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1. Outline of the conjectural picture

An enumerative invariant theory in Algebraic or Differential
Geometry is the study of invariants Iα(τ) which ‘count’
τ -semistable objects E with fixed topological invariants JEK = α in
some geometric problem, usually by means of a virtual class
[Mss

α (τ)]virt for the moduli space Mss
α (τ) of τ -semistable objects

in some homology theory, with Iα(τ) =
∫
[Mss

α (τ)]virt
µα for some

natural cohomology class µα. We call the theory C-linear if the
objects E live in a C-linear additive category A. For example:

Mochizuki-style invariants counting coherent sheaves on
surfaces. (Think of as algebraic Donaldson invariants.)

Donaldson–Thomas invariants of Calabi–Yau or Fano 3-folds.

Donaldson–Thomas type invariants of Calabi–Yau 4-folds.

U(m) Donaldson invariants of 4-manifolds (with b2+ = 1).
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We conjecture that many such theories share a common universal
structure. Here is an outline of this structure:

(a) We form two moduli stacks M,Mpl of all objects E in A,
where M is the usual moduli stack, and Mpl the ‘projective
linear’ moduli stack of objects E modulo ‘projective
isomorphisms’, i.e. quotient by λ idE for λ ∈ Gm or U(1).

(b) We are given a quotient K0(A)� K (A), where K (A)
is the lattice of topological invariants JEK of E (e.g. fixed Chern
classes). We split M =

⊕
α∈K(A)Mα, Mpl =

⊕
α∈K(A)M

pl
α .

(c) There is a symmetric biadditive Euler form
χ : K (A)× K (A)→ Z.

(d) We can form the homology H∗(M),H∗(Mpl) over Q, with
H∗(M) =

⊕
α∈K(A)H∗(Mα), H∗(Mpl) =

⊕
α∈K(A)H∗(M

pl
α ).

Define shifted versions Ĥ∗(M), Ȟ∗(Mpl) by

Ĥn(Mα) = Hn−χ(α,α)(Mα), Ȟn(Mpl
α ) = Hn+2−χ(α,α)(Mpl

α ).

Then previous work by me makes Ĥ∗(M) into a graded vertex
algebra, and Ȟ∗(Mpl) into a graded Lie algebra.
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(e) There is a notion of stability condition τ on A. When
A = coh(X ), this can be Gieseker stability for a polarization
on X . For Donaldson theory for a compact oriented
4-manifold X with b2+(X ) = 1, the stability condition is the
splitting H2

dR(X ,R) = H2
+(X )⊕H2

−(X ) induced by a metric g .
For each α ∈ K (A) we can form moduli spaces
Mst

α (τ) ⊆Mss
α (τ) of τ -(semi)stable objects in class α. Here

Mst
α (τ) is a substack of Mpl

α , and has the structure of a
‘virtual oriented manifold’ (in Algebraic Geometry, it may be a
C-scheme with perfect obstruction theory; in Differential
Geometry, under genericness it may be an oriented manifold).
Also Mss

α (τ) is compact (proper). Thus, if Mst
α (τ) =Mss

α (τ)
we have a virtual class [Mss

α (τ)]virt, which we regard as an
element of H∗(Mpl

α ). The virtual dimension is
vdimR[Mss

α (τ)]virt = 2− χ(α, α), so [Mss
α (τ)]virt lies in

Ȟ0(Mpl
α ) ⊂ Ȟ0(Mpl), which is a Lie algebra by (b).

We can prove all of (a)–(e) already in the cases we care about.
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Here is the conjectural part of the picture:

(f) For many theories, there is a problem defining the invariants
[Mss

α (τ)]virt when Mst
α (τ) 6=Mss

α (τ), i.e. when the moduli
spaces Mss

α (τ) contain strictly τ -semistable points (in gauge
theory, these are reducible connections).
We conjecture there is a systematic way to define [Mss

α (τ)]virt
in homology over Q (not Z) in these cases. (In gauge theory,
this requires a condition analogous to b2+ > 1.)

