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Different kinds of spaces in Algebraic Geometry

Two important kinds of spaces in Algebraic Geometry over C are
varieties and schemes. A variety is a space X locally modelled on
the set of solutions of polynomial equations in Cn, i.e. on{

(z1, . . . , zn) ∈ Cn : p1(z1, . . . , zn) = · · · = pk(z1, . . . , zn) = 0
}
,

for p1, . . . , pk ∈ C[z1, . . . , zn]. A scheme is similar, but also
remembers the quotient algebra C[z1, . . . , zn]/(p1, . . . , pn) of
functions on the solution set. Therefore the scheme {z = 0} ⊂ C
is different to the scheme {z2 = 0} ⊂ C, though they are the same
as varieties, as the algebras 〈1〉C and 〈1, z〉C are different. Think of
{z2 = 0} as a ‘double point’, two points on top of each other, so if
we ‘count’ the points in {z2 = 0} correctly, we get 2.
Derived geometry is an enhancement of classical geometry.
A derived scheme (difficult to define) also remembers degeneracies
between the pi . So for example, {z21 = z22 = 0} and
{z21 = z22 = z21 + z22 = 0} are the same as schemes, but different as
derived schemes: the derived schemes have a well defined ‘virtual
dimension’, which is 0 and −1 in these examples.
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Smooth spaces, singular spaces, and quasi-smoothness

A variety or scheme X is called smooth if it is locally modelled on
Cn. A point x ∈ X is singular if X is not smooth near x . For
example, the scheme {z1z2 = 0} ⊂ C2 is singular at (0, 0).
Smooth varieties and smooth schemes are the same. The extra
data in a scheme is only nontrivial near singularities.
Many interesting spaces in Algebraic Geometry (e.g. moduli
spaces) are singular, so Algebraic Geometers are really good at
understanding singularities. (By comparison, Differential
Geometers are pants at singularities.)
There is a notion of quasi-smooth derived scheme. It is
significantly weaker than smoothness: the underlying classical
scheme can be singular. Many derived moduli spaces are
quasi-smooth, although the classical moduli space is singular.
Part of the magic of Derived Geometry is that quasi-smooth spaces
behave in some ways like smooth spaces (Kontsevich’s ‘hidden
smoothness’ philosophy). For example, a compact quasi-smooth
derived scheme X of dimension 0 has a ‘number of points’ #X .
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Differential Geometry, manifolds, and derived manifolds

Differential Geometers mostly study manifolds, locally modelled on
Rn, but the basic functions on Rn are not polynomials but smooth
functions. There is a (very little used) notion of scheme in
Differential Geometry, C∞-schemes, locally modelled on{

(x1, . . . , xn) ∈ Rn : f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0
}
,

for f1, . . . , fk : Rn → R smooth (C∞). There are also (even less
used, and really difficult to define) notions of derived C∞-scheme,
and quasi-smooth derived C∞-scheme.
One definition of a derived manifold is of a quasi-smooth derived
C∞-scheme. Derived manifolds have their own (rather beautiful)
differential geometry. They behave in some ways like manifolds,
although the underlying topological spaces can be very singular
(e.g. the Mandelbrot set can be made into a 1-dimensional derived
manifold). Many Differential-Geometric moduli spaces are
naturally derived manifolds (e.g. the moduli space of solutions of
any nonlinear elliptic equation on a compact manifold).
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Moduli spaces

A moduli space M is a geometric space whose points [E ]
parametrize isomorphism classes of geometric objects E you care
about (e.g. holomorphic vector bundles E → X over a fixed
complex manifold X ). But this defines M only as a set. The
important thing is to put a geometric structure on M encoding the
behaviour of families of objects E . For example, if you have a
notion of continuous family (Et)t∈T over a base topological space
T , you would make M into a topological space, such that (Et)t∈T
induces a continuous map T →M.
In Algebraic Geometry, we get a notion of (smooth) family (Et)t∈T
over a (smooth) base scheme T . In Differential Geometry, we get
a notion of smooth family (Et)t∈T over a manifold T . So we
might hope to make M into a (smooth?) scheme, or manifold.
Unfortunately, moduli spaces are rarely smooth. Murphy’s Law
says that some classes of moduli spaces (e.g. vector bundles on a
complex surface) can have arbitrarily horrible singularities (i.e. all
local singularities of schemes over Z occur).
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Enumerative geometry

