
I i−vol
T −K i−vol

respectively, where Ivol−ave
T =

∫ T

0
σs ds, I i−vol

t =
∫ T

0
σi

s ds, and so forth. For times
before expiry, we use the running average (denoted generally by It regardless of F )

It =

∫ t

0

F (σs) ds,
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and then it is a standard combination of stochastic volatility and Asian options
analysis [10, 21] to show that the value V (S, σ, I, t) of a derivative satisfies the
partial differential equation

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ ρSσΣ

∂2V

∂S∂σ
+

1

2
Σ2∂2V

∂σ2
+ F (σ)

∂V

∂I

+rS
∂V

∂S
+ (M − ΛΣ)

∂V

∂σ
− rV = 0, (18)

where Λ is the market price of volatility risk. We write the general payoff condition
in the form

V (S, σ, I, T ) = P (S, I). (19)

It is straightforward to show that the formulae derived in §3 and the Appendix
satisfy this equation when Λ = 0. For example for the mean-reverting log-normal
model (9) we have

M = α(σ̄ − σt), Σ = βσt.

and expressions (12), (14) satisfy equation (18).

4 Asymptotic analysis for fast mean-reversion

We now present an asymptotic analysis for the case of fast mean-reversion for σt,
in the spirit of the Fouque et al. (FPS) analysis [10] for equity and fixed-income
derivatives. The novelty here is first in the application to volatility products, and
secondly in that we provide a fairly complete description of the solution both at O(1)
times before expiry which FPS do, and in the short boundary layer immediately
before expiry, which they do not. We initially make the simplifying assumptions
that Mt and Σt, the coefficients in the process for σt, are independent of St, and
we let ρt = 0, Λt = 0. The assumption of zero correlation is not as dramatic as it
would be for equity derivatives, and indeed if we consider payoffs depending only on
volatility averages it is irrelevant. We indicate briefly at the end of this section how
the analysis should be extended for nonzero correlation.

We introduce a small parameter ε, where 0 < ε ¿ 1, to measure the ratio of the
mean-reversion time-scale to the lifetime of an option, and we assume that Mt and
Σt have the forms

Mt =
mt

ε
, Σt =

ςt
ε1/2

,

the relative sizes of these coefficients being chosen to ensure that σt has a nontrivial
invariant distribution

p∞(σ) = lim
t→∞

p(σ, t|σ0, 0)

where p(σ, t|σ0, 0) is the transition density function for σt starting from σ0 at time
zero.

With these assumptions the pricing equation becomes

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+

1

2ε
ς2 ∂2V

∂σ2
+ rS

∂V

∂S
+

m

ε

∂V

∂σ
+ F (σ)

∂V

∂I
− rV = 0,
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which we write in the form
(

1

ε
L0 + L1

)
V = 0

where

L0 =
1

2
ς2 ∂2

∂σ2
+ m

∂

∂σ
,

L1 =
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
+ F (σ)

∂

∂I
− r.

We note immediately that p∞(σ) satisfies

L∗0p∞ =
∂

∂σ2

(
1

2
ς2p∞

)
− ∂

∂σ
(mp∞) = 0

where L∗0 is the adjoint of L0, and we assume that ς2, m are such that p∞ exists; it
is then proportional to e−2

R σ m(s)/ς2(s) ds/ς2(σ). We introduce the notation 〈·, ·〉 for
the usual inner product over 0 < σ < ∞, and note the identity

〈L0u, v〉 = −〈u,L∗0v〉 (20)

for suitable functions u and v, which we will use repeatedly.
We now expand

V (S, σ, I, t) ∼ V0(S, σ, I, t) + εV1(S, σ, I, t) + ε2V2(S, σ, I, t) + · · · ,

so that

1

ε
L0V0 + (L1V0 + L0V1) + ε (L1V1 + L0V2) + · · · = 0.

At lowest order, O(1/ε), we have

L0V0 = 0

and so

V0 = V0(S, t, I)

since the operator L0 consists of derivatives with respect to σ only (the particular
solutions that depend on σ are in general ruled out by the conditions at large and/or
small S); however V0 is as yet undetermined.

At O(1) we find

L0V1 + L1V0 = 0, (21)

a Poisson equation for V1 considering V0 as known. Multiplying by p∞, integrating
and using (20), we find that the solvability (Fredholm Alternative) condition for this
equation can be expressed as

〈L1V0, p∞〉 = 0.
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That is, L1V0 is orthogonal to p∞, which, being a solution of the stationary forward
Kolmogorov equation for σ, is an eigenfunction of L∗0. Thus,

∂V0

∂t
+

1

2
S2∂2V0

∂S2

∫ ∞

0

p∞(σ)σ2dσ + rS
∂V0

∂S
+

∂V0

∂I

∫ ∞

0

p∞(σ)F (σ)dσ − rV0 = 0,

where we have used the result that V0 is independent of σ. Denoting the integrals
by σ2 and F = F (σ) respectively to represent the fact that they are averages of σ2

and F (σ), we write this as

L1V0 =
∂V0

∂t
+

1

2
σ2S2∂2V0

∂S2
+ rS

∂V0

∂S
+ F

∂V0

∂I
− rV0 = 0, (22)

(note that L1 = 〈L1, p∞〉). Making the transformation

I = I + (T − t)F

and writing V0(S, t, I) = V 0(S, t; I), reduces this further, to

∂V 0

∂t
+

1

2
σ2S2∂2V 0

∂S2
+ rS

∂V 0

∂S
− rV 0 = 0, (23)

which is the Black–Scholes equation with volatility
(
σ2

)1/2

. The dependence on I

is retained parametrically via the payoff, which takes the form

V0(S, T ; I) = V0(S, T, I) = P (S, I),

and so we have V0(S, t, I) = V 0(S, t, I + (T − t)F ). Of course, this formula is
considerably simpler for pure volatility products, for which ∂P/∂S = 0 so that
∂V/∂S ≡ 0.

