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1. Introduction
An enumerative invariant theory in Algebraic or Differential
Geometry is the study of invariants Iα(τ) which ‘count’
τ -semistable objects E with fixed topological invariants JEK = α in
some geometric problem, usually by means of a virtual class
[Mss

α (τ)]virt for the moduli space Mss
α (τ) of τ -semistable objects

in some homology theory, with Iα(τ) =
∫
[Mss

α (τ)]virt
µα for some

natural cohomology class µα. We call the theory C-linear if the
objects E live in a C-linear additive category A. For example:

Invariants counting semistable vector bundles on curves.

Mochizuki-style invariants counting coherent sheaves on
surfaces. (Think of as algebraic Donaldson invariants.)

Donaldson–Thomas invariants of Calabi–Yau or Fano 3-folds.

Donaldson–Thomas type invariants of Calabi–Yau 4-folds.

Invariants counting representations of quivers Q.

U(m) Donaldson invariants of 4-manifolds.
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I have proved that many such theories in Algebraic Geometry, in
which either the moduli spaces are automatically smooth (e.g.
coherent sheaves on curves, quiver representations), or the
invariants are defined using Behrend–Fantechi obstruction theories
and virtual classes, share a common universal structure.
I expect this universal structure also to extend to Calabi–Yau
4-fold invariants defined using Borisov–Joyce / Oh–Thomas virtual
classes, and to Donaldson invariants in Differential Geometry.
Here is an outline of this structure:
(a) As in Lecture 1, we form two moduli stacks M,Mpl of all

objects E in A, where M is the usual moduli stack, and Mpl

the ‘projective linear’ moduli stack of objects E modulo
‘projective isomorphisms’, i.e. quotient by λ idE for λ ∈ Gm.

(b) We are given a quotient K0(A) ↠ K (A), where K (A) is the
lattice of topological invariants JEK of E (e.g. fixed Chern
classes). We split M =

∐
α∈K(A)Mα, Mpl =

∐
α∈K(A)M

pl
α .

(c) There is a symmetric biadditive Euler form
χ : K (A)× K (A) → Z.
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(d) We can form the homology H∗(M),H∗(Mpl) over Q, with
H∗(M) =

⊕
α∈K(A)H∗(Mα), H∗(Mpl) =

⊕
α∈K(A)H∗(Mpl

α ).

Define shifted versions Ĥ∗(M), Ȟ∗(Mpl) by

Ĥn(Mα) = Hn−χ(α,α)(Mα), Ȟn(Mpl
α ) = Hn+2−χ(α,α)(Mpl

α ).

As in Lecture 1, we make Ĥ∗(M) into a graded vertex
algebra, and Ȟ∗(Mpl) into a graded Lie algebra.

(e) There is a notion of stability condition τ on A. When
A = coh(X ), this can be Gieseker stability for a polarization
on X . For each α ∈ K (A) we can form moduli spaces
Mst

α (τ) ⊆ Mss
α (τ) of τ -(semi)stable objects in class α. Here

Mst
α (τ) is a substack of Mpl

α , and is a C-scheme with perfect
obstruction theory. Also Mss

α (τ) is proper. Thus, if
Mst

α (τ) = Mss
α (τ) we have a virtual class [Mss

α (τ)]virt, which
we regard as an element of H∗(Mpl

α ). The virtual dimension is
vdimR[Mss

α (τ)]virt = 2− χ(α, α), so [Mss
α (τ)]virt lies in

Ȟ0(Mpl
α ) ⊂ Ȟ0(Mpl), which is a Lie algebra by (d).
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(f) For many theories, there is a problem defining the invariants
[Mss

α (τ)]virt when Mst
α (τ) ̸= Mss

α (τ), i.e. when the moduli
spaces Mss

α (τ) contain strictly τ -semistable points.
I give a systematic way to define invariants [Mss

α (τ)]inv in
homology over Q (not Z) in these cases, using auxiliary pair
invariants, with [Mss

α (τ)]inv = [Mss
α (τ)]virt if Mst

α (τ) = Mss
α (τ).