(g) If τ, τ̃ are stability conditions and α ∈ K (A), we expect that

[Mss
α (τ̃)]virt =

∑
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .
[
[Mss

α1
(τ)]virt,

[Mss
α2

(τ)]virt
]
, . . .

]
, [Mss

αn
(τ)]virt

]
, (1)

where Ũ(−) are combinatorial coefficients defined in my
previous work on wall-crossing formulae for motivic invariants,
and [ , ] is the Lie bracket on Ȟ0(Mpl) from (b).

(h) We can often give an explicit, inductive definition of the
[Mss

α (τ)]virt using (1) and the method of pair invariants.
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We prove our conjectures completely when A = mod-CQ is the
category of representations of a quiver Q without oriented cycles,
and stability conditions τ are slope stability. In this case, if
Mst

α (τ) =Mss
α (τ) then Mss

α (τ) is a smooth projective C-scheme
(a compact complex manifold), given by a GIT quotient
AN//τ PGLα, so it has a fundamental class [Mss

α (τ)]fund, and we
set [Mss

α (τ)]virt = [Mss
α (τ)]fund. But we also define [Mss

α (τ)]virt if
Mst

α (τ) 6=Mss
α (τ).

In a sequel by Bojko–Joyce–Upmeier, we will extend this to quivers
with relations mod-CQ/I , with Behrend–Fantechi virtual cycles
when Mst

α (τ) =Mss
α (τ), and to 4-Calabi–Yau dg-quivers, with

Borisov–Joyce virtual cycles. These are toy models for
A = coh(X ) when X is a curve, a surface, or a Calabi–Yau 4-fold.
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Remarks on counting strictly τ -semistables

When Mst
α (τ) =Mss

α (τ), the virtual classes [Mss
α (τ)]virt are

defined using a geometric structure on Mss
α (τ) (e.g. smooth

C-schemes, or C-schemes with perfect obstruction theories, or
−2-shifted symplectic derived schemes) by a known construction.
When Mst

α (τ) 6=Mss
α (τ), we currently have no definition of

[Mss
α (τ)]virt in terms of a geometric structure on Mss

α (τ).
For quivers, our proof works by showing that there are unique
[Mss

α (τ)]virt when Mst
α (τ) 6=Mss

α (τ), extending the given ones when
Mst

α (τ) =Mss
α (τ), which also satisfy the wall-crossing formula (1).

So the definition involves all stability conditions, not just one.
For Joyce–Song Donaldson–Thomas invariants, counting strictly
τ -semistables is a complicated mess, and uses rational weights.
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Motivic invariants versus homology

An invariant I (X ) of algebraic K-varieties X in a commutative ring
R is motivic if I (X ) = I (Y ) + I (X \ Y ) if Y ⊂ X is closed
subvariety, and I (X × Y ) = I (X )I (Y ). Examples are the Euler
characteristic χ(X ), with R = Z, and virtual Poincaré polynomials.
Over 2003-8 I worked on invariants I ssα (τ) which ‘counted’
Algebro-Geometric moduli stacks Mst

α (τ) ⊆Mss
α (τ) using motivic

invariants, including wall-crossing formulae under change of
stability condition. An important tool was Ringel–Hall algebras
and Lie algebras of stack functions SF(M) on moduli spaces M.
(See ‘Configurations in abelian categories I–IV’, and Joyce–Song.)
Homology H∗(M) and virtual classes [Mss

α (τ)]virt are not motivic,
so this old work does not apply. But the new theory works by
taking the old results on invariants and wall-crossing formulae in a
Lie algebra of stack functions SFind

al (M), and replacing this by the
Lie algebra Ȟ0(Mpl) that comes out of my vertex algebra work.
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Which invariant theories fit into our framework?

I expect the following to satisfy versions of our conjecture:

Counting vector bundles or sheaves on projective curves X .

Counting sheaves plus extra data (Higgs fields, . . . ) on curves.

Counting sheaves on surfaces with h2,0(X )=0, à la Mochizuki.