The next step is to calculate V1. First, observe that L1V0 can be written as

L1V0 =
1

2
(σ2 − σ2)S2∂2V0

∂S2
+ (F (σ)− F )

∂V0

∂I
.

Hence, (21) can be written as

L0V1 =
1

2
(σ2 − σ2)S2∂2V0

∂S2
+ (F − F (σ))

∂V0

∂I
.

We seek a solution of the form

V1(S, t, σ, I) = f2(σ)S2∂2V0

∂S2
+ f1(σ)

∂V0

∂I
+ H(S, t, I), (24)

where H is independent of σ. The functions f1 and f2 are then the appropriate
solutions of the equations

1

2
ς2(σ)

d2f2

dσ2
+ m(σ)

df2

dσ
=

1

2
(σ2 − σ2),

1

2
ς2(σ)

d2f1

dσ2
+ m(σ)

df1

dσ
= F − F (σ). (25)
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and can readily be found in integral form; one of the “complementary solutions”
is a constant and can be absorbed into H, and the other is unbounded at infinity
(because p∞ exists). However, the function H(S, t, I) can only be determined by
proceeding to next order and applying the solvability condition to the equation

L0V2 + L1V1 = 0. (26)

We further see that the solution (24), which depends on σ, cannot satisfy the pay-
off condition V1(S, σ, I, T ) = 0. This discrepancy is resolved by a boundary layer
analysis in which T − t = O(ε) (if the payoff has discontinuities, as for a volatility
option, further local analysis near these points is also necessary). We point out that
the lowest-order analysis is quite general, and not specific to the random walk (17).
Only at higher order do we need to know more about these details, and even then
only certain moments need be calculated.

Now, the solvability condition for (26) takes the form:

〈L1V1, p∞〉 = 0

or

〈L1

(
f2(σ)S2∂2V0

∂S2

)
, p∞〉+ 〈L1

(
f1(σ)

∂V0

∂I

)
, p∞〉+ 〈L1H, p∞〉 = 0,

that is,

〈L1

(
f2(σ)S2∂2V0

∂S2

)
, p∞〉+ 〈L1

(
f1(σ)

∂V0

∂I

)
, p∞〉+ L1H = 0, (27)

where L1 is as in (22). Before solving (27), we note that since L1V0 = 0, we also
have

L1

(
Sn ∂nV0

∂Sn

)
= 0, n ≥ 1, L1

(
∂V0

∂I

)
= 0. (28)

We can therefore write the first term in (27) as

〈L1

(
f2(σ)S2∂2V0

∂S2

)
, p∞〉 =

1

2
S2 ∂2

∂S2

(
S2∂2V0

∂S2

) (
σ2f2(σ)− σ2 f2(σ)

)

+
∂

∂I

(
S2∂2V0

∂S2

) (
F (σ)f2(σ)− F (σ) f2(σ)

)
. (29)

The second term, after some algebra, takes the form

〈L1

(
f1(σ)

∂V0

∂I

)
, p∞〉 =

1

2
S2 ∂3V0

∂I∂S2

(
σ2f1(σ)− σ2 f1(σ)

)

+
∂2V0

∂I2

(
F (σ)f1(σ)− F (σ) f1(σ)

)
.

As a result we can rewrite equation (27) as

L1H = A1S
2 ∂3V0

∂I∂S2
+ A2

∂2V0

∂I2
+ A3S

2 ∂2

∂S2

(
S2∂2V0

∂S2

)

= W (S, t, I), (30)
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say, where we have defined

A1 =
(
F (σ) f2(σ)− F (σ)f2(σ)

)
+

1

2

(
σ2 f1(σ)− σ2f1(σ)

)
,

A2 = F (σ) f1(σ)− F (σ)f1(σ),

A3 =
1

2

(
σ2 f2(σ)− σ2f2(σ)

)
. (31)

However, from (28), L1W = 0, which implies that L1 ((T − t)W ) = −W . This
allows us to find a particular solution of the form −(T − t)W , and we can then
express the general solution of (30) as

H(S, t, I) = −(T − t)

[
A1S

2 ∂3V0

∂I∂S2
+ A2

∂2V0

∂I2

+ A3S
2 ∂2

∂S2

(
S2∂2V0

∂S2

) ]
+ H1(S, t, I), (32)

where H1 solves the equation

L1H1 = 0. (33)

The solution of this last equation can be obtained directly via the transformation
I = I + F (T − t), which transforms (33) into the Black-Scholes equation with

volatility
(
σ2

)1/2

.

4.1 Boundary Layer Analysis

We have already satisfied the payoff condition with V0, and so we expect that

V1(S, T, σ, I) = 0.

But this is not possible, since V1 is a function of σ whereas the payoff is not. The
remedy is to introduce a boundary layer in t near t = T , of “thickness” of O(ε). We
define the scaled inner variable τ via

t = T + ετ, τ < 0.

Our goal is now to find the expansion in the boundary layer (the inner solution),
which we subsequently match with the solution outside the boundary layer (the
outer solution) using Van Dyke’s matching principle [20]. We introduce the following
operators:

L̃0 =
∂

∂τ
+ L0, L̃1 =

1

2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
+ F (σ)

∂

∂I
− r,

and we have

L =
1

ε
L̃0 + L̃1,

13



but we note that L̃0, unlike L0 above, contains the time derivative ∂/∂τ . We write

Ṽ (S, τ, σ, I) for the value of the derivative in the boundary layer, and expand

Ṽ ∼ Ṽ0 + εṼ1 + · · · .

As a result equation (18) becomes

1

ε
L̃0Ṽ0 +

(
L̃1Ṽ0 + L̃0Ṽ1

)
+ · · · = 0. (34)

At lowest order,
L̃0Ṽ0 = 0

with the condition
Ṽ0(S, 0, σ, I) = P (S, I).

