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Man® C Mang°. Manifolds with g-corners are locally mod-
elled on Xp = Homwmon (P, [0, oo)) for P a weakly toric
monoid, where Xp 2 [0,00)% x R*™F for P = N* x zn~F,
Most differential geometry of manifolds with corners extends
nicely to manifolds with g-corners, including well-behaved
boundaries 9X. In some ways manifolds with g-corners have
better properties than manifolds with corners; in particular,
transverse fibre products in Man®8¢ exist under much weaker
conditions than in Man®.
This paper was motivated by future applications in symplec-
tic geometry, in which some moduli spaces of J-holomorphic
curves can be manifolds or Kuranishi spaces with g-corners
rather than ordinary corners.
Our manifolds with g-corners are related to the ‘interior bi-
nomial varieties’ of Kottke and Melrose [20], and the ‘positive
log differentiable spaces’ of Gillam and Molcho [6].
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1. Introduction

Manifolds with corners are differential-geometric spaces locally modelled on R} =
[0,00)F x R" %, just as manifolds are spaces locally modelled on R". Manifolds with
corners form a category Man€, containing manifolds Man C Man®€ as a full subcategory.
Some references are Melrose [26-28] and the author [8].

This paper introduces an extension of manifolds with corners, called manifolds with
generalized corners, or manifolds with g-corners. They are differential-geometric spaces
locally modelled on Xp = Hompon (P, [0, oo)) for P a weakly toric monoid, where Mon
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is the category of (commutative) monoids, and [0, 00) is a monoid under multiplication.
When P = N* x Z"™" we have Xp = R} = [0,00)* x R"™*, 50 the local models include
those for manifolds with corners. Manifolds with g-corners form a category Man8¢, which
contains manifolds with corners Man® C Man®¢ as a full subcategory.

To convey the idea, we start with an example:

Example 1.1. The simplest manifold with g-corners which is not a manifold with corners
is X = {(331,332,1’3,1‘4) € [0,00)* : T2y = x3x4}. We have X = Xp, where P is the
monoid P = {(a,b,c) € N*:e¢<a+ b}.
Then X is 3-dimensional, and has four 2-dimensional boundary faces
Xi3={(21,0,3,0) : z1,23€[0,00)}, X14={(21,0,0,24) : 21,24 €[0,00)},
Xo3={(0,22,23,0) : 22, 23€[0,00)}, X24={(0,22,0,34) : 32,24 €[0,00)},

and four 1-dimensional edges

X1 = {(1‘17070,0) L S [0, OO)
X3 ={(0,0,3,0) : 73 € [0, 00)

——

) X2:{(0am2a070):x2€[0’00) ’
, X4:{(O,O,O,J;4):a:4€[O,oo)},

——
[——;

all meeting at the vertex (0,0,0,0) € X. In a 3-manifold with (ordinary) corners such as
[0, 00)3, three 2-dimensional boundary faces and three 1-dimensional edges meet at each
vertex, so X has an exotic corner structure at (0,0,0,0).

Most of the important differential geometry of manifolds with corners extends to man-
ifolds with g-corners, and in some respects manifolds with g-corners are better behaved
than manifolds with corners. In particular, for manifolds with corners, transverse fibre
products X x4 zp Y in Man€ exist only under restrictive combinatorial conditions on
the boundary strata 67X, 0*Y, 8'Z, but for manifolds with g-corners, transverse fibre
products X X4z Y in Man®® exist under much milder assumptions. One can in fact
regard Man8¢ as being a kind of closure of Man® under a certain class of transverse
fibre products.

The author’s motivation for introducing manifolds with g-corners concerns eventual
applications in symplectic geometry. As we explain in §4.4, Kuranishi spaces are a ge-
ometric structure on moduli spaces of J-holomorphic curves in symplectic geometry,
introduced by Fukaya, Oh, Ohta and Ono [3,4]. Finding a good definition of Kuranishi
space has a problem from the outset. Recently the author gave a new definition [11],
and explained that Kuranishi spaces should be interpreted as derived smooth orbifolds,
where ‘derived’ is in the sense of the Derived Algebraic Geometry of Jacob Lurie and
Toén—Vezzosi.

Given a suitable category of manifolds, such as manifolds without boundary Man or
manifolds with corners Man€®, the author [11] defines a 2-category of Kuranishi spaces
Kur or Kuranishi spaces with corners Kur® containing Man C Kur and Man® C Kur®
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as full (2-)subcategories. Beginning with manifolds with g-corners, the same construction
yields a 2-category Kur&® of Kuranishi spaces with g-corners Kur8® with full (2-)sub-
categories Kur C Kur® C Kur®® and Man C Man® C Man®® C Kur®°.