Donaldson–Thomas invariants of Fano 3-folds.

Donaldson–Thomas type invariants of Calabi–Yau 4-folds.

U(m) Donaldson invariants of 4-manifolds with b2+ = 1.

Quivers, quivers with relations, CY4 dg-quivers.

Donaldson–Thomas invariants of Calabi–Yau 3-folds are related,
but don’t fit the structure above exactly (the virtual dimension is
not 2− χ(α, α)). Similarly for Donaldson invariants with b2+ > 1,
and surfaces with h2,0(X ) > 0. (Actually our theory works here (?),
but the invariants are zero; fix determinants to make them nonzero.)
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Interesting questions and future projects

Do the invariants [Mss
α (τ)]virt in these theories have a

common universal structure determined by a small amount of
data? (Something like Seiberg–Witten ⇒ Donaldson
invariants, MNOP Conjecture, etc.)

Does the vertex algebra structure relate to deep properties of
enumerative invariants? (Modularity of generating functions, etc.)

How should the picture be modified for theories like
Donaldson theory for b2+ > 1, surfaces with h2,0(X ) > 0?
(Now no wall-crossing, but counting strictly τ -semistables and
pair invariants make sense, so we may have something to say.)

Replace H∗(−) by a complex oriented generalized homology
theory E∗(−)? K-theory enumerative invariants already studied.

Extension to triangulated categories, Bridgeland stability?

Does our picture have an interpretation in String Theory?
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2. More details
2.1. Vertex and Lie algebras on homology of moduli stacks

We will explain the Algebraic Geometry version of our theory. Let
A be a C-linear abelian or triangulated category from Algebraic
Geometry or Representation Theory, e.g. A = coh(X ) or Db coh(X )
for X a smooth projective C-scheme, or A = mod-CQ or Db mod-CQ.
Write M for the moduli stack of objects in A, which is an Artin
C-stack in the abelian case, and a higher C-stack in the
triangulated case. There is a morphism Φ :M×M→M acting
by ([E ], [F ])→ [E ⊕ F ] on C-points.
Now Gm acts on objects E in A with λ ∈ Gm acting as
λ idE : E → E . This induces an action Ψ : [∗/Gm]×M→M of
the group stack [∗/Gm] on M. We write Mpl =M/[∗/Gm] for
the quotient, called the ‘projective linear’ moduli stack. There is a
morphism M→Mpl which is a [∗/Gm]-fibration on M\ {[0]}.
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We need some extra data:

A quotient K0(A)� K (A) giving splittings
M =

⊕
α∈K(A)Mα, Mpl =

⊕
α∈K(A)M

pl
α .

A symmetric biadditive Euler form χ : K (A)× K (A)→ Z.

A perfect complex Θ• on M×M satisfying some
assumptions, including rankΘ|Mα×Mβ

= χ(α, β).
If A is a 4-Calabi–Yau category, and we will use Borisov–Joyce
virtual classes, we take Θ• = (Ext•)∨, where Ext• →M×M
is the Ext complex. Otherwise we take Θ• = (Ext•)∨ +
σ∗(Ext•), where σ :M×M→M×M swaps the factors.

Signs εα,β ∈ {±1} for α, β ∈ K (A) with εα,β · εα+β,γ =
εα,β+γ · εβ,γ and εα,β · εβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β).
(These compare orientations on Mα,Mβ,Mα+β.)

Then we can make the homology H∗(M), with grading shifted to
Ĥ∗(M) as above, into a graded vertex algebra.
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Writing H∗([∗/Gm]) = Q[t] with deg t = 2, the state-field
correspondence Y (z) is given by, for u ∈ Ha(Mα), v ∈ Hb(Mβ)

Y (u, z)v = εα,β(−1)aχ(β,β)zχ(α,β) · H∗
(
Φ ◦ (Ψ× id)

)
(2){(∑

i>0
z i t i
)
�
[
(u�v)∩exp

(∑
j>1

(−1)j−1(j−1)!z−j chj([Θ•])
)]}

.