The solution is easily seen to be

Ṽ0(S, τ, σ, I) = P (S, I). (35)

Note that this matches automatically with our outer solution V0(S, t, I) as t → T ,
τ → −∞.

At the next order we have

L̃0Ṽ1 = −L̃1Ṽ0 = −L̃1P ,

which can be written as

∂Ṽ1

∂τ
+ L0Ṽ1 =

1

2

(
σ2 − σ2

)
S2∂2P

∂S2
+

(
F (σ)− F (σ)

) ∂P

∂I
− L1P (36)

with the final condition
Ṽ1(S, 0, σ, I) = 0

(note that ∂P/∂τ = 0). We now need the solution of (36) as τ → −∞ in order to
match with the outer solution. A particular solution of (36) is

Ṽ1

∞
= f2(σ)S2∂2P

∂S2
+ f1(σ)

∂P

∂I
− τL1P + H̃(S, I) (37)

where H̃(S, I) is arbitrary, and we conjecture that this is the correct form for the

asymptotic behaviour of Ṽ1(S, τ, σ, I) as τ → −∞. Now

〈L̃0Ṽ1, p∞〉 = 〈∂Ṽ1

∂τ
+ L0Ṽ1, p∞〉 = 〈∂Ṽ1

∂τ
, p∞〉

since 〈L0Ṽ1, p∞〉 = 0. We further note that from (36),

∂

∂τ
〈Ṽ1, p∞〉 = 〈∂Ṽ1

∂τ
, p∞〉 = −〈L1P, p∞〉 = −L1P

and therefore

〈Ṽ1, p∞〉 = −τL1P, (38)

14



where we have used the condition Ṽ1(S, 0, σ, I) = 0. Now from (37) we have

〈Ṽ ∞
1 , p∞〉 = −τL1P + f2(σ)S2∂2P

∂S2
+ f1(σ)

∂P

∂I
+ H̃(S, I). (39)

We now compare (38) with (39) and we immediately have

H̃(S, I) = −S2∂2P

∂S2
f2(σ)− ∂P

∂I
f1(σ).

Thus, as τ → −∞,

V1 ∼ Ṽ ∞
1 = S2

(
f2(σ)− f2(σ)

) ∂2P

∂S2
+

(
f1(σ)− f1(σ)

) ∂P

∂I
− τL1P, (40)

since subtracting of the particular solution leaves a “complementary function” Ṽ1−
Ṽ ∞

1 whose inner product with p∞ vanishes, which satisfies the homogeneous version
of the parabolic equation (36), and which therefore vanishes as τ → −∞.

4.2 Matching

We now consider the matching. Expanding the outer solution to O(ε) in the inner
variable τ , we have

V0(S, t, I) = Ṽ0

(
S, T + ετ, I + F (σ)(T − t)

)

= Ṽ0

(
S, T + ετ, I − ετF

)

∼ V 0(S, T, I) + ετ
∂V 0

∂t

(
S, T, I

)− ετF
∂V 0

∂I
(S, t, I)

= P (S, T, I) + ετ
∂V 0

∂t
(S, T, I)− ετF

∂V 0

∂I
(S, t, I)

(note that for t = T we have I = I). Using (22) this reduces to

V0(S, t, I) ∼ P (S, I)− ετL1P,

and so, combining with (24), the two-term inner expansion of V0 + εV1 is

P (S, I) + ε

(
−τLP + f1(σ)

∂P

∂I
+ f2(σ)S2∂2P

∂S2
+ H(S, T, I)

)
. (41)

Similarly, from (35) and (40), the two-term expansion of the inner solution in terms
of the outer variable t is

P (S, I) + ε

((
f2(σ)− f2(σ)

)
S2∂2P

∂S2
+

(
f1(σ)− f1(σ)

) ∂P

∂I
− τL1P

)
. (42)

Matching (42) and (41), we see that the final condition for H(S, t, I) is

H(S, T, I) = −f2(σ)S2∂2P

∂S2
− f1(σ)

∂P

∂I
,
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and therefore (32) becomes

H1(S, T, I) = −f2(σ)S2∂2P

∂S2
− f1(σ)

∂P

∂I
,

and the boundary layer analysis thus leads to the missing final condition for H1.
As stated above, we can reduce LH1 = 0 to the Black-Scholes equation using the
substitution I = I +(T − t)F , and hence we find H1(S, t; I) = H1(S, t, I) by solving

LBSH1 = 0,

with

H1(S, T ; I) = H1(S, T, I) = −f2(σ)S2∂2P

∂S2
− f1(σ)

∂P

∂I
.

Recalling that V 0(S, t; I) satisfies LBSV0 = 0 with V0(S, T ; I) = P (S, I), and (28),
we see that for t ≤ T ,

H1(S, t; I) = −f2(σ)S2∂2V0

∂S2
− f1(σ)

∂V0

∂I
.

4.3 Summary

In summary, the outer expansion takes the form

V (S, t, σ, I) ∼ V0(S, t, I) + εV1(S, t, σ, I)

where
V0(S, t, I) = V0(S, t; I + (T − t)F )

and V0(S, t; I) satisfies the Black-Scholes problem

LBSV0 = 0, V0(S, T ; I) = P (S, I)

with volatility (σ2)1/2. The correction V1(S, t, σ, I) takes the form

V1(S, t, σ, I) = S2∂2V0

∂S2

(
f2(σ)− f2(σ)

)
+

∂V0

∂I

(
f1(σ)− f1(σ)

)

− (T − t)

(
A1S

2 ∂3V0

∂I∂S2
+ A2

∂2V0

∂I2
+ A3S

2 ∂2

∂S2

(
S2∂2V0

∂S2

))
,(43)

where the functions f1(σ), f2(σ) are defined in (25) and the constants A1, A2, A3 in
(31). In the boundary layer, the solution takes the form

Ṽ (S, τ, σ, I) ∼ P (S, I) + εṼ1,

where Ṽ1 satisfies the parabolic problem (36) with final data Ṽ1(S, 0, σ, I) = 0; this
solution cannot be found explicitly but its large-time behaviour is sufficient to allow
matching with the outer solution to this order.
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4.4 Extensions

4.4.1 Payoff singularities

It is implicit in our analysis that the payoff is smooth enough for the expansion to be
valid. For example, in (32) we have terms such as ∂2V0/∂I2 which is a delta function
at expiry if the contract is a volatility call swaption with payoff max(I/T −K, 0).
Roughly speaking, such a discontinuity will propagate along the line I +(T − t)F =
KT , where K is the strike, and a separate analysis is necessary in a small region
around this line; the result is an interesting mathematical problem which we briefly
discuss in §5.5. We also note that we could (but do not) also consider the implications
of discontinuities in the S-dependence of the payoff, which (because of the second
S-derivative in the pricing equation) may be expected to induce small “square root
of time to expiry” region in which the expansion is not valid.