(This method is well known, e.g. in Joyce–Song D–T theory.)
I prove the [Mss

α (τ)]inv are independent of the choices used in
the pair invariant method.

(g) If τ, τ̃ are stability conditions and α ∈ K (A), I prove a wall
crossing formula

[Mss
α (τ̃)]inv =

∑
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .

[
[Mss

α1
(τ)]inv,

[Mss
α2
(τ)]inv

]
, . . .

]
, [Mss

αn
(τ)]inv

]
, (1)

where Ũ(−) are combinatorial coefficients defined in my
previous work on wall-crossing formulae for motivic invariants,
and [ , ] is the Lie bracket on Ȟ0(Mpl) from (d).
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(h) In some theories the natural obstruction theory on
Mst

α (τ) = Mss
α (τ) has a trivial summand Coα in its

obstruction sheaf for oα > 0, and so the virtual class
[Mss

α (τ)]virt is zero. In these cases one defines a reduced
obstruction theory on Mst

α (τ) by deleting the Coα factor, and
obtains reduced virtual classes [Mss

α (τ)]red. For example, this
holds for coherent sheaves on surfaces X with geometric
genus pg > 0, with oα = pg when rankα > 0.
My theory extends to ‘reduced’ invariants, allowing oα to
depend on α ∈ K (A) with oα + oβ ⩾ oα+β, giving invariants
[Mss

α (τ)]red in Ȟ2oα(Mpl
α ). Generalizing (1), they satisfy the

wall crossing formula

[Mss
α (τ̃)]red =

∑
α1+···+αn=α:
oα1+···+oαn=oα

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .

[
[Mss

α1
(τ)]red,

[Mss
α2
(τ)]red

]
, . . .

]
, [Mss

αn
(τ)]red

]
. (2)

If oα=o>0 for all α this reduces to [Mss
α (τ̃)]red=[Mss

α (τ)]red,
that is, the invariants are independent of stability condition.
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(i) When A = coh(X ) or Db coh(X ) for X a Calabi–Yau 3-fold,
the natural obstruction theory on Mss

α (τ) has terms in degree
−2 from Ext3(E ,E ). We can remove these by taking
trace-free Ext to define Donaldson–Thomas invariants,
changing the real virtual dimension by 2.
To include these in the theory, as in Lecture 1, for A odd
Calabi–Yau we can modify (d) above to make Ĥ∗(M) into a
graded vertex Lie algebra (with grading changed by 2) and
Ȟ∗(Mpl) into a graded Lie algebra (with grading changed by 2).
So we can include Donaldson–Thomas theory in our picture.
For ordinary D–T invariants this does not add much to the
Joyce–Song / Kontsevich–Soibelman picture. However, for a
local Calabi–Yau 3-fold with an action of a group G (e.g. Gm

acting on KX for X a surface) we can do Donaldson–Thomas
theory in G -equivariant homology, giving non-motivic invariants,
with applications to Thomas’ equivariant Vafa–Witten theory.
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Note that the vertex algebra / Lie algebra picture of Lecture 1 is
very general, e.g. it works for A = coh(X ) or A = Db coh(X ) for
any smooth projective C-scheme X . However, to get an enumerative
invariant theory is much more restrictive, we basically need X to
be a curve, surface, Calabi–Yau 3- or 4-fold, or Fano 3-fold.

The proofs of the WCFs (1), (2) are very long and complicated.
The rough idea is that for ‘simple’ wall-crossings, involving
splittings E = E1 ⊕ · · · ⊕ En in A for n at most 2, I can prove the
WCF (with splittings α = α1 + · · ·+ αn for n ⩽ 2) by
Gm-localization on a master space. Then I show that complicated
wall-crossings in A can be reduced to a sequence of simple
wall-crossings in an auxiliary category B in an exact sequence

0 // A // B // mod-CQ // 0.

