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Generic impact problems
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Simplest possible inviscid free surface model.
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Basiliscus Basiliscus: the Jesus lizard
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Classical Wagner theory for blunt (nearly flat)
bodies

This deals with the rapid impact of a blunt body with small

‘deadrise angle’ on a half-space of liquid. Gravity, surface ten-

sion, viscosity and compressibility are all neglected. When the

deadrise angle is small an asymptotic approach is possible: the

flow is decomposed into regions which are linked by the technique

of matched asymptotic expansions.

Original application was to seaplane floats (Wagner 1932).
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The classic example is that of impact of a wedge. This is the

only problem for which rigorous theory exists, and it confirms

the asymptotic results.
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The outer region sees the impact of an ‘effective flat plate’ ex-

tending between the turnover points. This is a linearised prob-

lem in which the kinematic and dynamic conditions are applied

in linearised form on the undisturbed water level. The points

corresponding to turnover are unknown.

In dimensionless variables:

d(t)−d(t)
φ = 0, φy = ht φy = −1 φ = 0, φy = ht

φxx + φyy = 0
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The inner (turnover region) is a standard Kelvin-Helmholtz flow.

The pressure scale is O(ρV 2/ε2) where V is the impact speed

(but the force on the body is dominated by the pressure in the

outer region).

ψ = 0, |∇φ|2 = ḋ2

∇2φ = 0

ḋ

φ+ iψ ∼ √
2dz at infinity

ψ = hJ ḋ
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The two are joined up by asymptotic matching, leading to the

Wagner condition, that the free surface comes up to meet the

impacting body at the turnover points. This is because the size

of the turnover region is asymptotically small compared with the

surface displacement. This leads to an integral equation for d(t)

f(d(t))− t =
∫ t

0

dτ√
d2(t)− d2(τ)

from which the ‘law of motion’ of the free points can be found

by the substitution d(τ) = ξ, d(t) = x.
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Wagner flows can be extended easily to symmetric impact of

liquid bodies (the line of symmetry is like a rigid boundary): see

eg experiments by Thorodssen (JFM 2002).
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Korobkin theory

This deals with the impact of a blunt body y = f(x)− t on a thin

liquid layer above a substrate y = −1. The turnover regions are

now of the same size as the layer depth and the flow under the

body is approximated by an ‘inviscid squeeze film in which the

velocity is approximately u(x, t)i and

∂

∂t
(f(x)− t+ 1) +

∂

∂x
(u(x, t) (f(x)− t+ 1)) = 0.

Korobkin theory can be obtained as a limit of Wagner theory

with a base.
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Inviscid squeeze film
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Oblique impact

Oblique impact, with a horizontal impactor velocity as well as

a vertical one, can also be handled in Wagner and Korobkin

theory. If the horizontal velocity is similar to the normal velocity,

its effect is O(ε) and the splash is nearly symmetrical. If it is

large the theory is complicated but works well until we have

effective exit at the trailing edge. Then it breaks down and we

only consider sharp separation from the trailing edge.
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The load such an impactor can support is exploited by surf skim-

mers:

Ernie Tuck has a 1-D model; here is the 2-D generalisation:
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The model is |∇φ|2 = U2 (the eikonal equation) in the wake

and still water; a squeeze film under the board; plus a turnover

condition. The water in the splash jet is ignored.
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High Froude number shallow flows on substrates

On a horizontal base the shallow water equations for flow with

typical speed U0 and depth h0 are

ht + (hu)x = 0, ut + (1
2u

2)x = −hx
F2

,

where F2 = U2
0/gh0 is the Froude number. What happens as

F →∞, as the system becomes degenerate?
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The standard approach is to derive Rankine–Hugoniot conditions

for a weak solution in which u and h have jump discontinuities

at a shock. Using distributions, we put jumps in the mass (h),

momentum (uh) and energy (1
2u

2h) densities:

h(x, t) = hl(x, t) + (hr(x, t)− hl(x, t))H (x− xs(t))

and similarly for uh and 1
2u

2h:

uh = ulhl+
[
uh

]r
l
H (x− xs(t)) ,

1
2u

2h = 1
2u

2
l hl+

[
1
2u

2h
]r
l
H (x− xs(t)) ;

here H(·) is the Heaviside function. Then substitution into the

shallow water equations gives

[
h

]r
l
δ(x− xs)

dxs
dt

+
[
uh

]r
l
δ(x− xs) + smoother terms = 0,

so equating coefficients of δ(x− xs) gives the first R–H relation,

similarly for the other.
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Shallow water model: collision of two horizontal
jets

The collision of two flat jets (Riemann problem) has a similarity
solution with two shocks moving slowly [speed O(1/F )] bound-
ing a deep column [height O(tF )] of width O(t/F ). Rankine–
Hugoniot gives shock speeds.

x

O(tF )

O(t/F )

20



We can model this as a delta shock (cf Keyfitz) in which we allow

delta functions in the mass (h), momentum (uh) and energy

(1
2u

2h) densities, as well as the jump discontinuities:

h(x, t) = hl(x, t) +
[
h(x, t)

]r
l
H (x− xs(t)) + hδ(t)δ (x− xs(t))

and similarly for uh. 1
2u

2h.

So hδ(t) is the mass absorbed by the delta shock, and equating

coefficients of the singular terms

δ′ (x− xs(t)) , δ(x− xs(t))

gives o.d.e.s for hδ and the corresponding momentum and energy,

to replace R–H.
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This isn’t the whole picture though because in the early stages

of such a collision we could model the flow by a steady 2-D flow

leaving the horizontal plane. at the root of a jet (which may

translate quasisteadily).
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Mass and momentum sinks

In the jet root model above, local conservation of mass and

momentum give the jet angle and the speed of its root:

cosβ =
h− − h+

h− + h+
, UJ =

u− − u+

2
.

Looking from further away, we can put mass and momentum

delta-sink terms in the shallow water model to give

∂h

∂t
+
∂(uh)

∂x
= −hlossδ(x− xJ(t)),

∂uh

∂t
+
∂(1

2u
2h)

∂x
= −Mlossδ(x− xJ(t)),

and with the local closure conditions above we find xJ(t).
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Birth of a delta shock

Delta-sink flow transition falling delta shock zoom out: delta shock

O(F 2) O(F )

O(F
2
3)
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Steady 2-d flows on a sloping base
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Can now scale lengths so F2 = 1. Simple model for steady flow:

in-plane velocity u = (u, v) with v upwards:

∇ · (hu) = 0, ∇ · (huu) = 0 ∇ · (hvu) = −h,
equivalent to

1

2
|∇φ|2 + y = 0 (Bernoulli), ∇ · (h∇φ) = 0

Solve by Charpit.
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Resolution of caustic is to introduce a ‘mass tube’ (cf GI Tay-

lor, Yarin/Weiss), i.e a delta shock in the mass and momentum

fluxes. Eg

hu = husheet +Qmδmtm.

Then the delta shock conditions conserve mass and momentum

along and normal to the tube (with fluxes in from the thin sheet).
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Open questions: eg impact with air layers. See experiments of

Xu & Nagel 2004.

Above: in vacuum, below: in air.
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