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Matched asymptotic expansions

Idea: look for approximate solutions to hard problems. Some-
times one hard problem can be broken down into two easier
subproblems, each of which is solved in a different domain.

Example: the behaviour near expiration of a call option in the
standard Black–Scholes model. If the spot is far from the strike,
the option values is just the discounted payoff:

V (S, t) =





S −Ke−r(T−t) S far above K

0 S far below K

This is called the outer expansion. A different approximation is
needed near the strike, and this is the inner expansion.

The process of joining the inner and outer expansions up is called
matching.
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The Black–Scholes equation to be solved is

∂V

∂t
+ 1

2σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Expiration is t = T . Suppose T − t is ‘small’ and write

T − t = ε2τ

where ε is small, 0 < ε ¿ 1. Then the B–S equation is

1

ε2
∂V

∂τ
= 1

2σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV.

The left-hand side is, on the face of it, large, because ε is small.
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There are then two possibilities: either

∂V

∂τ
≈ 0,

or a term on the right-hand side is large, to balance the left.

The first occurs where we have no reason to expect large S–

derivatives, and says the option value is equal to the payoff (the

discounting is a small correction).
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But we expect large Gamma near the strike. Put

S = K(1 + εx), V (S, τ) = v(x, τ)

and then B–S becomes

1

ε2
∂v

∂τ
=

1

2ε2
σ2(1 + εx)2

∂2v

∂x2
+

r

ε
(1 + εx)

∂v

∂x
− rv,

and the payoff becomes

v(x,0) = εmax(x,0).
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So far, no approximation has been made. We now expand

v(x, τ ; ε) ∼ εv0(x, τ) + ε2v1(x, τ) + O(ε3).

Collecting together terms of O(ε), the problem for v0 is

∂v0

∂τ
= 1

2σ2∂2v0

∂x2
, v0(x,0) = max(x,0).

This is the (simpler) ‘inner’ problem. It has a similarity solution

v0(x, τ) =
√

τf(x/σ
√

τ)

where

f ′′ + ξf ′ − f = 0,

with

f → 0 as ξ → −∞, f ∼ σξ as ξ →∞.
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The boundary conditions for f come from the matching, joining

on to the outer solution (the payoff).

The solution is

v0(x, τ) = xN(x/σ
√

τ) + σ
√

τ n(x/σ
√

τ)

or in original variables

V (S, t) ∼
(

S

K
− 1

)
N

(
(S/K − 1)/σ

√
T − t

)

+ σ
√

T − t n
(
(S/K − 1)/σ

√
T − t

)
.

This procedure can easily be generalised eg to small volatility

(Dewynne et al, Duck).
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Here K = 1, r = 0.02, σ = 0.2 and T − t = 0.05 year.

The upper curve is exact, the lower curve is the approximation.

The error is O(σ2(T − t)).
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Barrier options

Standard barrier contracts like down-and-out calls are now very

common. In this contract the option expires worthless if the asset

price falls to a barrier B before expiry T , otherwise a specified

payoff is paid. The new feature is that the contract is cancelled

if the asset value reaches the level B. (It makes the option

cheaper.)

Valuation by pde involves solving the Black–Scholes equation

for S > B with the final payoff condition, while the barrier con-

dition translates into V (B, t) = 0. There is an exact solution for

constant B–S parameters (uses images).
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In practice, for contractual/legal reasons, the barrier may only be

activated at certain times (e.g. closing price each week). S(t)

can cross barrier at other times & not activate: as long as it

crosses back.

(a)

S

EB−

T1 T

Solve B–SSolve B–S

(b)
V = 0
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How do we implement this?

At each sample date t = tm, for 0 < S < B replace values of V

by 0 & continue backwards from expiry. Thus,

V (S, tm−) =





V (S, tm+) S > B

0 S ≤ B

Note there is a discontinuity in V (S, tm−), at S = B.

(t is calendar time here.)
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With one sample date we have a kind of compound option. With

more than one the problem can also be solved explicitly (for

constant parameters) using a Z-transform in t and the Wiener–

Hopf method in S (Abrahams et al. 2004).

But what if the sampling dates are very close together: can we

get a ‘continuity correction’ to the continuously-sampled con-

tract? The answer also tells us about the error in using Monte-

Carlo with discrete timesteps to value continuously-sampled con-

tracts.

payoff

S

B

t
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Broadie et al (1997) looked at this problem using probability
techniques (renewal theory). They state that the continuity cor-
rection is

Vd(S, t;B) = VBS(S, t;Be−βσ
√

T/N) + O(σ2T/N),

where VBS (resp. Vd) is the continuously (resp. discretely) sam-
pled value, N is the number of equally-spaced sample dates, and

β = −ζ(1
2)√
2π

≈ 0.5826,

where ζ(·) is Riemann’s zeta-function (!).