Geometers often want to ‘count’ points in moduli spaces, an area
known as enumerative geometry.
For example, let X =

{
[z0, z1, z2] ∈ CP3 : P(z0, z1, z2) = 0

}
be a

smooth cubic surface in CP3, where P(z0, z1, z2) is a generic
choice of homogeneous cubic polynomial. It is well known that X
contains 27 lines CP1 in CP3. That is, we can form the moduli
space MX of lines CP1 in X , and for P generic MX is 27 points.
If P is not generic, then MX could be fewer than 27 points, or it
could be infinite. But we would like a way to define a ‘virtual
count’ #MX , depending on the geometric structure on MX , which
always gives #MX = 27 in this example.
The geometric structure that gives a good notion of ‘virtual count’
is a proper quasi-smooth derived scheme Z in Algebraic Geometry,
or a compact oriented derived manifold Z in Differential Geometry.
These behave like compact oriented manifolds, in that they have a
fundamental class [Z ]virt (virtual class) in the homology group
HvdimZ (Z ,Z). If Z has dimension 0 then #Z =

∫
[Z ]virt

1 ∈ Z.

Virtual classes are deformation-invariant, so #MX is independent of P.
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Example: Bézout’s Theorem

Let C and D be algebraic curves in CP2, defined by polynomials of
degrees m, n. Bézout’s Theorem says that if C ,D intersect
transversely, then C ∩ D is mn points. If C ,D intersect
non-transversely, but in finitely many points, then the classical
scheme C ∩ D has ‘length’ mn. So in this case, the scheme (but
not the variety C ∩ D) knows about the virtual count mn.
If C ∩ D is infinite (e.g. if C = D) then we cannot recover the
number mn from the classical scheme C ∩ D. However, if we
define C ∩ D as a derived scheme, it is quasi-smooth, and its
virtual class is [C ∩ D]virt = mn ∈ H0(CP2,Z) = Z.

Principle

Many things that work in classical geometry under a transversality
assumption, work in derived geometry without transversality.
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Categories, 2-categories, and ∞-categories

Many things in mathematics form a category : you have objects
and morphisms, e.g. topological spaces X ,Y and continuous maps
f : X → Y . Sometimes you want to consider a 2-category, in
which you have objects, and 1-morphisms between objects, and
2-morphisms between 1-morphisms. For example, there is a
2-category whose objects are topological spaces X ,Y , 1-morphisms
are continuous maps f , g : X → Y , and 2-morphisms are
homotopies η : f ⇒ g . Or we could take objects to be categories,
1-morphisms to be functors, and 2-morphisms to be natural
transformations. In fact there are also 3-categories, 4-categories,
. . . , ∞-categories. For technical reasons, if a 2-category is not
sufficient you usually go all the way to ∞-categories.

Principle

To define ‘derived’ spaces, you have to use higher categories:
always ∞-categories in Algebraic Geometry, and in Differential
geometry, 2-categories are usually enough.
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Why higher categories?

A higher category can always be truncated to an ordinary category
(the homotopy category) by taking morphisms to be
2-isomorphism classes of 1-morphisms. But in doing so you lose
information. For example, a fibre product in a 2-category is defined
by a universal property involving 2-morphisms. If you truncate to a
category, there is no universal property. Also, one way to define a
derived scheme X would be as a topological space X with an
∞-sheaf (homotopy sheaf) of ∞-algebras (simplicial algebras, or
cdgas). But truncating an ∞-sheaf to ordinary categories loses the
sheaf property (locality).
Suppose you have a category C with a class W of morphisms
(weak equivalences) that you want to invert, giving a new category
C[W−1]. For example, in homotopy theory one wants to invert
homotopy equivalences of topological spaces. Nearly always, it is
better to make C[W−1] into an ∞-category. That is, C[W−1] has
good properties at the ∞-category level which are invisible in
ordinary categories. This applies to derived categories Db coh(X ).
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Commutative differential graded algebras

The next bit only works over a field K of characteristic zero; in
general, one should use simplicial algebras.
A K-scheme (X ,OX ) is a topological space X with a sheaf OX of
commutative K-algebras OX (U) for open U ⊂ X , where we think
of OX (U) as the algebraic functions U → K. To define derived
K-schemes, we replace commutative K-algebras by ‘derived
K-algebras’. One model for these is commutative differential
graded algebras (cdgas) A• = (A∗, d) in degrees 6 0. That is,
A∗ =