For some applications the author is planning, it will be important to work in Kur&®
rather than Kur®. One reason is that fibre products in Kur®® exist under milder condi-
tions than in Kur® (basically, some fibre products in Kur® ought to be Kuranishi spaces
with g-corners rather than ordinary corners, and so exist in Kur8® but not in Kur®)
and this is needed in some constructions.

A second reason is that some classes of moduli spaces of J-holomorphic curves will
be Kuranishi spaces with g-corners rather than ordinary corners. Ma’u, Wehrheim and
Woodward [23,24,32-34], study moduli spaces of pseudoholomorphic quilts, which are
used to define actions of Lagrangian correspondences on Lagrangian Floer cohomology
and Fukaya categories.

Ma’u and Woodward [24] define moduli spaces M,, 1 of ‘stable n-marked quilted discs’
As in [24, §6], for n > 4 these are not manifolds with corners, but have an exotic corner
structure; in the language of this paper, the Mn,l are manifolds with g-corners. More
generally, one should expect moduli spaces of stable marked quilted J-holomorphic curves
to be Kuranishi spaces with g-corners. Pardon [31] uses moduli spaces of J-holomorphic
curves with g-corners to define contact homology of Legendrian submanifolds.

Manifolds with g-corners may also occur in moduli problems elsewhere in geometry.
Work of Chris Kottke (private communication) suggests that natural compactifications
of SU(2) magnetic monopole spaces may have the structure of manifolds with g-corners.

In [12] the author defines ‘M-homology’, a new homology theory M H,(Y;R) of a
manifold Y and a commutative ring R, canonically isomorphic to ordinary homology
H.(Y; R). The chains MCy(Y; R) for MH,.(Y; R) are R-modules generated by quadru-
ples [V,n,s,t] for V an oriented manifold with corners (or something similar) with
dmV =n+kand s:V — R" t:V — Y smooth maps with s proper near 0
in R™. In future work the author will define virtual chains for Kuranishi spaces in M-
homology, for applications in symplectic geometry. The set-up of [12] allows V to be a
manifold with g-corners.

The inspiration for this paper came from two main sources. Firstly, Kottke and Melrose
[20, §9] define interior binomial varieties X C Y, which in our language are a manifold
with g-corners X embedded as a submanifold of a manifold with corners Y. They study
transverse fibre products W = X x4 7z, Y in Man®, and observe that often the fibre
product may not exist as a manifold with corners, but still makes sense as an interior
binomial variety W C X x Y.

For Kottke and Melrose, the exotic corners of interior binomial varieties are a problem
to be eliminated, and one of their main results [20, §10] in our language is essentially an
algorithm to repeatedly blow up a manifold with g-corners (interior binomial variety)
X at its corner strata to obtain a manifold with corners X. In contrast, we embrace
manifolds with g-corners as an attractive new idea, which are just as good as manifolds
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with corners for many purposes. It seems clear from [20] that Kottke and Melrose could
have written a paper similar to this one, had they wanted to.

Kottke [19] translates the results of [20] into our language of manifolds with g-corners
and extends them, explaining how (after making some discrete choices) to blow up a
manifold with g-corners X to get a manifold with corners X with a proper, surjective
blow-down map 7 : X — X satisfying a universal property, and that such blow-ups pull
back by interior maps f : X7 — X5 in Man8°.

Secondly, as part of a project to generalize logarithmic geometry in algebraic geometry,
Gillam and Molcho [6, §6] define a category of positive log differentiable spaces, singu-
lar differential-geometric spaces with good notions of boundary and corners. In their
setting, manifolds with g-corners (or manifolds with corners) correspond to positive log
differentiable spaces which are log smooth (or log smooth with free log structure). Their
morphisms correspond to our interior maps. Motivated by [6], the author learnt a lot of
useful material on monoids and log smoothness from the literature on logarithmic geom-
etry, in particular Ogus [30], Gillam [5], Kazuya Kato [15,16] and Fumiharo Kato [17,18].

We begin in §2 with background material on manifolds with corners. The category
Man®¢ of manifolds with g-corners is defined in §3. Section 4 studies the differential
geometry of manifolds with g-corners, including immersions, embeddings, submanifolds,
and existence of fibre products under suitable transversality conditions. Longer proofs
of theorems in §4 are postponed to §5.

2. Manifolds with corners

We discuss the category of manifolds with corners, spaces locally modelled on R} =
[0,00)% x R"™ for 0 < k < n. Some references are Melrose [26-28] and the author [g],
[13, §5], [11, §3.1-§3.3].