8 / 27 Dominic Joyce, Oxford University Enumerative invariants and WCF via vertex algebras



Introduction
Invariants counting sheaves on surfaces

The main results

2. Invariants counting sheaves on surfaces
Let X be a complex projective surface, with geometric genus
pg = dimH0(KX ). We usually restrict to pg > 0, that is,
b2+(X ) > 1. Let κ ∈ K 0

top(X ) be a topological K-theory class on X .

We often write κ = (r , α, k) for r = rankκ, α = c1(κ) ∈ H2(X ,Z)
and k = ch2(κ) ∈ 1

2Z with
∫
X α2 +2k ∈ 2Z, and usually restrict to

r > 0. Choose a Kähler class ω on X . Then we can define Gieseker
(semi)stability τ of coherent sheaves on X using ω, and can form
moduli stacks Mst

κ (τ) ⊆ Mss
κ (τ) of τ -(semi)stable coherent

sheaves on X with class κ. Here Mst
κ (τ) has a Behrend–Fantechi

obstruction theory (which is reduced if pg > 0) and Mss
κ (τ) has a

projective coarse moduli scheme. Thus, if Mst
κ (τ) = Mss

κ (τ) (if
there are no strictly τ -semistable sheaves in class κ) then Mss

κ (τ)
is proper with a B–F obstruction theory, and so has a virtual class
[Mss

κ (τ)]virt in H∗(Mss
κ (τ),Z). In nice cases (e.g. Hilbert schemes)

Mss
κ (τ) is smooth and [Mss

κ (τ)]virt = [Mss
κ (τ)]fund is the

fundamental class of Mss
κ (τ) as a compact complex manifold.
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We can construct many universal cohomology classes Sjkl on
Mss

κ (τ) — in the case when Mss
κ (τ) is a fine moduli space, by

Sjkl = chl(U)\ejk for U → X ×Mss
κ (τ) the universal sheaf and ejk

a basis element for Hk(X ,Q). Then we can form enumerative
invariants IP =

∫
[Mss

κ (τ)]virt
P(Sjkl) for any polynomial P(Sjkl) in

these universal classes homogeneous of the correct dimension.
There is a huge literature by many authors studying invariants of
this kind for particular κ (e.g. rank r = 2) and P(Sjkl). They
include Donaldson invariants of the underlying oriented 4-manifold
X , K-theoretic Donaldson invariants, Vafa–Witten invariants
(instanton branch), Segre integrals, Verlinde integrals, virtual Euler
characteristics and χy -genera of Mss

κ (τ), and so on. Often people
show that these invariants IP can be encoded in generating
functions of a nice form. There are also many open conjectures like
this by Göttsche, Kool and others. In fact, for rank r > 1 and
c1(X ) ̸= 0 there are lots of conjectures and few theorems.
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I will report on a project which in some sense determines all
possible invariants IP =

∫
[Mss

κ (τ)]virt
P(Sjkl), as it determines the

virtual classes [Mss
κ (τ)]virt, and more generally invariants

[Mss
κ (τ)]inv also defined if Mst

κ (τ) ̸= Mss
κ (τ), as elements of a

polynomial algebra H∗(Mpl
κ ) = eκ ⊗Q[sjkl ] dual to

H∗(Mpl
κ ) = Q[Sjkl ], as in Lecture 1.

We give an expression for [Mss
κ (τ)]inv in terms of non-explicit

universal functions in infinitely many variables r0, r1, . . . , depending
on the rank r of κ, with coefficients in a number field Fr ⊂ C.
This proves the structural part of many conjectures in the literature.
There is an important difference between pg = 0 and pg > 0. If
pg = 0 (i.e. b2+ = 1) then [Mss

κ (τ)]inv depends on the Kähler form
ω used to define τ , but if pg > 0 (i.e. b2+ > 1) it is independent.
For pg > 0 we define [Mss