⊕
k60 A

k for Ak a K-vector space, with a supercommutative

graded multiplication · : Ak × Al → Ak+l , an identity 1 ∈ A0, and
a differential d : Ak → Ak+1 satisfyig the Leibnitz rule
d(ab) = (da)b + (−1)ka db for a ∈ Ak , b ∈ Al . (This is like
exterior forms on a manifold, but in negative degrees.)
Then H∗(A•) is a graded algebra, and H0(A•) is a commutative
K-algebra, considered as the classical truncation of A•.
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Quasi-isomorphisms

There is an obvious notion of morphism φ : A• → B• preserving all
the structure, giving a category cdgaK60. We call φ a
quasi-isomorphism if Hk(φ) : Hk(A•)→ Hk(B•) is an isomorphism
for all k 6 0. Quasi-isomorphic cdgas are thought of as ‘the same’.
We would like to invert quasi-isomorphisms to get a new category
cdgaK60[Q−1]. But this must be regarded as an ∞-category.
Then a derived scheme X could be defined as a topological space
X with an ∞-sheaf OX of objects in cdgaK60[Q−1], satisfying
conditions. Inverting quasi-isomorphisms makes the morphisms (or
n-morphisms for n > 1) in cdgaK60[Q−1] difficult to understand.

Principle

In Derived Geometry, the local models for things (e.g. cdgas) are
often nice objects, and easy to describe. However, the ways in
which these local models are glued together, and the conditions
under which two local models are ‘the same’, can be mysterious
and difficult to work with explicitly.
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Examples of quasi-smooth cdgas

Return to the example of{
(z1, . . . , zn) ∈ Cn : p1(z1, . . . , zn) = · · · = pk(z1, . . . , zn) = 0

}
.

We encode this as a cdga A• by taking
A∗ = C[x1, . . . , xn, y1, . . . , yk ] to be the graded polynomial algebra
generated by degree 0 even variables x1, . . . , xn and degree −1 odd
variables y1, . . . , yk . The differential d : A∗ → A∗+1 is generated by
dxi = 0 and dyj = pj(x1, . . . , xn). Then
H0(A•) = C[x1, . . . , xn]/(y1, . . . , yk) is the corresponding classical
algebra. This cdga is quasi-smooth (it is quasi-isomorphic to a free
superpolynomial algebra with generators in degrees 0,−1 only). It
has virtual dimension n − k (the expected dimension of the
solutions of k equations on n variables; can be negative).
For example, the cdgas of schemes {z21 = z22 = 0} and
{z21 = z22 = z21 + z22 = 0} in C2 are different, as one has generators
z1, z2, y1, y2 and virtual dimension 0, and the second generators
z1, z2, y1, y2, y3 and virtual dimension −1.
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Derived categories, (co)tangent complexes

Complexes E • =
(
· · · d−→E k d−→E k+1 d−→ · · ·

)
, in which each E k

is some linear object (e.g. vector spaces, or vector bundles over
some space), and k ∈ Z (or maybe k 6 0 or k > 0), and d2 = 0,
are very important in derived geometry. For example, cdgas are a
modification of K-algebras in which the K-vector space A is
replaced by a complex. Usually one cares about complexes up to
quasi-isomorphism (morphisms inducing isomorphisms on
cohomology). Inverting quasi-isomorphisms gives an ∞-category.

Principle

To pass from classical to derived geometry, replace vector spaces or
vector bundles by complexes of vector spaces or vector bundles up
to quasi-isomorphism.

E.g. a smooth scheme or manifold X has a tangent bundle TX → X
and cotangent bundle T ∗X → X . Derived schemes or manifolds X
have a tangent complex TX → X and cotangent complex LX → X .
Then X is quasi-smooth if LX is concentrated in degrees −1, 0.
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Stacks and derived stacks

Actually I have been lying a little bit. Derived schemes are not
usually defined as topological spaces with an ∞-sheaf of functions.
In classical Algebraic Geometry there is a more general class of
spaces than schemes, called stacks. Stacks are needed as many
moduli spaces cannot be defined as schemes, but do exist as
stacks. Given a K-scheme X , one can can define a functor
AlgK → Sets acting on objects by A 7→ HomSchK(SpecA,X ). By
the Yoneda Lemma, this embeds the category of K-schemes SchK
as a full subcategory of the functor category Fun(AlgK,Sets).
Stacks are defined as a full subcategory of the functor category
Fun(AlgK,Groupoids), where groupoids are categories in which
all morphisms are isomorphisms. (A set is a groupoid with only
identity morphisms.) Groupoids encode automorphisms of objects.
Then derived stacks are defined as a full ∞-subcategory of the
∞-functor category Fun∞(Alg∞K ,Groupoids