2.1. The definition of manifolds with corners

We now define the category Man€® of manifolds with corners. The relation of our
definitions to other definitions in the literature is explained in Remark 2.4.

Definition 2.1. Use the notation R} = [0, 00)" x R™ ¥ for 0 < k < m, and write points
of R as u = (u1,...,Um) for ui,...,ur € [0,00), Upt1,...,um € R. Let U C RY”
and V' C R} be open, and f = (f1,...,fn) : U — V be a continuous map, so that
fi = filur,...,up) maps U = [0,00) for j =1,...,0 and U - Rfor j =1+1,...,n.
Then we say:

(a) f is weakly smooth if all derivatives % (U, ..., uy) : U — R exist and are
continuous in for all j =1,...,m and aq,...,a,, = 0, including one-sided derivatives
where u; =0 fori=1,... k.

By Seeley’s Extension Theorem, this is equivalent to requiring f; to extend to a
smooth function f; : U" — R on open neighbourhood U’ of U in R™.
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(b) f is smooth if it is weakly smooth and every w = (u1,...,ur,) € U has an open
neighbourhood U in U such that for each j = 1,...,1, either:

(i) we may uniquely write f;(n,...,0m) = Fj(i1,...,4y) - @5 @, for all
(T1,...,Um) € U, where F; : U — (0,00) is weakly smooth and a1 ;,...,ax,; €
N={0,1,2,...}, with a; ; = 0 if u; # 0; or

(ii) fjlg = 0.

(c) f is interior if it is smooth, and case (b)(ii) does not occur.

(d) fis b-normal if it is interior, and in case (b)(i), for each ¢ = 1,...,k we have a; ; > 0
for at most one j =1,...,1[.

(e) f is strongly smooth if it is smooth, and in case (b)(i), for each j =1,...,] we have

a;,; = 1 for at most one ¢ =1,...,k, and a;; = 0 otherwise.

(f) fis simpleif it is interior, and in case (b)(i), for each ¢ = 1, ..., k with u; = 0 we have

a;j = 1 for exactly one j = 1,...,l and a; ; = 0 otherwise, and for all j =1,...,1

we have a; ; = 1 for at most one i =1,...,k.

Simple maps are strongly smooth and b-normal.

(g) fis a diffeomorphism if it is a bijection, and both f: U — V and f=!:V — U are
weakly smooth.
This implies that f, f~! are also smooth, interior, b-normal, strongly smooth, and
simple. Hence, all the different definitions of smooth maps of manifolds with corners
we discuss yield the same notion of diffeomorphism.

All seven of these classes of maps f : U — V include identities, and are closed under
compositions from f: U =V, g:V — W togo f:U — W. Thus, each of them makes
the open subsets U C R} for all m, k into a category.

Definition 2.2. Let X be a second countable Hausdorff topological space. An m-
dimensional chart on X is a pair (U, ¢), where U C R} is open for some 0 < k < m,
and ¢ : U — X is a homeomorphism with an open set ¢(U) C X.

Let (U, ¢), (V,4) be m-dimensional charts on X. We call (U, ¢) and (V, ) compatible
if p~tog: o7 (A(U)NY(V)) = =1 (o(U) Ny(V)) is a diffeomorphism between open
subsets of R}, R;", in the sense of Definition 2.1(g).

An m-dimensional atlas for X is a system {(U,, ¢,) : a € A} of pairwise compatible
m-dimensional charts on X with X = J,c 4 #a(Ua). We call such an atlas maximal if it
is not a proper subset of any other atlas. Any atlas {(U,, @) : @ € A} is contained in a
unique maximal atlas, the set of all charts (U, ¢) of this type on X which are compatible
with (Ug, @) for all a € A.

An m-dimensional manifold with corners is a second countable Hausdorff topological
space X equipped with a maximal m-dimensional atlas. Usually we refer to X as the
manifold, leaving the atlas implicit, and by a chart (U, ¢) on X, we mean an element of
the maximal atlas.

Now let X, Y be manifolds with corners of dimensions m, n, and f : X — Y a
continuous map. We call f weakly smooth, or smooth, or interior, or b-normal, or strongly
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smooth, or simple, if whenever (U, ¢), (V, ) are charts on X, Y with U C R}, V C R}
open, then

vlofog:(fo) H(U(V) —V (2.1)

is weakly smooth, or smooth, or interior, or b-normal, or strongly smooth, or simple,
respectively, as maps between open subsets of Ri', R;" in the sense of Definition 2.1.
It is sufficient to check this on any collections of charts (U, ¢q)aca covering X and
(Vo, v )bep covering Y.