4.4.2 Correlation and the market price of risk

We also briefly consider the effects of correlation and the market price of volatility
risk. If ρt or Λt is of O(ε1/2) then their effect is to modify the operator L1 (we do
not consider this special case here), but if they are of O(1) then our pricing equation
takes the form

(
1

ε
L0 +

1

ε1/2
L 1

2
+ L1

)
V = 0

where L0 and L1 are as before, and

L 1
2

= ρςσS
∂2

∂S∂σ
− Λς

∂

∂σ
.

The expansion for V is now in the form

V ∼ V0 + ε1/2V 1
2

+ εV1 + ε3/2V 3
2

+ · · · ,

and the first four equations are, in order,

L0V0 = 0,

L0V 1
2

+ L 1
2
V0 = 0,

L0V1 + L 1
2
V 1

2
+ L1V0 = 0, (44)

L0V 3
2

+ L 1
2
V1 + L1V 1

2
= 0. (45)

We still have that V0 is a function of (S, I, t) alone, hence L 1
2
V0 = 0 and so V 1

2
is

also a function of (S, I, t). Thus L 1
2
V 1

2
= 0 and the solvability condition for (44)

gives
〈L1V0, p∞〉 = 0
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just as before, so also as before V0 = V0(S, t; I + (T − t)F ). We then have

V1 = f2(σ)S2∂2V0

∂S2
+ f1(σ)

∂V0

∂I
+ H(S, t, I),

also as before, and we note that L 1
2
V1 6= 0 but L 1

2
H = 0. Proceeding to the

solvability condition for (45), we have 〈L 1
2
V1 + L1V 1

2
, p∞〉 = 0, which becomes

LV 1
2

= −ρςσf ′2S
∂

∂S

(
S2∂2V0

∂S2

)
− ρςσf ′1S

∂2V0

∂S∂I
+ Λςf ′2S

2∂2V0

∂S2
+ Λςf ′1

∂V0

∂I
, (46)

where we denote by f ′1 and f ′2 the corresponding derivatives with respect to σ. The
solution for V 1

2
that vanishes at expiry is readily found to be

V 1
2
(S, I, t) = (T − t)

(
ρςσf ′2

(
S3∂3V0

∂S3
+ 2S2∂2V0

∂S2

)
+ ρςσf ′1S

∂2V0

∂S∂I

−Λςf ′2S
2∂2V0

∂S2
− Λςf ′1

∂V0

∂I

)
(47)

where V0 is already known. The calculation of V1, from a solvability condition at
O(ε2), is straightforward but even more cumbersome and we do not give details here;
in the next section we give them for a pure volatility product. In the boundary layer,
we have

(
1

ε
L̃0 +

1

ε1/2
L 1

2
+ L̃1

)
Ṽ = 0, Ṽ ∼ Ṽ0 + ε1/2Ṽ 1

2
+ εṼ1 + · · ·

where L̃0 and L̃1 are as before. Again Ṽ0 = P (S, I), matching automatically with

V0, and the problem for Ṽ 1
2

is

L̃0Ṽ 1
2

= −L 1
2
Ṽ0 = 0;

the solution is simply Ṽ 1
2

= 0, and this is consistent with matching with the two-

term outer expansion V0 + ε1/2V 1
2
, since in inner variables the T − t in V 1

2
means

that this term only contributes O(ε3/2) to the inner expansion of the outer solution.

Again, Ṽ1 can be calculated and matched although we do not give details here.
In summary, with nonzero O(1) correlation, the outer solution is given by

V (S, t, σ, I) ∼ V0(S, t, I) + ε1/2V 1
2
(S, t, I)

where V0 is the solution of a Black-Scholes problem and V 1
2

is given in (47).

4.5 Pure volatility products

The analysis above is greatly simplified for pure volatility products for which all S-
derivatives vanish. Again using σt as the underlying volatility variable, the pricing
equation is simply

∂V

∂t
+

1

2

ς2

ε

∂2V

∂σ2
+

(
m

ε
− Λς

ε1/2

)
∂V

∂σ
+ F (σ)

∂V

∂I
− rV = 0
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with payoff
V (σ, I, T ) = P (I).

For certain models and products it is possible to write down explicit solutions not
only for swaps—as in §3.2—but also for swaptions, since corresponding results for
Asian options can simply be transferred. In particular, for a Hull-White type model
in which Σ = Σ0σ and M − ΛΣ = M0σ, so that σt follows Geometric Brownian
Motion, there is a series solution for a volatility-average swaption and, if one were
to construct a swaption based on the continuously sampled geometric mean of σt,
that too would have an explicit solution because the running geometric average of
a Geometric Brownian Motion is log-normally distributed.