∞). We make
everything ∞-categorical: ∞-algebras (cdgas) and ∞-groupoids
(the ∞-category analogue of sets). Derived schemes are defined as
derived stacks whose classical stack is a scheme.
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Derived Differential Geometry, a very brief history

In Jacob Lurie’s epic series DAG I – DAG ∞, as a throwaway
comment in the final paragraph of DAG V, he explained how to
define an ∞-category of derived C∞-schemes, and a subcategory
of derived smooth manifolds. Lurie’s student David Spivak worked
out the details (technically beautiful, but unreadable by humans).
Some years before DAG, Fukaya–Oh–Ohta–Ono developed a theory
of Symplectic Geometry (also unreadable by humans) involving
Kuranishi spaces, the geometric structure they put on moduli
spaces of J-holomorphic curves. The main purpose of a Kuranishi
space was to define a virtual class/chain in homology. In the
beginning there were problems with the FOOO theory (now mostly
fixed), which made some people quite grumpy.
I may have been the first person to care about and read both of
these unreadable theories. When I did, I realized that Kuranishi
spaces are actually derived smooth orbifolds. This explained
many of the problems in the FOOO theory: they were lacking ideas
from Derived Geometry (especially, higher categories), so they were
banging nails in with a screwdriver. I then wrote a lot of stuff on
Derived Differential Geometry (also unreadable by humans, sorry).
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TheC∞-scheme approach to Derived Differential Geometry

I was unable to get much geometric intuition for what the higher
morphisms in Spivak’s ∞-category of derived manifolds (as derived
C∞-schemes) really meant. So I defined a 2-category truncation of
Spivak’s versions, in which 1- and 2-morphisms were much more
explicit. I called the 2-category version of derived C∞ schemes
d-spaces, and the 2-category derived manifolds d-manifolds. The
2-category truncation preserved all the properties of derived
manifolds I cared about (e.g. existence of fibre products, gluing).
This 2-category truncation would not work in DAG, where you
really do need ∞-categories. The reason it works in DDG is that
partitions of unity exist in smooth functions on manifolds. These
make it easier to glue local models together up to
quasi-isomorphism; you do not need the extra freedom of the
∞-category to glue together local models.
My 2-category truncation is roughly the universal truncation of the
Lurie/Spivak model (which is itself universal) in which for f : X → Y ,
2-morphisms η : f ⇒ f are a vector space and C∞(X )-module.
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The Kuranishi space approach to DDG

In my d-manifold theory, the objects, 1-morphisms, and
2-morphisms all have explicit local descriptions (up to
quasi-isomorphism) in terms of manifolds, vector bundles, and
sections. In 2014 I realized that I could use this to define a
2-category of Kuranishi spaces, in the style of
Fukaya–Oh–Ohta–Ono, which would be equivalent to the orbifold
version (d-orbifolds) of my 2-category of d-manifolds, thus fixing
the problems with the FOOO definition.
This Kuranishi space approach to DDG has the advantage that you
can replace manifolds by many other categories of ‘manifolds’
satisfying a short list of assumptions, such as manifolds with
corners. This is useful for applications in Symplectic Geometry,
which involve various categories of Kuranishi spaces with corners.
To do this in the C∞-scheme approach you have to rewrite the
foundations from the bottom up, with C∞-rings with corners
(see Francis-Staite–Joyce 2019).
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The category of µ-Kuranishi spaces

Kuranishi spaces are still pretty complicated. I will explain how to
define an ordinary category of ‘µ-Kuranishi spaces’, a simplified
version using ordinary category rather than 2-category methods. It
is equivalent to the homotopy category of the 2-category of derived
manifolds (‘m-Kuranishi spaces’).

Definition

Let X be a topological space. A µ-Kuranishi neighbourhood on X
is a quadruple (V ,E , s, ψ) such that:

(a) V is a smooth manifold.
(b) E → V is a vector bundle over V , the obstruction bundle.
(c) s ∈ Γ∞(E ) is a smooth section of E , the Kuranishi section.
(d) ψ is a homeomorphism from s−1(0) to an open subset Imψ in

X , where Imψ is called the footprint of (V ,E , s, ψ).