We call f: X =Y a diffeomorphism if f is a bijectionand f: X =Y, f71:Y = X
are weakly smooth. This implies that f, f~! are also smooth, interior, strongly smooth,
and simple.

These seven classes of (a) weakly smooth maps, (b) smooth maps, (c¢) interior maps,
(d) b-normal maps, (e) strongly smooth maps, (f) simple maps, and (g) diffeomorphisms,
of manifolds with corners, all contain identities and are closed under composition, so each
makes manifolds with corners into a category.

In this paper, we work with smooth maps of manifolds with corners (as we have
defined them), and we write Man® for the category with objects manifolds with corners
X, Y, and morphisms smooth maps f : X — Y in the sense above.

C

We will also write Mang,, Mang;, Mang,

¢, Mang, for the subcategories of Man®

with morphisms interior maps, and strongly smooth maps, and interior strongly smooth
maps, and simple maps, respectively.

Write Man® for the category whose objects are disjoint unions Hfrf:o Xm, where X,
is a manifold with corners of dimension m, allowing X,,, = (), and whose morphisms are
continuous maps f : [I>_ X — [[—o Yn, such that f|x, qp-1(v,) : X N f7H(Ys) —
Y,, is a smooth map of manifolds with corners for all m,n > 0. Objects of Man® will be
called manifolds with corners of mized dimension. We regard Man® as a full subcategory
of Man€.

Alternatively, we can regard Man® as the category defined exactly as for Man® above,
except that in defining atlases {(U,, @) : @ € A} on X, we omit the condition that all
charts (U,, @) in the atlas must have the same dimension dim U, = m.

We will also write Manicn, l\V/Iangt, Manfs, Mangi for the subcategories of Man®
with the same objects, and morphisms interior, or strongly smooth, or interior strongly
smooth, or simple maps, respectively.

Example 2.3.

(i) f:R —[0,00), f(x) = 2? is weakly smooth but not smooth.

(ii) f:R —[0,00), f(z) = 2% + 1 is strongly smooth and interior.

(iii) f:[0,00) = [0,00), f(z) = 2? is interior, but not strongly smooth.
(iv) f:*x—[0,00), f(*) =0 is strongly smooth but not interior.

(v) f:x—[0,00), f(*) =1 is strongly smooth and interior.
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[0,00), f(

0,00), f(z,y) = x + y is weakly smooth, but not smooth.
[0,00), f(z,y) = xy is interior, but not strongly smooth.

(vi) [0, 00
0, 0

f:
(vii) £+ ]

)2 —
)? =
Remark 2.4. Some references on manifolds with corners are Cerf [1], Douady [2],
Gillam and Molcho [6, §6.7], Kottke and Melrose [20], Margalef-Roig and Outerelo
Dominguez [22], Melrose [26-28], Monthubert [29], and the author [8], [13, §5]. Just
as objects, without considering morphisms, most authors define manifolds with corners
as in Definition 2.2. However, Melrose [20,25-28] and authors who follow him impose an
extra condition: in §2.2 we will define the boundary 0X of a manifold with corners X,
with an immersion ix : X — X. Melrose requires that ix|c : C — X should be in-
jective for each connected component C of 90X (such X are sometimes called manifolds
with faces).

There is no general agreement in the literature on how to define smooth maps, or

morphisms, of manifolds with corners:

(i) Our notion of ‘smooth map’ in Definitions 2.1 and 2.2 is due to Melrose [27, §1.12],
[25, §1], [20, §1], who calls them b-maps.
Our notation of ‘interior maps’ and ‘b-normal maps’ is also due to Melrose.

(ii) Monthubert’s morphisms of manifolds with corners [29, Def. 2.8] coincide with our
strongly smooth b-normal maps.

(iii) The author [8] defined and studied ‘strongly smooth maps’ above (which were just
called ‘smooth maps’ in [8]).
Strongly smooth maps were also used to define d-manifolds with corners in the 2012
version of [13]. However, the final version of [13] will have a different definition using
smooth maps (i.e. Melrose’s b-maps).

(iv) Gillam and Molcho’s morphisms of manifolds with corners [6, §6.7] coincide with
our ‘interior maps’.

(v) Most other authors, such as Cerf [1, §I.1.2], define smooth maps of manifolds with
corners to be weakly smooth maps, in our notation.

Remark 2.5. We can also define real analytic manifolds with corners, and real analytic
maps between them. To do this, if U C R} and V' C R} are open, we define a smooth
map f = (f1,..., fn) : U = V in Definition 2.4 to be real analytic if each map f; : U — R
for i =1,...,nis of the form f; = f/|y, for U" an open neighbourhood of U in R™ and
f1: U’ — R real analytic in the usual sense (i.e. the Taylor series of f/ at & converges to
f! near z for each x € U’).