κ (τ)]inv using reduced obstruction
theories. The WCFs (1) for pg = 0 and (2) for pg > 0 are different
(there are more terms when pg = 0). Today I discuss only pg > 0.
pg = 0 is more difficult, as it involves (näıvely) non-convergent sums.
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3. The main results. 3.1. Normalizing c1(κ)
Let L → X be a line bundle with c1(L) = λ ∈ H2(X ,Z). Then
−⊗ L : Db coh(X ) → Db coh(X ) is an equivalence inducing an
isomorphism Mκ → Mκ⊗JLK. Under the isomorphism
H∗(Mκ,Q) ∼= Q[sjkl ], this is identified with an algebra
isomorphism Ωλ : Q[sjkl ] → Q[sjkl ] acting on generators by

Ωλ : sjkl 7−→
∑

j ′,k ′,l ′:2l−k=2l ′−k ′

Aj ′k ′

jk sj ′k ′l ′ ,

where (Aj ′k ′

jk ) is the matrix of −⊗ L on K 0
top(X ), and is polynomial in

λ. Thus Ωλ makes sense for λ ∈ H2(X ,Q), as well as λ ∈ H2(X ,Z).
We have Ωλ([Mss

κ (τ)]inv) = [Mss
κ⊗JLK(τ)]inv. So for κ = (r , α, k)

with r > 0, we find it helpful to consider Ω−α/r ([Mss
(r ,α,k)(τ)]inv).

Effectively, we are tensoring by a ‘fractional line bundle’ L
with c1(L) = −α/r , to modify κ = (r , α, k) so that it has c1(κ) = 0.
The advantage is that formulae for Ω−α/r ([Mss

(r ,α,k)(τ)]inv) are nearly

independent of α (they depend on
∫
X α ∪ β mod r for β ∈ SW(X )).
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3.2. The universal variables rl . The number field Fr

We want to give an expression for Ωλ([Mss
κ (τ)]inv) involving

universal functions independent of X , and of the bases (ejk) for

Hk(X ,Q) and (ϵjk) for H
k(X ,Q) which determine the

(co)homology variables sjkl , Sjkl . To do this we will use ‘universal
variables’ rl where rl ∈ H∗(X ,Q)⊗Q[sjkl ] for 0, 1, . . . are given by

rl =
∑

j ,k,j ′,k ′: l⩾k/2

λjk
j ′k ′ϵj ′k ′ ⊠ sjkl , l = 1, 2, . . . , (3)

with (λj ′k ′

jk ) the inverse matrix of (α, β) 7→
∫
X α ∪ β on H∗(X ).

We write r = (r0, r1, r2, . . .).
For r ⩾ 1 (the rank of κ) define a number field Fr ⊂ C by

Fr =


Q, r = 1 or 2,

Q[e
πi
2r ], r ⩾ 3 is odd,

Q[e
πi
r ], r ⩾ 3 is even.
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3.3. The main theorem
Theorem 1

When pg > 0, for r ⩾ 1 and (r , α, k) ∈ K 0
sst(X ) there is a formula

Ω−α/r

(
[Mss

(r ,α,k)(τ)]fd
)
=

[
q
vdimMss

(r,α,k)(τ)fd
]

(4)

∑
β1,...,βr−1

∈H2(X ,Z)1,1:
sβa∈SW(X ),
a=1,...,r−1

r2 · ρ
∫
X td2(X )

r · η
∫
X c1(X )2

r ·
∏

1⩽a⩽b⩽r−1

ζ
∫
X βa∪βb

r ,ab ·

ϕ
∫
X α∪c1(X )

r ·
r−1∏
a=1

(
SW([sβa ])θ

∫
X α∪βa

r ,a

)
·

exp

[∫
X
Ar (β1, . . . , βr−1, c1(X ), td2(X ), q, r)

]


.

Here [Mss
(r ,α,k)(τ)]fd is the ‘fixed determinant’ invariant, equal to

[Mss
(r ,α,k)(τ)]inv when b1(X )=0, and ρr , ηr , ζr ,ab, ϕr , θr ,a∈Fr \{0},

and Ar is a universal function independent of X , and SW(sβa)∈Z
are Seiberg–Witten invariants of X . Furthermore:
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Theorem 1 (Continued)

(i) ρr = ±1
r .