4.5.1 Asymptotics for pure volatility products

As mentioned above, the approximate analysis is rather simpler for a pure volatility
product, since then all S-derivatives vanish. We therefore give more details of the
analysis of §4.4, in Appendix 2; in summary, the outer expansion takes the form

V ∼ V0 + ε1/2V1/2 + εV1 + · · ·
where

V0(I, t) = e−r(T−t)P (I + (T − t)F ), (48)

V 1
2
(I, t) = − (T − t) Λςf ′1

∂V0

∂I
= − (T − t) e−r(T−t)Λςf ′1P

′(I + (T − t)F ), (49)

and

V1(I, t) =
(
f1(σ)− f1(σ)− (T − t) Λςf ′3

) ∂V0

∂I

+

(
(
Λςf ′1

)2 (T − t)2

2
− A2 (T − t)

)
∂2V0

∂I2

= e−r(T−t)
(
f1(σ)− f1(σ)− (T − t) Λςf ′3

)
P ′(I + (T − t)F )

+ e−r(T−t)

(
(
Λςf ′1

)2 (T − t)2

2
− A2 (T − t)

)
P ′′(I + (T − t)F ). (50)

The function f3(σ) is defined in Appendix 2. The boundary-layer solution is as
before.

Notice that the leading order term in the outer solution has a natural financial
interpretation. If, say, the contract is a call swaption, the outer solution is zero for

I + (T − t) F < KT ;

since I is the contribution to the payoff already “in the bank” and (T − t)F is the
approximate expected remaining contribution (as in a fast mean-reverting model the
fluctuations in σ average out at this order), the option is unlikely to pay out if the
sum of these is an O(1) amount less than KT . The discontinuity at I + (T − t)F =
KT must be resolved by an inner expansion which we do not deal with here.
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4.6 Calibration

We note briefly that, like the original FPS [10] model, a great deal of calibration of
the current framework can be accomplished without reference to a specific model.
The first two terms in (47) can be calibrated to pure equitie option volatility smiles as
in the FPS scheme. It is more likely that calibration is neseccary for pure volatility
products, and gives, say, a series of volatility swaptions of different prices, (48)
and (49) can be used to calculate F and Λσf ′1. The calibration to O(ε) is more
complicated and we do not discuss it here, although it is in principle possible.

5 Examples

In this section we illustrate the theory with several different products. The first three
are the pure volatility swaps described in §2 where explicit formulae are available (see
§3.2.1); the asymptotic results can be shown to be correct. For the implied-volatility
swap, there is some S-dependence via σi, although the payoff is still independent of
I. Finally we look briefly at volatility-average swaptions.

5.1 The variance swap

For this contract, we have F (σ) = σ2 and so F = σ2, the average variance to be used
in the Black-Scholes equation (23). The payoff is Ivar/T − Kvar = I

var
/T − Kvar

and the first three terms in the expression for the variance swap value are

V (t, σ, I) ∼ e−r(T−t)

(
Ivar
t + σ2(T − t)

T
−Kvar

)
− ε1/2e−r(T−t) (T − t) Λςf ′1

T

+ εe−r(T−t)

(
f1(σ)− f1(σ)− (T − t)Λςf ′3

)

T
.

For the random walk (9) for which σ2 = 2ασ2/(2α − β2) = 2aσ2/(2a − b2), it is
easily confirmed that we recover the O(1) term of the exact result (14).

5.2 The standard-deviation swap

For the standard-deviation swap payoff (3), we still have F (σ) = σ2 but now the
payoff is (Ivar/T )1/2−Ks/d. Hence, the standard-deviation swap price to order O(ε)
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is

V (t, σ, I) ∼ e−r(T−t)

((
Ivar
t + σ2(T − t)

T

)1/2

−Ks/d

)

− ε1/2 e−r(T−t)

2T
(T − t) Λςf ′1

(
Ivar
t + σ2(T − t)

T

)−1/2

+ ε
e−r(T−t)

4T 2

[
2T

(
f1(σ)− f1(σ)− (T − t) Λςf ′3

) (
Ivar
t + σ2(T − t)

T

)−1/2

+ (T − t)

(
A2 −

(
Λςf ′1

)2 (T − t)

2

) (
Ivar
t + σ2(T − t)

T

)−3/2 ]
.

5.3 The volatility-average swap

For the payoff (5) we have F (σ) = σ and we find that

V (t, σ, I) ∼ e−r(T−t)

(
Ivol−ave
t + σ(T − t)

T
−Kvol-ave

)

− ε1/2 e−r(T−t)

T
(T − t) Λςf ′1

+ εe−r(T−t)

(
f1(σ)− f1(σ) + (T − t) Λςf ′3

)

T

Again here, we recover the O(1) term of the exact solution given by (11) and (12)
for large mean reversion coefficient.

5.4 The implied volatility swap

In this case F (σ) is the implied volatility of an at the money option, say a call, with
price C(S, t, σ). We can of course apply the same procedure to pure equity options
(this is the FPS analysis) to give

C(S, t, σ) ∼ CBS

(
S, t,

(
σ2

)1/2
)

+ ε1/2 (T − t)

[
ρςσf ′2

(
S3∂3CBS

∂S3
+ 2S2∂2CBS

∂S2

)
− Λςf ′2S

2∂2CBS

∂S2

]

+O(ε). (51)

The implied volatility of this option can also be expanded in the form

σi ∼ σi
0 + ε1/2σi

1 + · · ·

and since by definition

C(S, t, σ) = CBS(S, t, σi),
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we have

C(S, t, σ) ∼ CBS(S, t, σi
0) + ε1/2σi

1

∂CBS

∂σ
|σi

0
+O(ε). (52)

Comparing (51) with (52) we clearly have

σi
0 =

(
σ2

)1/2

and, setting the strike of C equal to S and substituting from the Black-Scholes
formulae,

σi
1 =

ρςσf ′2
(

1
2
σ2 − r

)
− Λςf ′2 σ2

(
σ2

)3/2
.

Hence we see an additional complication in that the averaging function F (σ) itself
has an expansion

F (σ) ∼
(
σ2

)1/2

+ ε1/2σi
1 +O(ε).

Thus the price operator takes the form

1

ε

(
L0 + ε1/2L 1

2
+ εL1 + ε3/2L 3

2
+ · · ·

)

where

L 3
2

= σi
1

∂

∂I
.