Then we define {(U,, ¢4) : a € A} to be a real analytic atlas on a topological space
X as in Definition 2.2, except that the transition functions (;5;1 o ¢, are required to be
real analytic rather than just smooth. We define a real analytic manifold with corners
to be a Hausdorff, second countable topological space X equipped with a maximal real
analytic atlas.
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Given real analytic manifolds with corners X, Y, we define a continuous map f :
X — Y to be real analytic if whenever (U, ¢), (V, 1) are real analytic charts on X, Y (that
is, charts in the maximal real analytic atlases), the transition map 1y ~to fodin (2.1) is a
real analytic map between open subsets of R}, R} in the sense above. Then real analytic
manifolds with corners and real analytic maps between them form a category Mang,.

There is an obvious faithful functor Fll\\/I/I:l’Ill:a : Mang, — Man®, which on objects
replaces the maximal real analytic atlas by the (larger) corresponding maximal smooth
atlas containing it. Note that given a smooth manifold with corners X, making X into a
real analytic manifold with corners is an additional structure on X, a refinement of the
maximal smooth atlas on X, which can be done in many ways. So Fl\l\/f:r‘;‘; is far from
injective on objects. Essentially all the material we discuss for manifolds with corners
also works for real analytic manifolds with corners, except for constructions requiring
partitions of unity.

2.2. Boundaries and corners of manifolds with corners
The material of this section broadly follows the author [8], [13, §5].

Definition 2.6. Let U C R} be open. For each uw = (uy,...,u,) in U, define the depth
depthy; v of v in U to be the number of uy,...,w; which are zero. That is, depthy; u is
the number of boundary faces of U containing u.

Let X be an m-manifold with corners. For x € X, choose a chart (U, ¢) on the
manifold X with ¢(u) = « for v € U, and define the depth depthy z of z in X by
depth y 2 = depth;; u. This is independent of the choice of (U, ¢). For each I =0,...,n,
define the depth | stratum of X to be

SHX)={x € X :depthyz =1}.

Then X = [[, SY(X) and S'(X) = U;_, S*(X). The interior of X is X° = SO(X).
Each S'(X) has the structure of an (n — [)-manifold without boundary.

Definition 2.7. Let X be an n-manifold with corners, z € X, and k =0,1,...,n. A local
k-corner component v of X at x is a local choice of connected component of S*(X)
near x. That is, for each sufficiently small open neighbourhood V of x in X, v gives a
choice of connected component W of V' N S*¥(X) with 2 € W, and any two such choices
V, W and V', W’ must be compatible in that z € (W nW").

Let depthy 2 = I. Choose a chart (U,¢) on X with (0,...,0) € U C R} open and
#(0,...,0) = z. Then we have

SkHU) = H {(ui,....up) €U tuq, =0, i=1,... Kk,

a1 <ap<<a (2.2)
ISmsasmsast 20, je {0\ {ar, . ak} )
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For each choice of aq,...,ak, the subset on the right hand of (2.2) contains (0,...,0)
in its closure in U, and its intersection with a small ball about (0,...,0) is connected.
Thus this subset determines a local k-corner component of U at (0,...,0), and hence a
local k-corner component of X at x.

Equation (2.2) implies that all local k-corner components of U at (0,...,0) and X
at x are of this form. Therefore, local k-corner components of U C R;" at (0,...,0) are
in 1-1 correspondence with subsets {ai,...,ax} C {1,...,1} of size k, and there are
(det,?X ?) distinct local k-corner components of X at z.

When &k =1, we also call local 1-corner components local boundary components of X
at x. There are depthy x distinct local boundary components of X at x. By considering
the local model R}, it is easy to see that there is a natural 1-1 correspondence between

local k-corner components v of X at x, and (unordered) sets {/31,..., Sk} of k distinct
local boundary components 1, ..., B of X at x, such that if V' is a sufficiently small open
neighbourhood of z in X and f1,..., 8% and  give connected components W7y,..., W

of VN SY(X) and W' of V N S¥(X), then W' C N, W,
As sets, define the boundary 0X and k-corners Cy(X) for k=10,1,...,n by