(ii) θr ,a ∈
{
e

2πib
r : 1 ⩽ b < r

}
is a nontrivial r th root of unity.

(iii) ϕr ∈
{
e

2πib
r : 1 ⩽ b ⩽ r

}
is an r th root of unity.

(iv) ηr and ζr ,ab for 1 ⩽ a ⩽ b < r lie in Fr \ {0}.
(v) Ar lies in the quotient of Fr [β1, . . . , βr−1, c1(X ), td2(X ),

r0, r1, r2, . . .][[q]]q>0 by an ideal generated by things like

c1(X )3, c1(X ) ∪ td2(X ), . . . . Here to regard Ar as
independent of X , we just consider βa, c1(X ), . . . to be formal
variables. But when we fix a surface X , then we regard
Ar (β1, . . . , r) as lying in H∗(X ,Q)⊗Q[sjkl ][[q]], where
βa, c1(X ), td2(X ) ∈ H∗(X ,Q) are the given values, and
rl ∈ H∗(X ,Q)⊗Q[sjkl ] are as in (3). Then

∫
X Ar (· · · ) applies∫

X : H∗(X ,Q) → Q so that
∫
X Ar (· · · ) ∈ Q[sjkl ][[q]]q>0 .

Note that α appears in (4) only through [q
vdimMss

(r,α,k)(τ)fd ] and

ϕ
∫
X α∪c1(X )

r , θ
∫
X α∪βa

r ,a , and so via
∫
X α ∪ c1(X ),

∫
X α ∪ βa mod r .
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3.4. Example: Hilbert schemes

For rank r = 1, fixed determinant moduli spaces Mss
(r ,α,k)(τ)fd are

basically Hilbert schemes Hilbn(X ). Also there are no
Seiberg–Witten terms in (4). In this case we can rewrite and
strengthen Theorem 1 to give:

Theorem 2

Writing u = (u2, u3, . . .), there exists a formal function H(c1, c2,u)
in Q[u3, u4, . . .][[e

−u2 , c1, c2]], defined uniquely as the solution to a
p.d.e., such that for any complex projective surface X we have∑

n⩾0

qn[Hilbn(X )]fund (5)

= exp

[ ∫
X

(
r0 + H

(
c1(X ), c2(X ), r2 − log q, r3, r4, . . .

))]
.

We can compute H(c1, c2,u) up to some order in e−u2 , c1, c2 using
Mathematica. If an algebraic group G acts on X , equation (5) also
holds in equivariant homology HG

∗ (M).

16 / 27 Dominic Joyce, Oxford University Enumerative invariants and WCF via vertex algebras



Introduction
Invariants counting sheaves on surfaces

The main results

3.5. An application: Virasoro constraints
The following is a minor extension of work by Arkadij Bojko,
Woonam Lim, and Miguel Moreira.

Theorem 3

Hilbert schemes [Hilbn(X )]fund satisfy ‘Virasoro constraints’ (some
complicated identities) for all complex projective surfaces X .

Previously this was known for X with b1(X ) = 0 (Moreira 2021).

Sketch proof.

By MOOP 2020, Virasoro constraints hold for [Hilbn(X )]fund for X
projective toric. When X = CP2 and CP1 × CP1, this implies
H(c1, c2,u) in Theorem 3 satisfies a large family of p.d.e.s. These
p.d.e.s then imply Virasoro for all X . This works when b1(X ) > 0
as the odd variables sjkl are packaged inside even variables rl .

I expect to deduce Virasoro constraints for sheaf counting invariants
for all projective surfaces X , following Bojko–Lim–Moreira 2022.
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3.6. Example: Donaldson invariants in arbitrary rank
Let L ∈ H2(X ,Q), and write L =

∑b2

j=1 Ljϵj2. The rank r
Donaldson invariants of X are

DX
(r ,α,k)(L+ upt) =

∫
[Mss

(r,α,k)(τ)]fd

exp
(∑b2

j=1
LjSj22 + S102u

)
.