That is, the barrier is apparently shifted down by an amount
proportional to 1/

√
N .

Their result is only applicable to the constant-parameter BS
model.
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Matched asymptotic interpretation of Broadie
et al.

First we make some preliminary scalings: measure time back-

wards from expiry and scale it with σ2:

t = T − t′/σ ∗ 2.

FROM NOW ON, time t′ is measured back from expiry and

scaled.

The Black–Scholes equation to be solved is then

∂V

∂t′
= 1

2S2∂2V

∂S2
+ αS

∂V

∂S
− αV, α = r/σ2.
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Define a small parameter

ε2 = σ2T/N.

This is the scaled time between resets.

Away from the barrier level the solution should be close to the
Black–Scholes value and we have the outer expansion

Vd(S, t′) ∼ VBS(S, t′) + εV1(S, t′) + · · ·

Then we rescale the independent variables near a typical sam-
ple date and construct an inner expansion of the solution (to a
simpler problem, as we can approximate the PDE).

Lastly we match the two expansions using Van Dyke’s rule. This
gives the continuity correction.
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The outer expansion

This is

Vd(S, t′) ∼ VBS(S, t′) + εV1(S, t′) + · · · ,

and it is valid for S/B − 1 À O(ε), that is, not near the barrier.

We can find VBS which satisfies Black–Scholes with VBS = 0 on

the barrier. Then we aim to find an effective boundary condition

for V1(B, t′), so as to be able to calculate V1 (eg by Duhamel).
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First we find how the outer expansion behaves near the barrier.

Near S = B, write

S = B(1 + εx).

Then for S near B,

VBS + εV1 ∼ VBS(B, t′) + (S −B)
∂VBS

∂S
(B, t′) + εV1(B, t′) + O(ε2)

∼ ε
(
Bxδ(t′) + V1(B, t′)

)
+ O(ε2)

where

δ(t′) =
∂VBS

∂S
(B, t′) = ∆BS(B, t′).

We match this expression with the inner solution.
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The inner expansion

Near a typical sample time tm, write

S = B(1 + εx), t′ = tm + ε2τ

(remember time is measured back from expiry). The scaling for

t′ is dictated by the sampling interval, that for S by the PDE.

Also write

V (S, t) = εv(x, τ)

(again the scaling is dictated by the matching).
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Then the inner problem is

∂v

∂τ
= 1

2
∂2v

∂x2
+ O(ε), −∞ < x < ∞

with

v(x, τ) ∼ Bδ(t′)x + O(1) as x →∞
and v(x, τ) → 0 as x → −∞.

Lastly,

v(x, τ) is periodic in τ with period 1

Note that δ(t′) is constant to this order in ε. The last condition is
because on the inner (fast) time scale the outer time-dependence
is slow. (See below.)

Note that the inner problem (for the heat equation) is much
simplified from the Black–Scholes equation.

21



Solution of the inner problem: the Spitzer
function

The inner problem is related to a famous example of renewal
theory, which can be solved by turning it into an integral equation
and using Wiener–Hopf (Spitzer 1957).

Let h(x, τ) be the solution to

∂h

∂τ
=

1

2

∂2h

∂x2
, −∞ < x < ∞, 0 < τ < 1.

with

h(x,0) = 0, x < 0, h(x,1) = h(x,0), x > 0,

and

h(x, τ) ∼ x + O(1) as x → +∞.
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That is, we solve the heat equation with unit flux from infinity,

and at τ = 1 we throw away the values of h(x, τ) for x < 0 and

replace them with zero. Can the resulting h(x, τ) be periodic

with period 1?

x

τ

h(x,0) = 0

h(x,1) = h(x,0) = H(x)

∂h

∂τ
=

1

2

∂2h

∂x2
h ∼ x + O(1)



Using the Green’s function for the heat equation we find the

equivalent integral equation

H(x) =
∫ ∞
0

k(x− y)H(y) dy

where k(x) = e−x2/2/
√

2π (the heat kernel, ie the normal pdf).

This is a Wiener–Hopf equation and can be solved by a two-sided

Laplace transform in x.
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An obvious iterative scheme is

Fn+1(x) =
∫ ∞
0

k(x− y)Fn(y) dy, F0(x) = 1.

Here the sequence Fn(x) can be interpreted as the distribution

functions of the sequence of random variables

0, X+
1 , (X2 + X+

1 )+, . . . ,

where X+ = max(X,0) and Xi are iid N(0,1).
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It can be shown that

•
√

nπ/2Fn(x) → H(x)

• H(0+) = 1/
√

2, so H has a jump at x = 0.