0X = {(z,ﬂ) :x € X, B is a local boundary component of X at x}, (2.3)
Cr(X) ={(z,7) : v € X, v is a local k-corner component of X at z}, (2.4)

so that 0X = C1(X). The 1-1 correspondence above shows that

Cr(X) = {(m,{ﬂl,...,ﬂk}) x € X, B,..., B are distinct

(2.5)
local boundary components for X at CE}

Since each € X has a unique 0-boundary component, we have Cy(X) = X.
If (U, ¢) is a chart on X with U C R} open, then for each ¢ = 1,...,] we can define
a chart (U;, ¢;) on 0X by
- { U1y, Un—1 GR[ 1 . (’111,...7’07;71,0,’1)7;,...,’Unfl) eU gR?}7
¢i : (’01, e ,’Unfl) — (QS(’Ul, ey Ui, O,Ui, ey 'Unfl), (25*({11,1 = 0}))

Similarly, if 0 < k& < [, then for each 1 < a1 < -+ < ap < I we can define a chart
(U{al,...,ak}v(rb{al,...,ak}) on Ck(X) b,

Ufar,..an} = {(vl, ey Un—k) G]Rl":kk s (1, Vay-1,0,Va, - vy Vay—2, 0,
Vag—1y -+ 3Vaz—3, 0y Vag—2y -+ « s Vap—ks 0y Vay ket 1y -« s Un—k) EU C Rl"},

¢{a1 _____ ar} - (vl,...,vn,k) — (¢(v17...,va1,1,0,va1,...,Uarg,(), (26)
Vag—1s- -3y Vaz—3> 0y Vag—2y« -« s Vap—ks 0y Vap —kt1s -« - Un—k)s

G ({tta, =+ = uq, = O}))
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Yy

Fig. 2.1. The teardrop, a 2-manifold with corners.

The families of all such charts on 90X and Cj(X) are pairwise compatible, and define
atlases on X and Cj(X). The corresponding maximal atlases make 0X into an (n—1)-
manifold with corners and Cy(X) into an (n — k)-manifold with corners, with 0X =
C1(X) and Cp(X) = X as manifolds with corners.

We call X a manifold without boundary if 0X = 0, and a manifold with boundary if
0?°X = (). We write Man and Man® for the full subcategories of Man® with objects
manifolds without boundary, and manifolds with boundary, so that Man C ManP C
Man€. This definition of Man is equivalent to the usual definition of the category of
manifolds.

Define maps ix : 0X — X, I1: Cx(X) = X and ¢ : X — Co(X) by ix : (z,8) — =z,
IT: (z,7) — x and ¢ : © — (z,[X°]). Considering local models, we see that iy, II, ¢ are
(strongly) smooth, but iy, II are not interior. Note that these maps ix, II may not be
injective, since the preimage of x € X is depth y  points in 9X and (deptlilx ?) points in
Cr(X). So we cannot regard 0X and Cy(X) as subsets of X.

Example 2.8. The teardrop T = {(x,y) € R?*:2>0,y2 < a? —a*}, shown in Fig. 2.1, is
a manifold with corners of dimension 2. The boundary 97T is diffeomorphic to [0, 1], and
so is connected, but i : 0T — T is not injective. Thus T is not a manifold with faces,
in the sense of Remark 2.4.

If X is an n-manifold with corners, we can take boundaries repeatedly to get manifolds
with corners 9X,0%X = 9(0X),03X,...,0"X. To relate these to the corners Cy(X),
note that by considering local models U C R}, it is easy to see that there is a natural
1-1 correspondence

{local boundary components of 9X at (z, )} =

{local boundary components 3’ of X at  with 8’ # 8}.

Using this and induction, we can show that there is a natural identification

kX =~ {(x,Bl,...,Bk) cx € X, P, .., B are distinct @7
2.7
local boundary components for X at x},
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where under the identifications (2.7), the map igri-1x : 0*X — 0*7'X maps
(x,B1,.--,Pk) = (z,B1,...,Bk—1). From (2.7), we see that there is a natural, free action
of the symmetric group Sy on %X, by permutation of 1, ..., Bx. The action is by dif-
feomorphisms, so the quotient 9% X /Sy is also a manifold with corners. Dividing by Sy
turns the ordered k-tuple fBi,..., 8% into an unordered set {f,..., Bk} So from (2.5),
we see that there is a natural diffeomorphism

Cu(X) =20 X/8S,. (2.8)
Corners commute with boundaries: there are natural isomorphisms

ack(X) = Ok(aX) = {(z7{/61a"'75k}7/6k+1) HEOS X7 1617"'7ﬂk+1

(2.9)
are distinct local boundary components for X at x}

Products X x Y of manifolds with corners are defined in the obvious way. Boundaries
and corners of products X x Y behave well. It is easy to see that there is a natural
identification

{local boundary components for X x Y at (z,y)} =
{local boundary components for X at a:} 1T
{local boundary components for Y at y}

Using this, from (2.3) and (2.5) we get natural isomorphisms

(X x V)= (X x V) 1II (X x Y), (2.10)
CR(X X Y) =1, 50, i1 yen Ci(X) x C5(Y). (2.11)

Next we consider how smooth maps f : X — Y of manifolds with corners act on
boundaries 0X, 9Y and corners Cy(X), C;(Y). The following lemma is easy to prove
from Definition 2.1(b). The analogue is false for weakly smooth maps (e.g. consider
f:R = [0,00), f(x) = 2%, which is weakly smooth but not smooth), so the rest of the
section does not work in the weakly smooth case.