This means in turn that the right-hand side of (46) has an extra term

−〈L 3
2
V0, p∞〉 = −σi

1

∂V0

∂I

and so there is an extra term (T − t)σi
1∂V0/∂I on the right hand side of (47), that

is an extra O(ε1/2) correction to V ; it has the obvious financial interpretation as
the vega with respect to the average I. The O(ε) correction, however, is more
complicated because of the S-dependence in the implied volatility and we do not
give details here.

5.5 Volatility-average swaptions

For the volatility-average swaption we have F (σ) = σ so F = σ, and

V (t, σ, I) ∼ e−r(T−t) max

(
I + σ(T − t)

T
−K, 0

)

− ε1/2 e−r(T−t)

T
(T − t) Λςf ′1H (I + σ(T − t)− TK)

+ ε
e−r(T−t)

T

[(
f1(σ)− f1(σ)− (T − t) Λςf ′3

)
H(I + σ(T − t)− TK)

+

((
Λςf ′1

)2 (T − t)2

2
− A2 (T − t)

)
δ(I + σ(T − t)− TK)

]
,
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whereH is the Heaviside function and δ(x) is the delta function. As discussed above,
the O(ε) contribution is singular on the line I + (T − t)F and the expansion is not
valid in this region.

The singularity near I = KT − σ(T − t) is resolved by the introduction of an
inner layer coordinate ξ defined by

I = KT − σ(T − t) + εξ,

leading to the problem

(σ − σ)
∂V

∂ξ
+ L0V +O(ε) = 0

where the O(ε) term contains the remaining derivatives and undifferentiated terms
(if the averaging is with respect to F (σ), the coefficient of ∂V/∂ξ is F (σ)− F (σ)).
This is to be solved for all ξ; that is, the leading order inner value V0 satisfies the
forward-backward parabolic equation

1

2
ς2∂2V0

∂σ2
+ m

∂V0

∂σ
= (σ − σ)

∂V0

∂ξ

for −∞ < ξ < ∞, 0 < σ < ∞, with matching conditions

V (ξ) → 0, ξ → −∞, and V (ξ) ∼ ξ, ξ → +∞

for a call swaption and these conditions interchanged for a put swaption. This rather
unconventional problem has been considered in [2] in the context of inner layers for
models of neutron transport. It is crucial that the coefficient of the “time” derivative
∂V0/∂ξ satisfies 〈σ−σ, p∞〉 = 0, and given this condition it can be shown that there
is a unique solution connecting the behaviour as ξ → −∞ to that as ξ → +∞, even
though the equation itself is not standard. Similar remarks apply to derivatives with
other payoff singularities such as digital options.

6 Conclusion

We have described a range of approaches to the pricing and hedging problem for a
variety of products depending on realised volatility. Some of these, especially those
based on realised variance, are already traded; but as we point out in §2, from a
statistical point of view the realised first variation (4) is a more robust estimator
and hence we have described the application of the theory to volatility-averaged
options as well as to implied volatility averages, which are the type measured by
the VIX index [7]. We have presented an asymptotic analysis which leads to a
description of the derivative price even in the time leading up to expiry, and this
should be an accurate approximation whenever volatility is fast mean-reverting, as
well as straightforward to calibrate from implied volatility smiles.
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A Appendix 1: Derivation of certain expectations

A.1 The random walk (7)

Let yt satisfy the stochastic differential equation

dyt = (a1 + a2yt)dt + (a3 + a4yt)dWt + (a5 + a6yt)dNt, (53)

with zero correlation between Wt and Nt. Define

E1τ = E[yτ |y0], E1τ =

∫ τ

0

E1t dt,

and

E2τ = E[y2
τ |y0], E2τ =

∫ τ

0

E2t dt.

Recalling that E[dNt] = λdt, we have

dE1t = (a1 + a2E1t + λ (a5 + a6E1t)) dt

= (α0 + α1E1t)dt,

where
α0 = a1 + λα5, α1 = a2 + λa6,

from which, since E10 = y0,

E1τ = y0e
α1τ − α0

α1

(1− eα1τ ), (54)

and

E1τ =
y0

α1

(eα1τ − 1)− α0

α2
1

(α1τ − eα1τ + 1). (55)

For a mean-reverting process α1 < 0, so the unconditional expectation of yt is

y∞ = lim
τ→∞

E1τ = −α0

α1

,

and the long-term average of yt is the same:

lim
τ→∞

τ−1E1τ = −α0

α1

;

note the relatively slow (algebraic) decay of the contribution to E1τ from the initial
value y0.

Now define zt = y2
t . We easily find that

dzt =
(
2yt(a1 + a2yt) + (a3 + a4yt)

2
)
dt

+ 2yt(a3 + a4yt)dWt + (a5 + a6yt) (a5 + (a6 + 2) yt) dNt. (56)

Thus E2τ = E[zτ |z0 = y2
0] satisfies

dE2t = (β0 + β1E1t + β2E2t) dt
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where

β0 = a2
3 + λa2

5,

β1 = 2(a1 + λa5) + 2(λa5a6 + a3a4) = 2(α0 + γ1),

β2 = 2(a2 + λa6) + λa2
6 + a2

4 = 2(α1 + γ2), (57)

with α0, α1 as before, and

γ1 = λa5a6 + a3a4, γ2 =
λa2

6 + a2
4

2
.