The identity 1 is 1 ∈ H0(M0). Define ezD : Ȟ∗(M)→ Ȟ∗(M)[[z ]]
by Y (v , z)1 = ezDv . Then (Ȟ∗(M),1, ezD ,Y ) is a graded vertex
algebra. By a standard construction in vertex algebra theory,
Ȟ∗+2(M)/D(Ȟ∗(M)) is a graded Lie algebra. In the abelian
category case at least, there is a canonical isomorphism
Ȟ∗(Mpl) ∼= Ȟ∗+2(M)/D(Ȟ∗(M)). This makes Ȟ∗(Mpl) into a
graded Lie algebra, and Ȟ0(Mpl) into a Lie algebra.
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Remarks

• One can often write down Ȟ∗(M) and Ȟ∗(Mpl) with their
algebraic structures explicitly. The answer is usually simpler in the
derived category case. For example, Jacob Gross showed that if a
smooth projective C-scheme X is a curve, surface, or toric variety,
and M is the moduli stack of Db coh(X ), then

Ĥ∗(M,Q) ∼= Q[K 0
sst(X )]⊗R Sym∗

(
K 0(X an)⊗Z t2Q[t2]

)
⊗R

∧
∗(K 1(X an)⊗Z tQ[t2]

)
, (3)

with a super-lattice vertex algebra structure. Thus we can use this
for explicit computations in examples, as well as for abstract theory.
• It helps to study [Mss

α (τ)]virt in coh(X ) using H∗(M), H∗(Mpl)
for Db coh(X ), so we can use the presentation (3).
• Although Lie algebras are much simpler than vertex algebras, it is
difficult to write down the Lie bracket on Ȟ∗(Mpl) explicitly: the
best way seems to be via the vertex algebra structure on Ĥ∗(M).
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2.2. Virtual classes of moduli spaces

The vertex and Lie algebras Ĥ∗(M), Ȟ∗(Mpl) above work for M
the moduli stack of objects in coh(X ) or Db coh(X ) for X a smooth
projective C-scheme of any dimension. However, defining virtual
classes [Mss

α (τ)]virt when Mst
α (τ)=Mss

α (τ) is much more restrictive:

If dimA = 1, say if A = mod-CQ or A = coh(X ) for X a
curve, then Mss

α (τ) is a smooth projective C-scheme, and has
a fundamental class [Mss

α (τ)]fund.
If dimA = 2, say if A = mod-CQ/I or A = coh(X ) for X a
surface, then Mss

α (τ) is a projective C-scheme with obstruction
theory, and has a Behrend–Fantechi virtual class [Mss

α (τ)]virt.
If A = coh(X ) for X a Calabi–Yau or Fano 3-fold, one can
also define Behrend–Fantechi virtual classes [Mss

α (τ)]virt.
If A = coh(X ) for X a Calabi–Yau 4-fold, Borisov–Joyce
define a very different kind of virtual class [Mss

α (τ)]virt, with
half the expected dimension of the Behrend–Fantechi class.
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2.3 On moduli stacks and moduli schemes

There are two main ways of forming moduli spaces in Algebraic
Geometry: as schemes or stacks. An important difference is that if
M is a moduli stack of objects E , then automorphism groups are
remembered in the isotropy groups of M by IsoM([E ]) = Aut(E ),
but moduli schemes forget automorphism groups.
Our moduli stacks M,Mpl differ in that their isotropy groups are
IsoM([E ]) = Aut(E ), but IsoMpl([E ]) = Aut(E )/(Gm · idE ).
If E is τ -stable then Aut(E ) = Gm · idE , so IsoMpl([E ]) = {1}.
Because of this, the τ -stable moduli scheme Mst

α (τ) is actually an
open substack inMpl (but notM). This makesMpl useful for us.
The τ -semistable moduli scheme Mss

α (τ) has the good property
that it is usually compact (proper). But it has the bad properties
that it does not map to Mpl or M, and the obstruction theory (or
other nice structure) on Mst