Lemma 2.9. Let f : X — Y be a smooth map of manifolds with corners. Then f is
compatible with the depth stratifications X =[], Sk(X),Y = >0 SYY) in Defini-
tion 2.6, in the sense that if 0 # W C S¥(X) is a connected subset for some k > 0, then
f(W) C SYY) for some unique | > 0.

It is not true that general smooth f: X — Y induce maps 9f : 90X — 9Y or Cr(f) :
Cr(Y) — Ci(Y) (although this does hold for simple maps, as in Proposition 2.11(d)).
For example, if f : X — Y is the inclusion [0,00) < R then no map df : 0X — JY
exists, as 90X # 0 and Y = (. So boundaries and k-corners do not give functors on
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Man€. However, if we work in the enlarged category Man€ of Definition 2.2 and consider
the full corners C(X) = ][5, Ck(X), we can define a functor.

Definition 2.10. Define the corners C(X) of a manifold with corners X by

C(X) = [I.5% " Cu(X)

= {(x,'y) :x € X, v is a local k-corner component of X at x, k > 0}7

considered as an object of Man® in Definition 2.2, a manifold with corners of mixed
dimension. Define IT: C(X) — X by II : (z,7) — «. This is smooth (i.e. a morphism in
Man®) as the maps II : Cj,(X) — X are smooth for k > 0.

Equations (2.9) and (2.11) imply that if X, ¥ are manifolds with corners, we have
natural isomorphisms

AC(X) = C(X), C(X xY)=CO(X)x C(Y). (2.12)

Let f: X — Y be a smooth map of manifolds with corners, and suppose « is a local
k-corner component of X at x € X. For each sufficiently small open neighbourhood V'
of z in X, 7 gives a choice of connected component W of V N S*(X) with = € W, so by
Lemma 2.9 f(W) C SY(Y) for some | > 0. As f is continuous, f(W) is connected, and
f(z) € f(W). Thus there is a unique local I-corner component f,(y) of Y at f(z), such
that if V is a sufficiently small open neighbourhood of f(z) in Y, then the connected
component W of VN SYY) given by f.(v) has W f(W) # (. This f.(7) is independent
of the choice of sufficiently small V, V, so is well-defined.

Define a map C(f) : C(X) — C(Y) by C(f) : (z,7) — (f(x), f«(7)). Given charts
(U,$) on X and (V,9) on Y, so that (2.1) gives a smooth map 1~! o f o ¢, then in
the charts (Ugq, ... .ax}s Pfar,....ax}) 00 Cu(X) and (Viy, b3, ¥ips,...003) o0 Ci(Y) defined
from (U, ¢) and (V, %) in (2.6), we see that

Vi) © CU) 0 Bay,ary  (CU) © ba,and) ™ Wity Vibn,bi)

— Vigy,.o}

is just the restriction of ¥ ™' o f o ¢ to a map from a codimension k boundary face
of U to a codimension [ boundary face of V', and so is clearly smooth in the sense of
Definition 2.1. Since such charts (Ugq,.....ax} Par,....ar}) @0 (Vi 53 V1by,...5}) COVEr
C(X) and Cy(Y), it follows that C(f) is smooth (that is, C(f) is a morphism in Man®).

If g: Y — Z is another smooth map of manifolds with corners, and 7 is a local
k-corner component of X at x, it is easy to see that (g o f)«(7) = g« o f«(7) in local
m-corner components of Z at go f(x). Therefore C(go f) = C(g)oC(f): C(X) — C(Z).
Clearly C(idx) = id¢(x) : C(X) — C(X). Hence C : Man® — Man€ is a functor, which
we call the corner functor. We extend C' to C' : Man® — Man® by Cns0 Xm) =

[0 C(Xm)-
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The following properties of the corner functor are easy to check using the local models
in Definition 2.1.