Theorem 4

DX
(r ,α,k)(L+ upt) =

[
q
vdimMss

(r,α,k)(τ)fd
]

(6)

∑
β1,...,βr−1

∈H2(X ,Z)1,1:
sβa∈SW(X ),
a=1,...,r−1

r2ρ
∫
X td2(X )

r η
∫
X c1(X )2

r ϕ
∫
X α∪c1(X )

r

∏
1⩽a⩽b⩽r−1

ζ
∫
X βa∪βb

r ,ab

r−1∏
a=1

(
SW([sβa ])θ

∫
X α∪βa

r ,a

)
· exp

[
q2
(

1
2

∫
X
L2 + ru

)
+ q

(∫
X
L ∪

(
Crc1(x) +

r−1∑
a=1

Cr ,aβa
))]


.

Here Cr ,Cr ,a ∈ Fr . The exp[· · · ] term comes from the terms in
q2r22 , q

2r2, qc1(x) ∪ r2, qβa ∪ r2 in Ar , just r + 2 coefficients.
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3.7. Symmetries of the generating function
Here is (4) again:

Ω−α/r

(
[Mss

(r ,α,k)(τ)]fd
)
=

[
q
vdimMss

(r,α,k)(τ)fd
]

∑
β1,...,βr−1

∈H2(X ,Z)1,1:
sβa∈SW(X ),
a=1,...,r−1

r2 · ρ
∫
X td2(X )

r · η
∫
X c1(X )2

r ·
∏

1⩽a⩽b⩽r−1

ζ
∫
X βa∪βb

r ,ab ·

ϕ
∫
X α∪c1(X )

r ·
r−1∏
a=1

(
SW([sβa ])θ

∫
X α∪βa

r ,a

)
·

exp

[∫
X
Ar (β1, . . . , βr−1, c1(X ), td2(X ), q, r)

]


.

This has an obvious symmetry group Sr−1 by permutation of
β1, . . . , βr−1. Less obvious, if β is a Seiberg–Witten class then so
is −c1(X )− β, with SW([s−c1(X )−β]) = (−1)

∫
X td2(X ) SW([sβ]).

So replacing βa by −c1(X )− βa, and ρr by −ρr , gives a
Z2-symmetry for a = 1, . . . , r − 1. This gives a symmetry group
Γr = Sr−1 ⋉ Zr−1

2 acting on choices of ρr , ηr , ϕr , θr ,a, ζr ,ab,Ar .
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Symmetries of the generating function
(a) It turns out that the data ρr , ηr , ϕr , θr ,a, ζr ,ab,Ar is unique up

to this action of Γr = Sr−1 ⋉ Zr−1
2 . We can conjugate everything

by an element of the Galois group Gal(Fr ); this is equivalent to
the action of an element of Γr , giving a morphism Gal(Fr ) → Γr .
(b) We can use the Γr -action to standardize the constants
ρr , ηr , ϕr , θr ,a, ζr ,ab: after applying an element of Γr we can take

ρr =
1
r , ϕr = 1, θr ,a = e

2πia
r , a = 1, . . . , r − 1.

There are also conjectural values for ηr , ζr ,ab due to Göttsche
2021, but I haven’t proved these yet, except for small r .
(c) If r is odd then vdimMss

(r ,α,k)(τ)fd is always even. Then all

qodd terms in the whole sum (4) are zero, even though individual
terms in the sum can have nonzero qodd terms.
(d) vdimMss

(r ,α,k)(µ
ω)fd ≡

∫
X α ∪ c1(X ) +

∫
X td2(X ) mod 2 if r

is even. If n ̸≡
∫
X α ∪ c1(X ) +

∫
X td2(X ) mod 2 then qn terms in

the whole sum (4) are zero.
(e) Parts (c),(d) give an extra Z2 symmetry of (4) under q 7→ −q.
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3.8. Sketch of the proof: rank 1 case

First I prove the rank 1 case, Theorem 2 on Hilbert schemes.
Define Hilb(X , q) =

∑
n⩾0 q

n[Hilbn(X )]fund ∈ Q[sjkl ][[q]]. Using
Ellingsrud–Göttsche–Lehn 2001 I show that