These are the charts in our ‘atlas of charts’ approach.
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Morphisms of µ-Kuranishi neighbourhoods

Definition

Let f : X → Y be a continuous map of topological spaces,
(Vi ,Ei , si , ψi ), (Wj ,Fj , tj , χj) be µ-Kuranishi neighbourhoods on
X ,Y , and S ⊆ Imψi ∩ f −1(Imχj) ⊆ X be an open set. Consider

triples (Vij , fij , f̂ij) satisfying:

(a) Vij is an open neighbourhood of ψ−1i (S) in Vi .
(b) fij : Vij →Wj is smooth, with f ◦ ψi = χj ◦ fij on s−1i (0) ∩ Vij .

(c) f̂ij : Ei |Vij
→ f ∗ij (Fj) is a morphism of vector bundles on Vij ,

with f̂ij(si |Vij
) = f ∗ij (tj) + O(s2i ).

Define an equivalence relation ∼ by (Vij , fij , f̂ij)∼(V ′ij , f
′
ij , f̂
′
ij) if

there are open ψ−1i (S)⊆ V̇ij⊆Vij∩V ′ij and Λ : Ei |V̇ij
→ f ∗ij (TWj)|V̇ij

with f ′ij = fij +Λ·si +O(s2i ) and f̂ ′ij = f̂ij +Λ·f ∗ij (dtj)+O(si ). We write

[Vij , fij , f̂ij ] for the ∼-equivalence class of (Vij , fij , f̂ij), and call

[Vij , fij , f̂ij ] : (Vi ,Ei , si , ψi )→ (Wj ,Fj , tj , χj) a morphism over S , f .
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Here the equivalence relation ∼ is weird, but crucial for later.
Given continuous maps f : X → Y and g : Y → Z , open S ⊆ X ,
T ⊆ Y , morphisms [Uij , φij , φ̂ij ] : (Ui ,Di , ri , φi )→ (Vj ,Ej , sj , ψj)

over S , f and [Vjk , ψjk , ψ̂jk ] : (Vj ,Ej , sj , ψj)→ (Wk ,Fk , tk , χk) over
T , g , the composition over S ∩ f −1(T ), g ◦ f is

[Vjk , ψjk , ψ̂jk ]◦[Uij , φij , φ̂ij ]=
[
φ−1ij (Vjk), ψjk ◦ φij |···, φ−1ij (ψ̂jk) ◦ φ̂ij |···

]
:

(Ui ,Di , ri , φi ) −→ (Wk ,Fk , tk , χk).

Theorem (Sheaf property of µ-Kuranishi morphisms.)

Let (Vi ,Ei , si , ψi ), (Wj ,Fj , tj , χj) be µ-Kuranishi neighbourhoods
on X ,Y , and f : X → Y be continuous. Then morphisms from
(Vi ,Ei , si , ψi ) to (Wj ,Fj , tj , χj) over f form a sheaf
Homf

(
(Vi ,Ei , si , ψi ), (Wj ,Fj , tj , χj)

)
on Imψi ∩ f −1(Imχj).

This will be essential for defining compositions of morphisms of
µ-Kuranishi spaces. The lack of such a sheaf property in the
FOOO theory is why FOOO Kuranishi spaces are not a category.

20 / 24 Dominic Joyce What is Derived Geometry?



Coordinate changes of µ-Kuranishi neighbourhoods

Take Y = X and f = idX . A morphism
Φij = [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj) over idX is
called a coordinate change if there exists
Φji = [Vji , φji , φ̂ji ] : (Vj ,Ej , sj , ψj)→ (Vi ,Ei , si , ψi ) such that
Φji ◦ Φij = [Vi , idVi

, idEi
] and Φij ◦ Φji = [Vj , idVj

, idEj
].

This does not require φji ◦ φij = idVi
, φ̂ji ◦ φ̂ij = idEi

, but only that

φji ◦ φij = idVi
+Λ·si +O(s2i ) and φ̂ji ◦ φ̂ij = idEi

+Λ·f ∗ij (dtj)+O(si ).
Coordinate changes exist even if dimVi 6= dimVj .