Using (55), we find that

E2τ =

(
α0β1 − α1β0

α1β2

)(
1− eβ2τ

)
− β1(α1y0 + α0)

α1(α1 − β2)

(
eβ2τ − eα1τ

)
+ y2

0e
β2τ ,

and we note that E2τ grows exponentially in τ unless β2 < 0, a condition analogous
to α1 < 0 for E1τ . In this case, the unconditional expectation of E2τ , namely

z∞ = lim
τ→∞

E2τ ,

is (α0β1 − α1β0)/α1β2.
Lastly, we calculate the averaged expectation of zt,

E2τ =

(
α0β1 − α1β0

α1β2

)
τ

+

(
α0β1 − α1β0

α1β2

+
β1(α1y0 + α0)

α1(α1 − β2)
− y2

0

)(
1− eβ2τ

β2

)

− β1(α1y0 + α0)

α2
1(α1 − β2)

(1− eα1τ ) . (58)

We note some special cases:

i. The case α1 = 0, β2 6= 0 corresponds to the condition λ = −α2/α6, and then
we have

E1τ = y0 + α0τ, E1τ = y0τ +
1

2
α0τ

2,

E2τ =
α0β1 + β0β2 + β1β2y0 + β2

2y
2
0

β2
2

(
eβ2τ − 1

)
+ y2

0 −
α0β1

β2

τ,

and

E2τ =
α0β1 + β0β2 + β1β2y0 + β2

2y
2
0

β3
2

(
eβ2τ − 1

)

− α0β1 + β0β2 + β1β2y0

β2
2

τ − α0β1

2β2

τ 2.
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ii. The case α1 = β2 6= 0 corresponds to α1 + λa2
6 + a2

4 = 0, and then we have
E1τ , E1τ as in the general case, whereas

E2τ =
α0β1 − α1β0

α2
1

(1− eα1τ ) +
β1(α1y0 + α0)

α1

τeα1τ + y2
0e

α1τ ,

and

E2τ =
2α0β1 − α1β0 + α1β1y0 − α2

1y
2
0

α3
1

(1− eα1τ )

+
α0β1 − α1β0

α2
1

τ +
β1 (α0 + α1y0)

α2
1

τeα1τ .

iii. The case α1 = β2 = 0 corresponds to a4 = a6 = 0, and we have

E2τ = y2
0 + (β0 + β1y0) τ +

1

2
α2

0τ
2,

E2τ = y2
0τ +

1

2
(β0 + β1y0)τ

2 +
1

6
α2

0τ
3.

iv. Finally, consider the case α1 6= 0, β2 = 0. Then we have that 2a2 + 2λa6 +
λa2

6 + a2
4 = 0; we have E1τ and E1τ as in the general case, and

E2τ =
α1β0 − α0β1

α1

τ − β1 (α1y0 + α0)

α2
1

(1− eα1τ ) + y2
0

and

E2τ =
α1β0 − α0β1

2α1

τ 2 − β1 (α1y0 + α0)

α3
1

(α1τ − eα1τ + 1) + y2
0τ.

A.1.1 Derivatives pricing

Using the general expressions (54), (55), (58) and (58), or any of the particular cases
described above, either volatility-average or variance swaps can be priced by taking
yt = σt (in which case zt = σ2

t = vt) or by taking yt = vt directly, depending on
whether the volatility model is for σt or vt. For example, the strike for a volatility-
average swap is

Kvol−ave =
1

T
E0

[ ∫ T

0

σt dt

]

=
1

T
E1T |y0=σ0 ,

where it is understood that the process for yt is the required model for volatility. In
a similar way, the expectation needed to calculate the vega (10), namely,

Et

[ ∫ T

t

σs ds

]
,

is equal to
E1(T−t)|y0=σt

that is, y0 is replaced by σt and τ by T − t.
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A.2 The process (8)

Suppose now that

dyt = (b1 + b2yt)dt + b3y
1/2
t dWt (59)

and define E1τ , E1τ , E2τ , E2τ as before. Also define zt = y2
t so that

dzt = (2yt(b1 + b2yt) + b2
3yt)dt + 2b3y

3/2
t dWt

= ((2b1 + b2
3)yt + 2b2zt)dt + 2b3y

3/2
t dWt.

Then, proceeding as above, we find linear ordinary differential equations first for
E1τ , then E1τ , E2τ and E2τ , yielding

dE1t = (b1 + b2E1t)dt,

so that

E1τ = y0e
b2τ − b1

b2

(1− eb2τ ),

E1τ =
y0

b2

(eb2τ − 1)− b1

b2
2

(b2τ − eb2τ + 1), (60)

and then

dE2t

dt
= (2b1 + b2

3)E1t + 2b2E2t

= (2b1 + b2
3)

(
y0e

b2t − b1

b2

(1− eb2t)

)
+ 2b2E2t

= δ1 + δ2e
b2t + 2b2E2t,

where

δ1 = −b1(2b1 + b2
3)

b2

, δ2 = y0(2b1 + b2
3)− δ1.

Integrating, we have

E2τ = − δ1

2b2

− δ2

b2

eb2τ +

(
y2

0 +
δ2

b2

+
δ1

2b2

)
e2b2τ

and so

E2τ = −δ1τ

2b2

− δ2

b2
2

(eb2τ − 1) +
1

2b2

(
y2

0 +
δ2

b2

+
δ1

2b2

)
(e2b2τ − 1).

A.3 Popular Stochastic Volatility Models

For completeness we give the results of these calculations for some popular stochastic
volatility models:
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(i) The Hull-White model [14]. This is a geometric Brownian motion for the variance
σ2

t :

dσ2
t = κσ2

t dt + θσ2
t dWt.

We use (53) with yt = σ2
t , so that

α0 = 0, α1 = κ.

We obtain

E1τ = σ2
0e

κτ , E1τ =
σ2

0

κ
(eκτ − 1) . (61)

(ii) Analogous to (i), we consider a geometric random walk for the volatility,

dσt = κσtdt + θσtdWt.

Then in (53) we have α0 = 0, α1 = κ, β0 = 0, β1 = 0, β2 = 2κ + θ2, and we have

E1τ = σ0e
κτ , E1τ =

σ0

κ
(eκτ − 1) ,

and

E2τ = σ2
0e

(2κ+θ2)τ , E2τ = − σ2
0

2κ + θ2

(
1− e(2κ+θ2)τ

)
.