• The Laplace transform of H(x) is

H(s) =
1

s
√

2
exp

[
− 1

2π

∫ ∞
−∞

s

s2 + ξ2
log(1− e−ξ2/2) dξ

]

(this is the Wiener-Hopf result; here e−ξ2/2 is the character-

istic function of the kernel k).
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• Crucially for us,

lim
x→∞ [H(x)− (x + β)] = 0

where

β = −ζ(1
2)√
2π

≈ 0.5826.

• h(x, τ) (and so H(x)) is the only such periodic solution.

That is, the O(1) constant in the asymptotic behaviour of h is

determined uniquely by the O(x) behaviour.



Note that the iteration above is not straightforward from the

numerical point of view as it is too sensitive to the behaviour at

infinity.

When doing Bermudan options, we will also need further prop-

erties of H(x):

• ∫ ∞
0

H(x)− (x + β) dx = β1 = β2/2− 1/8

Both this, and the O(1) constant in H(x) at infinity, are estab-

lished by looking at the expansion of H(s) as s → 0 (a delicate

business).
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Return to the barrier problem

Recall that our inner problem was

∂v

∂τ
= 1

2
∂2v

∂x2
+ O(ε), −∞ < x < ∞

with

v(x, τ) ∼ Bδ(t′)x + O(1) as x →∞
and v(x, τ) → 0 as x → −∞. Lastly,

v(x, τ) is periodic in τ with period 1

Up to a scaling, this is identical to the Spitzer problem.
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Therefore, there is a unique solution to this problem if and only

if, as x →∞,

v(x, τ) ∼ Bδ(t′)
(
x− ζ(1

2)/
√

2π
)
.

Note that the jump in v(x, τ) at τ = 1− (inherited from the jump

in h) has a natural financial interpretation: if during its evolution

the asset just misses the barrier, by however little, the option

has a small but nonzero value.
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Matching

We now match the one-term inner solution with the two-term

outer solution, using a more sophisticated version of the earlier

matching principle:

1-term inner of 2-term outer = 2-term outer of 1-term inner.

(We have already matched the one-term inner and outer when

we say that v ∼ Bδx at infinity). This tells us immediately that

V1(B, t′) = −Bδ(t′)ζ(1
2)/

√
2π.

That is, V1(S, t′), the O(ε) correction to the Black–Scholes value,

satisfies the Black–Scholes equation for S > B with this value on

the barrier and zero payoff. It can be found explicitly in terms

of derivatives of VBS.
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Connecting with BGK

BGK say that the barrier is moved by e−σβ
√

T/N = e−εβ. Thus,

Vd(S, B, t) ≈ VBS(S, t;Be−εβ).

Their barrier condition is

0 = VBS(B, t;Be−εβ) = VBS(B, t;B)− εβB
∂VBS

∂B
(B, t;B) + O(ε2).

Since VBS(B, t;B) = 0,

∂VBS

∂S
+

∂VBS

∂B
= 0

there; thus our result (in terms of ∂VBS/∂S) is the same as theirs.
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Interpreting the correction

The connection with BGK shows that the correction, V1(S, t′),
is given by

V1(S, t′) = −βB
∂VBS

∂B

and this is quite a good way of thinking of it (and calculating it

explicitly). However the analysis above would work equally well

for a smoothly varying barrier for which ∂V/∂B has no sensible

interpretation.

Another way to think of it is that the discrete option looks

as if it pays a rebate, proportional to the barrier delta of the

continuously-sampled option, on knock-out.
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Why is the inner solution periodic?

Suppose we start with some initial data not equal to the Spitzer

solution (after scaling). Then the iteration of the reset process

forces the solution to Spitzer before many resets have passed.

This can be proved by considering the difference between the

solution with arbitrary linear growth (say ax + O(1)) at x = ∞
and a times the Spitzer solution. The difference is at most

constant at infinity and the iterative procedure above shows that

it vanishes as the number of iterations increases.

The same idea can be used to deal with the initial transient.
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American and Bermudan options

An American option is one that can be exercised at any time

(not just at the final date).

Example: an American put is the option to sell the asset at any

time for a fixed amount K. Obviously the lower the asset price

falls, the more you get by exercising the option, but if it goes

up you get less. Choosing when to exercise involves a balance

between the potential reward (if the asset falls) and the risk if it

rises.

For each t (calendar time), there is an optimal exercise price

S = S∗(t) at which to exercise the option. Below this price, the

risk-reward trade-off favours exercise, above it favours waiting.
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With early exercise

Without early exercise

K S

Payoff K − S

Value
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The American option is like a continous series of obstacle-type
problems (a parabolic variational inequality).