α (τ) does not extend to Mss
α (τ), so we

cannot define a virtual class [Mss
α (τ)]virt unless Mst

α (τ) =Mss
α (τ).
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3. Proof in the case of quivers

Let Q = (Q0,Q1, h, t) be a quiver, with finite sets Q0 of vertices
and Q1 of edges, and head and tail maps h, t : Q1 → Q0. Then we
have a C-linear abelian category mod-CQ of representations
(Vv , ρe) of Q, comprising a finite-dimensional C-vector space Vv

for each v ∈ Q0 and a linear map ρe : Vt(e) → Vh(e) for each e ∈ Q1.

The dimension vector of (Vv , ρe) is d ∈ NQ0 , where d (v) = dimVv .
We can work out our theory very explicitly for A = mod-CQ. We
take K (A) = ZQ0 . Then M =

∐
d∈NQ0Md , Mpl =

∐
d∈NQ0M

pl
d ,

where Md = [Rd/GLd ], Mpl
d = [Rd/PGLd ] with

Rd =
∏

e∈Q1
Hom(Ct(d (e)),Ch(d (e))), GLd =

∏
v∈Q0

GL(d (v)),

and PGLd = GLd /Gm. Hence H∗(Md ) ∼= H∗(B GLd ) and

H∗(Mpl
d ) ∼= H∗(B PGLd ), which we can write explicitly.
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Slope stability conditions

Fix µv ∈ R for all v ∈ Q0. Define µ : NQ0 \ {0} → R by

µ(d ) =
(∑

v∈Q0
µvd (v)

)/(∑
v∈Q0

d (v)
)
.

We call µ a slope function. An object 0 6= E ∈ mod-CQ is called
µ-semistable (or µ-stable) if whenever 0 6= E ′ ( E is a subobject
we have µ(dimE ′) > µ(dimE ) (or µ(dimE ′) > µ(dimE )).

Recall that Mpl
d = [Rd/PGLd ] as a quotient stack. King (1994)

showed that there is a linearization θ of the action of PGLd on
Rd , such that a C-point [E ] ∈ [Rd/PGLd ] is µ-(semi)stable in
mod-CQ iff the corresponding point in Rd is GIT (semi)stable.
Hence there are moduli schemes Mst

d (µ) ⊆Mss
d (µ) which are the

GIT (semi)stable quotients Rd//
st
θ PGLd ⊆ Rd//

ss
θ PGLd .

If Q has no oriented cycles then a Gm subgroup of PGLd acts on
Rd with positive weights, so Mss

d (µ) = Rd//
ss
θ PGLd is a

projective C-scheme. Also Mst
d (µ) = Rd//

st
θ PGLd is a smooth

quasi-projective C-scheme, an open substack of Mpl
d = [Rd/PGLd ].
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Thus, if Q has no oriented cycles, and µ is a slope function on
mod-CQ, and d ∈ NQ0 \ {0} with Mst

d (µ) =Mss
d (µ), then

Mss
d (µ) is a smooth projective C-scheme and an open substack of

Mpl
d , and has a fundamental class [Mss

d (µ)]fund in H∗(Mpl
d ). It

has dimension 2− χ(d ,d ), where χ : ZQ0 × ZQ0 → Z is

χ(d , e) = 2
∑

v∈Q0

d (v)e(v)−
∑

e∈Q1

(d (h(e))e(t(e))+d (t(e))e(h(e))).

Theorem 1

Let Q be a quiver with no oriented cycles. Then for all slope
functions µ on mod-CQ and d ∈ NQ0 \ {0}, there exist unique

classes [Mss
d (µ)]virt ∈ H2−χ(d ,d )(M

pl
d ) = Ȟ0(Mpl

d ) such that:

(i) If Mst
d (µ) =Mss

d (µ) then [Mss
d (µ)]virt = [Mss

d (µ)]fund.