(iii) The mean reverting-version of the Ornstein-Uhlenbeck model for the volatility
is

dσt = κ (ν − σt) dt + θdWt.

We take yt = σt, α0 = κν, α1 = −κ, β0 = θ2, β1 = 2κν and β2 = −2κ in (53). Then
it is straightforward to show that

E1τ = (σ0 − ν)e−κτ + ν, E1τ =
σ0 − ν

κ

(
1− e−κτ

)
+ ντ,

and that

E2τ =
2κν2 + θ2

2κ

(
1− e−2κτ

)
+ 2ν (ν − σ0)

(
e−2κτ − e−κτ

)
+ σ2

0e
−2κτ ,

E2τ =

(
2κν2 + θ2

2κ

)
τ +

(
σ2

0 − 2ν (σ0 − ν)− 2κν2 + θ2

2κ

) (
1− e−2κτ

2κ

)

− 2ν (ν − σ0)

κ

(
1− e−κτ

)
.

(iv) The Heston model [11]. This is

dσ2
t = κ

(
ν − σ2

t

)
dt + θσtdWt.

28



In this case we use (59) with

yt = σ2
t , b1 = κν, b2 = −κ, and b3 = θ.

Then from (60) we have:

E1τ = σ2
0e
−κτ + ν

(
1− e−κτ

)
, E1τ =

σ2
0 − ν

κ

(
1− e−κτ

)
+ ντ.

(v) Finally we consider the mean reverting log-normal model [13]

dσt = α(σ − σt)dt + βtσtdWt.

We use (53) with yt = σt, α0 = ασ, α1 = −α, β0 = 0, β1 = 2ασ, β2 = −2α + β2. As
expected, we obtain the following expressions:

E1τ = σ0e
−ατ + σ

(
1− e−ατ

)
,

E1τ =
σ0 − σ

α

(
1− e−ατ

)
+ στ,

E2τ =
2ασ2

2α− β2

(
1− e−(2α−β2)τ

)

+
2ασ (σ0 − σ)

α− β2

(
e−ατ − e−(2α−β2)τ

)
+ σ2

0e
−(2α−β2)τ ,

E2τ =
2ασ2

2α− β2
τ +

(
2ασ2

2α− β2
+

2σ(σ − σ0)α

α− β2
− σ2

0

) (
e−(2α−β2)τ − 1

2α− β2

)

− 2σ(σ − σ0)

α− β2

(
1− e−ατ

)
.

B Appendix 2: Analysis for pure volatility prod-

ucts

Following §4.4, we have L0V0 = 0, so V0 = V0(S, t); similarly L0V 1
2

= −L 1
2
V0 = 0,

so V 1
2

= V 1
2
(I, t). From the solvability condition for (44), we have

L1V0 =
∂V0

∂t
+ F

∂V0

∂I
− rV0 = 0

whose solution with V0(I, T ) = P (I) is

V0(I, t) = e−r(T−t)P
(
I + (T − t)F

)
.

Then, solving (44),

V1 = f1(σ)
∂V0

∂I
+ H(I, t).
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where H is as yet undetermined.
Now the solvability condition for (45) gives

LV 1
2

= Λςf ′1
∂V0

∂I

so that the solution satisfying V 1
2
(I, T ) = 0 is

V 1
2
(I, t) = − (T − t) Λςf ′1

∂V0

∂I
.

Thus far we have paralleled the analysis of §4.4. Now we continue by finding the
solution of (45): it is

L0V 3
2

= −L 1
2
V1 − L1V 1

2

=
(
Λςf ′1 − Λςf ′1

) ∂V0

∂I
− (T − t) Λςf ′1

(
F − F (σ)

) ∂2V0

∂I2

so that

V 3
2

= f3(σ)
∂V0

∂I
− (T − t) Λςf ′1f1(σ)

∂2V0

∂I2
+ H 3

2
(I, t)

where f3(σ) satisfies

1

2
ς2d2f3

dσ2
+ m

df3

dσ
= Λςf ′1(σ)− Λςf ′1

and H 3
2

is arbitrary. Now at O(ε),

L0V2 + L 1
2
V 3

2
+ L1V1 = 0;

our final application of the solvability condition, in the form 〈L 1
2
V 3

2
+L1V1, p∞〉 = 0,

gives

〈L1

(
f1(σ)

∂V0

∂I
+ H

)
, p∞〉 = −〈L 1

2
V 3

2
, p∞〉,

that is,

L1H =
(
A2 − (T − t)

(
Λςf ′1

)2
) ∂2V0

∂I2
+ Λςf ′3

∂V0

∂I
,

where A2 is defined in (31). The solution is

H(I, t) =

(
−A2 (T − t) +

(
Λςf ′1

)2 (T − t)2

2

)
∂2V0

∂I2

− Λςf ′3 (T − t)
∂V0

∂I
+ H1(I, t),

where L1H1 = 0, so that H1 = H1

(
I + (T − t)F

)
; this last unknown function is

determined by matching with the boundary layer.
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In the boundary layer, we have

(
1

ε
L̃0 +

1

ε1/2
L 1

2
+ L̃1

) (
Ṽ0 + ε1/2Ṽ 1

2
+ εṼ1 + · · ·

)
= 0,

as before, and it is easy to see that Ṽ0(I, t) = P (I), Ṽ 1
2
(I, t) = 0, and that, as before,

∂Ṽ1

∂τ
+ L0Ṽ1 =

(
F (σ)− F (σ)

) dP

dI
− L1P

so that, as above,

Ṽ1(I, τ) ∼
(
f1(σ)− f1(σ)

) dP

dI
− τL1P

as τ → −∞. Hence the matching condition is unaffected at this order by the market
price of risk term, and the required final condition for H1(I, t) is

H1(I, T ) = −f1(σ)
dP

dI
.

Hence H1(I, t) = −e−r(T−t)f1(σ)P ′(I + (T − t)F ), where ′ = d/dI.
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