Hilb(X , q) = 1 + q(· · · ), (7)
∂

∂q
Hilb(X , q) =∫

X

Resz

{
z−1 exp

[
−

∑
j,k,j′,k′,
l′>k′/2: l′⩾(k+k′)/2

z (k+k′)/2−l′

(l ′ − (k + k ′)/2)!
µj′k′

jk ϵjk ⊠ sj′k′ l′

]

◦ exp
[
−z2 ϵ14 ⊠ q

∂

∂q
+

∑
j,k, l>k/2

(l − 1)!z lϵjk ⊠
∂

∂sjkl

]
·Hilb(X , q)

}
, (8)

where (µj ′k ′

jk ) is the inverse Mukai pairing. Then I show that (5) is
the unique solution to (7)–(8), where H(c1, c2,u) is the solution to
a p.d.e. derived from (7)–(8).
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3.9. Constructing invariants by induction on rank

There is a method to compute invariants [Mss
(r ,α,k)(τ)]inv by

induction on the rank r = 1, 2, . . . starting from rank 1 data. This
is due to Mochizuki 2009 in the algebraic case, and is the analogue
of the construction of Donaldson invariants from Seiberg–Witten
invariants. Fix a line bundle L → X , and define an auxiliary abelian
category A with objects (V ,E , ϕ), where V is a finite-dimensional
C-vector space, E ∈ coh(X ), and ϕ : V ⊗C L → E is a morphism.
Write the class of (E ,V , ϕ) as JE ,V , ϕK = ((r , α, k), d) where
JEK = (r , α, k) and dimC V = d . Starting from τ on coh(X ) we
define a 1-parameter family of stability conditions τ́t on A for
t ∈ [0,∞). Thus we get semistable moduli stacks Mss

((r ,α,k),d)(τ́t)
of objects in A. My theory defines ‘pair invariants’
[Mss

((r ,α,k),d)(τ́t)]inv (at least when r > 0 and d = 0, 1) satisfying a
wall-crossing formula under change of stability condition τ́t .

22 / 27 Dominic Joyce, Oxford University Enumerative invariants and WCF via vertex algebras



Introduction
Invariants counting sheaves on surfaces

The main results

It turns out that:
When d = 0, Mss

((r ,α,k),0)(τ́t) = Mss
(r ,α,k)(τ). Thus the sheaf

invariants [Mss
(r ,α,k)(τ)]inv are pair invariants with d = 0.

If r = 1, Mss
((1,α,k),1)(τ́t) is independent of t and may be

written using Seiberg–Witten invariants and Hilbert schemes.
If r > 1, d = 1 and t ≫ 0 then Mss

((r ,α,k),1)(τ́t) = ∅, so
[Mss

((r ,α,k),d)(τ́t)]inv = 0. Thus wall-crossing from t ≫ 0 to

t = 0 gives a WCF of the general form
[Mss

((r ,α,k),1)(τ́0)]inv = sum of repeated Lie brackets of

[Mss
((1,α′,k ′),1)(τ́0)]inv and [Mss

(r ′′,α′′,k ′′)(τ)]inv for r ′′ < r ,

using the Lie bracket on H∗(Mpl
A) from Lecture 1.

If L = OX (−N) for N ≫ 0 we can recover [Mss
(r ,α,k)(τ)]inv

from [Mss
((r ,α,k),1)(τ́0)]inv.

By induction we may now compute [Mss
(r ,α,k)(τ)]inv ⇒

[Mss
((r+1,α,k),1)(τ́0)]inv ⇒ [Mss

(r+1,α,k)(τ)]inv ⇒ . . . .