K S

t

t = T

Value

Exercise region

The optimality translates into ‘smooth pasting’ free boundary
conditions: V and ∂V/∂S are continuous at the interface
S = S∗(t′):

V = K − S,
∂V

∂S
= −1, S = S∗(t′).
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A Bermudan option is an American option with discrete exercise

dates. In between these dates it is like a European option. The

option is valued back from expiry, and at each exercise date, you

can exercise, to collect K − S, or continue. You take the larger

of the two values and this is the implementation of optimality

(backward induction).

Thus, measuring t′ back from expiry, at each exercise date t′m,

we have the condition

V (S, t′m−) = max(V (S, t′m+), K − S).
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(from expiry)

S

Value

t′

What is the continuity correction?
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It is convenient to put

V (S, t′) = K − S + W (S, t′)

so that

∂W

∂t′
= 1

2S2∂2W

∂S2
+ αS

∂W

∂S
− αW − αK.

Then the boundary conditions are

W =
∂W

∂S
= 0 S = S∗(t′).

By differentiating these we also show that, at S = S∗,

∂W

∂t′
= 0,

∂2W

∂S2
=

2αK

S∗2
.
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Again we have an outer expansion

W (S, t′) ∼ WBS(S, t′) + εW1(S, t′) + ε2W2(S, t′) + · · ·
and in inner variables, using the boundary conditions, this is

εW1(S
∗, t′m) + ε2

(
αKx2 + S∗∂W1

∂S
(S∗, t′m)x + W2(S

∗, t′m)
)

+ · · ·
which we write as

εW ∗
1 + ε2

(
αKx2 + S∗W ∗

1Sx + W ∗
2

)
+ · · ·

where W ∗
1 etc are constants (on the inner timescale).
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Then formulate the inner problem for

w(x, τ) ∼ εw1 + ε2w2 + · · · .

Remember we have to find the point at which exercise becomes

optimal: call it x = x∗ ∼ x∗0 +O(ε). Important: w(x, τ) is contin-

uous at x = x∗0, and the solution is periodic in τ .

t′ = t′m + ε2τ , S = S∗(t′m)(1 + εx), chain rule...

x

τ

w(x,0) = 0, x < x∗0

x∗0

w(x,1) = w(x,0), x > x∗0
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More on the Spitzer function

Recall that h(x, τ) satisfies the heat equation, has asymptotic

behaviour x + β at infinity, and is periodic.

Define

h(1)(x, τ) =
∫ x

−∞
h(s, τ) ds.

This also satisfies the heat equation, and at infinity,

h(1)(x, τ) ∼ 1
2(x + β)2 + 1

2τ − 1
8

(we used the result
∫∞
0 h(x,0) dx = 1

2β2 − 1
8.)
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First w1(x, τ). It satisfies the heat equation, is periodic in τ , and

tends to the constant W ∗
1 at infinity. The only such function is

zero, hence W ∗
1 = 0.

Then
∂w2

∂τ
= 1

2
∂w2

∂x
− αK

and w2 ∼ αKx2 + W ∗
2 at infinity.
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A particular solution is

−αK
(
τ + 2h(1)(x− x∗0, τ)

)
.

This takes care of the quadratic behaviour at infinity, so what

remains grows linearly. Hence it must be a multiple of the Spitzer

function h(x − x∗0, τ): but that function is not continuous at

x = x∗0. Thus, the linear part of the asymptotic growth must

vanish. This gives

x∗0 = β

and then

W ∗
2 = −1

8
(2αK) = −αK

4
.
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Interpretation

We have concluded:

• The correction is O(ε2), not O(ε) as for barriers.

• The correction is a contract which pays
(
−1

8

)
ε2(2αK) = −rTK

4N
,

ie the discrete option is worth a bit less than the continuous

one.
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• For an Americal put, the correction is

−rKT

4N

∂VBS

∂K

but this is very special.

• For other payoffs the boundary value of the correction is

proportional to the gradient of the payoff.

• The discrete exercise boundary is at

S = S∗(t′)(1 + βσ/
√

N).

That is, it is a little higher than the continuous case.
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Extensions

• Other barrier contracts (eg double): done.

• Local vol surface models, and jump-diffusion: done.

• More dimensions, or stochastic vol.

• Lookbacks (BGK have done this stochastically).

• Asians, swing options.
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Final extension: can we do the matched asymptotic expansions

on the stochastic processes themselves? Probably, yes, eg if

(O–U)

dXt = −εXt dt + dWt, X0 = x0,

the expansion

Xt ∼ X0t + εX1t + · · ·
gives the correct pathwise approximation to the exact solution.

Problems in more complex domains (eg with barriers) may be

solved by decomposition as for the barrier problem. But how to

interpret matching?

Conjecture: matching changes pathwise (strong) convergence of

the expansion into weak convergence (in distribution).
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