(ii) The [Mss
d (µ)]virt transform according to the wall-crossing

formula (1) above in the Lie algebra Ȟ0(Mpl) under change
of stability condition.
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We also prove:

Theorem 2

There is a notion of morphism of quivers λ : Q → Q ′, which
induces a functor λ∗ : mod-CQ → mod-CQ ′, and morphisms of
vertex algebras Ω : Ĥ∗(M)→ Ĥ∗(M′) and of Lie algebras
Ωpl : Ȟ∗(Mpl)→ Ȟ∗(M′pl). If µ′ is a slope function on mod-CQ ′
then µ = µ ◦ λ∗ is a slope function on mod-CQ. Then for each
d ∈ NQ0 \ {0} with λ∗(d ) = d ′ ∈ NQ′

0 \ {0}, the virtual classes
[Mss

d (µ)]virt of Theorem 1 satisfy∏
v∈Q0

d (v)! · Ωpl
(
[Mss

d (µ)]virt
)

=
∏

v ′∈Q′
0
d ′(v ′)! · [M′ssd ′ (µ′)]virt.
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Sketch proof of Theorems 1 and 2

We call a slope function µ decreasing if for all edges
v• e−→ w• in Q

we have µv > µw . Such µ exist if and only if Q has no oriented
cycles. If µ is decreasing, for each d ∈ NQ0 \ {0}, either:

(a) d = δv for some v ∈ Q0, that is, d (v) = 1 and d (w) = 0 for
w 6= v . Then Mst

d (µ) =Mss
d (µ) is a single point ∗.

(b) d = nδv for some v ∈ Q0 and n > 1. Then Mst
d (µ) = ∅ and

Mss
d (µ)∼=[∗/PGL(n,C)]. Note that 2−χ(d ,d )=2−2n2<0.

(c) d 6= nδv for any v ∈ Q0, n > 1. Then Mst
d (µ) =Mss

d (µ) = ∅.
Hence the classes [Mss

d (µ)]virt in Theorem 1 must be

[Mss
d (µ)]virt =

{
1 ∈ H0(Mpl

d ) ∼= R, d = δv , v ∈ Q0,

0, otherwise,
(4)

as in case (b) [Mss
d (µ)]virt ∈ H<0(Mpl

d ) = 0.
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Equation (4) for some fixed decreasing µ, and the wall-crossing
formula in Theorem 1(ii) from µ to µ̇, then determine unique
classes [Mss

d (µ̇)]virt for all slope functions µ̇ on mod-CQ. We
prove these satisfy Theorem 1(ii) for wall-crossing from µ̇ to µ̈, for
any two slope functions µ̇, µ̈, by an associativity property of the
wall-crossing formula proved in my 2003 work on motivic invariants.
So far we have constructed classes [Mss

d (µ)]virt as in Theorem 1,
satisfying Theorem 1(ii), but we do not yet know they satisfy (i).
Next we prove these classes [Mss

d (µ)]virt satisfy Theorem 2, using
the fact that since Ωpl : Ȟ∗(Mpl)→ Ȟ∗(M′pl) is a Lie algebra
morphisms, it takes the wall-crossing formula (1) in Ȟ∗(Mpl) used
to define [Mss

d (µ)]virt to an identity in Ȟ∗(M′pl). The factors∏
v d (v)!,

∏
v ′ d ′(v ′)! arise because of a combinatorial identity

relating the number of different ways of splitting d = d 1 + · · ·+ d n

in NQ0 \ {0}, and d ′ = d ′1 + · · ·+ d ′n in NQ′
0 \ {0}.
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Finally we show the [Mss
d (µ)]virt satisfy Theorem 1(i). This is the

most difficult part. If d (v) ∈ {0, 1} and Q is a tree, we deduce the
result using results of Joyce–Song on Donaldson–Thomas type
invariants for quivers. Then we build up to progressively more
general Q,d using Theorem 2 in different ways.

The methods we use to prove Theorem 1 are very special to
quivers. We currently don’t have nice ways to generalize them to
cases such as A = coh(X ). But I believe the conjectures anyway.
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