Thus, we can compute [Mss
(r ,α,k)(τ)]inv for r > 1 in terms of

classes of Hilbn(X ), Pic0(X ) and Seiberg–Witten invariants.
23 / 27 Dominic Joyce, Oxford University Enumerative invariants and WCF via vertex algebras



Introduction
Invariants counting sheaves on surfaces

The main results

As in Lecture 1, with (Nj ′k ′

jk ) the matrix of the symmetrized Mukai

pairing, we may write the Lie bracket on H∗(Mpl
rk>0) as[

eαu(sjkl), e
βv(s ′j′k′ l′)

]
rk>0

= Resz
[
(−1)ζ(α,β)zζ(α,β)+ζ(β,α)·{

exp
(
z

rkβ

rk(α+ β)

(∑
j,k,l

sjk(l+1)
∂

∂sjkl

))
◦

exp
(
−z

rkα

rk(α+β)

( ∑
j′,k′,l′

s ′j′k′(l′+1)
∂

∂s ′j′k′ l′

))
◦

exp
(
−

∑
j,k,j′,k′,
l⩾k/2, l′⩾k′/2

(−1)l(l + l ′ − (k + k ′)/2− 1)! z (k+k′)/2−l−l′ ·

Nj′k′

jk

∂2

∂sjkl∂s ′j′k′ l′

)(
eαu(sjkl) · eβ

′
v(s ′j′k′ l′)

)}∣∣∣s′jkl=sjkl

]
,

(9)

where ζ(α, β) = rank Ext•α,β.
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3.10. Changing the generating function to the right form

Equation (9) is a complicated mess. What this means in practice:
if you suppose (4) holds in rank r , and you use this to compute the
generating function of invariants in rank r + 1 using the inductive
method, computing the Lie brackets using (9), and you get to the
end without dying, the result does not look like (4) in rank r + 1.
Instead, it gives you a really complicated residue in an extra formal
variable z , which depends on the line bundle L → X , even though
the answer [Mss

(r+1,α,k)(τ)]fd is independent of L. Worse, you can’t
use one L for the whole generating function, L must be more and
more negative as the power of q increases.
The most difficult part of the proof is to show this residue can
actually be written in the form (4) for rank r + 1.
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To do this we change variables in the residue from z to another
formal variable y . Then it turns out that there exists a smooth
projective curve Σ, meromorphic functions x1, . . . , xr , y :
Σ → C ∪ {∞}, and points σ0, σ∞ ∈ Σ with y(σi ) = i , such that:

The group Γr+1 acts on Σ, and y is Γr+1-invariant and gives
an isomorphism Σ/Γr+1

∼= C ∪ {∞}. Thus, any
Γr+1-invariant meromorphic function on Σ is actually a
rational function of y ∈ C ∪ {∞}.
Every part of the residue Resy (y

−1W ) which will define the
generating function (4) in rank r + 1 lifts to the curve Σ, as
the Laurent expansion at σ∞ ∈ Σ of a Q-rational function in
x1, . . . , xr , y , in the local coordinate y .
The entire sum y−1W inside Resy (y

−1W ) is Γr+1-invariant,
although the components are not. Thus, the entire sum is a
rational function of y ∈ C ∪ {∞}. It turns out to have a
simple pole at y = 0, and no other poles in C. Thus
Resy (y

−1W ) = W |y=0, or equivalently, W |σ0 .
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Thus, we are dealing with meromorphic functions on Σ, which
are presented initially as formal Laurent series in y near
σ∞ ∈ Σ. We want instead to evaluate these meromorphic
functions at σ0 ∈ Σ, and this evaluation gives (4) and the
data ρr+1, ηr+1, ϕr+1, θr+1,a, ζr+1,ab,Ar+1.

y−1(0) is a free Γr+1-orbit in Σ, and σ0 ∈ y−1(0) is chosen
arbitrarily. Different choices give different data
ρr+1, . . . ,Ar+1, differing by the action of Γr+1.

All terms in (4) come from Q-rational functions in
x1, . . . , xr , y in Σ. But when we evaluate these at σ0 ∈ Σ,
which is not a Q-point for r + 1 > 2, we get coefficients in Fr+1.

The curve Σ can be written completely explicitly, though in a
complicated way. This enables me to compute
Fr+1, ρr+1, ϕr+1, θr+1,a explicitly.
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