Theorem

A morphism [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj) is a
coordinate change over S if and only if for all x ∈ S with
vi = ψ−1i (x) and vj = ψ−1j (x), the following sequence is exact:

0 // TviVi

dsi |vi⊕Tvi
φij // Ei |vi⊕TvjVj

φ̂ij |vi⊕−dsj |vj // Ej |vj // 0.
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The definition of µ-Kuranishi space

Definition

Let X be a Hausdorff, second countable topological space, and
n ∈ Z. A µ-Kuranishi structure K on X of virtual dimension n is
data K =

(
I , (Vi ,Ei , si , ψi )i∈I ,Φij , i ,j∈I

)
, where:

(a) I is an indexing set.
(b) (Vi ,Ei , si , ψi ) is a µ-Kuranishi neighbourhood on X for each

i ∈ I , with dimVi − rankEi = n.
(c) Φij = [Vij , φij , φ̂ij ] : (Vi ,Ei , si , ψi )→ (Vj ,Ej , sj , ψj) is a

coordinate change over S = Imψi ∩ Imψj for all i , j ∈ I .
(d)

⋃
i∈I Imψi = X .

(e) Φii = id(Vi ,Ei ,si ,ψi ) for all i ∈ I .
(f) Φjk ◦ Φij = Φik for all i , j , k ∈ I over

S = Imψi ∩ Imψj ∩ Imψk .

We call X = (X ,K) a µ-Kuranishi space, of virtual dimension
vdimX = n.
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Definition

Let X = (X ,K) with K =
(
I , (Vi ,Ei , si , ψi )i∈I ,Φii ′, i ,i ′∈I

)
and

Y = (Y ,L) with L =
(
J, (Wj ,Fj , tj , χj)j∈J ,Ψjj ′, j ,j ′∈J

)
be

µ-Kuranishi spaces. A morphism f : X → Y is
f =

(
f , f ij , i∈I , j∈J

)
, where f : X → Y is a continuous map, and

f ij = [Vij , fij , f̂ij ] : (Vi ,Ei , si , ψi )→ (Wj ,Fj , tj , χj) is a morphism of
µ-Kuranishi neighbourhoods over S = Imψi ∩ f −1(Imχj) and f
for all i ∈ I , j ∈ J, satisfying the conditions:

(a) If i , i ′ ∈ I and j ∈ J then f i ′j ◦ Φii ′ |S = f ij |S over
S = Imψi ∩ Imψi ′ ∩ f −1(Imχj) and f .

(b) If i ∈ I and j , j ′ ∈ J then Ψjj ′ ◦ f ij |S = f ij ′ |S over
S = Imψi ∩ f −1(Imχj ∩ Imχj ′) and f .

When Y = X , so that J = I , define the identity morphism
idX : X → X by idX =

(
idX ,Φij , i ,j∈I

)
.
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Composition of morphisms in µKur

Let X = (X , I) with I =
(
I , (Ui ,Di , ri , φi )i∈I ,Φii ′, i ,i ′∈I

)
and

Y = (Y ,J ) with J =
(
J, (Vj ,Ej , sj , ψj)j∈J ,Ψjj ′, j ,j ′∈J

)
and

Z = (Z ,K) with K =
(
K , (Wk ,Fk , tk , ξk)k∈K ,Ξkk ′, k,k ′∈K

)
be

µ-Kuranishi spaces, and f = (f , f ij) : X → Y ,
g = (g , g jk) : Y → Z be morphisms. Consider the problem of how
to define the composition g ◦ f : X → Z .
For all i ∈ I and k ∈ K , g ◦ f must contain a morphism
(g ◦ f )ik : (Ui ,Di , ri , φi )→ (Wk ,Fk , tk , ξk) defined over
Sik = Imφi ∩ (g ◦ f )−1(Im ξk) and g ◦ f .
For each j ∈ J, we have a morphism
g jk ◦ f ij : (Ui ,Di , ri , φi )→ (Wk ,Fk , tk , ξk), but it is defined over
Sijk = Imφi ∩ f −1(Imψj) ∩ (g ◦ f )−1(Im ξk) and g ◦ f , not over
the whole of Sik = Imφi ∩ (g ◦ f )−1(Im ξk).
Using the sheaf property of morphisms, we can glue these uniquely
over all j ∈ J to (g ◦ f )ik . So µ-Kuranishi spaces form a well
behaved category.
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