Proposition 2.11. Let f : X = Y be a smooth map of manifolds with corners.
(a) C(f): C(X) — C(Y) is an interior map of manifolds with corners of mized dimen-

sion, so C is a functor C : Man® — 1\7Ianicn.
(b) f is interior if and only if C(f) maps Co(X) — Co(Y), if and only if the following

commutes:
X Y
5 Cff) 3
C(X) c(Y).

Thus ¢ : Id=C' is a natural transformation on Id, C|Maﬂ;°n : Manfn—>1\v/[anfn.

(c) f is b-normal if and only if C(f) maps Cr(X) — H;LO Ci(Y) for all k.

(d) If f is simple then C(f) maps Crp(X) — Cr(Y) for all k > 0, and Ci(f) :=
C(Nlenx) : Cu(X) — Cr(Y) is also a simple map.
Thus we have a boundary functor 0 : Man$;, — Man$; mapping X — 0X on objects
and f i Of == C(f)lc,(x) : 0X — 9Y on (simple) morphisms f: X — Y, and for
all k > 0 a k-corner functor Cj, : Man$;, — Mang;, mapping X — Ci(X) on objects
and f = Cr(f) == C(f)lewx) : Cu(X) = Cr(Y') on (simple) morphisms.

(e) The following commutes:

C(X) - oY)
(f)

Jn f |

X Y.

Thus II : C' = 1d is a natural transformation.
(f) The functor C preserves products and direct products. That is, if f : W — Y,
g: X =Y, h: X — Z are smooth then the following commute

jiw X X)CZ”()chh()h) - :Zl) C(X) %} el x 2)
COV) X CX) = C(V)xC(2). oS RN

where the columns are the isomorphisms (2.12).
Example 2.12.

(a) Let X =[0,00), Y =[0,00)?, and define f: X — Y by f(z) = (x,z). We have
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CO(X) = [0700)7 Cl(X) = {0}7 CO(Y) = [0700)27
C1(Y) 2 ({0} x [0.00)) 11 ([0.50) x {0}).  Ca(¥) = {(0.0)}.

Then C(f) maps Co(X) — Co(Y), z — (x,2), and C1(X) — Co(Y), 0 — (0,0).
(b) Let X = %, Y = [0,00) and define f : X — Y by f(x) = 0. Then Co(X) & x,
Co(Y) 2 [0,00), C1(Y) = {0}, and C(f) maps Cyp(X) — C1(Y), * — 0.

Note that C(f) need not map Cy(X) — Cr(Y).
2.8. Tangent bundles and b-tangent bundles

Manifolds with corners X have two notions of tangent bundle with functorial prop-
erties, the (ordinary) tangent bundle T X, the obvious generalization of tangent bundles
of manifolds without boundary, and the b-tangent bundle *TX introduced by Melrose
[26, §2.2], [27, §1.10], [25, §2]. Taking duals gives two notions of cotangent bundle 7% X
bT*X. First we discuss vector bundles:

Definition 2.13. Let X be an n-manifold with corners. A vector bundle E — X of rank
k is a manifold with corners E and a smooth (in fact strongly smooth and simple) map
7 : E — X, such that each fibre E, := 771(z) for z € X is given the structure of a
k-dimensional real vector space, and X may be covered by open subsets U C X with
diffeomorphisms 7~ (U) = U xR" identifying T|e-1(vy : # 1(U) — U with the projection
U xRF - Rk, and the vector space structure on E, with that on {z} X RF = Rk, for
each x € U.

A section of F is a smooth map s : X — E with m o s =idx. As a map of manifolds
with corners, s : X — F is automatically strongly smooth.

Morphisms of vector bundles, dual vector bundles, tensor products of vector bundles,
exterior products, and so on, all work as usual.

Write C*°(X) for the R-algebra of smooth functions f : X — R. Write C*°(FE) for the
R-vector space of smooth sections s : X — E. Then C*°(F) is a module over C*°(X).

Sometimes we also consider vector bundles of mized rank E — X, in which we allow
the rank k to vary over X, so that E can have different ranks on different connected
components of X. This happens often when working with objects X = ]_[;O:O X,, in the
category Man® from Definition 2.2, for instance, the tangent bundle T'X has rank m
over X, for each m.

Definition 2.14. Let X be an m-manifold with corners. The tangent bundle m : TX — X
of X is a natural (unique up to canonical isomorphism) rank m vector bundle on X.
Here are two equivalent ways to characterize T'X:

(a) In coordinate charts: let (U, ¢) be a chart on X, with U C R]" open. Then over

o(U), TX is the trivial vector bundle with basis of sections %,...,QL, for
1 Um
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(u1,...,uy) the coordinates on U. There is a corresponding chart (TU,T¢) on
TX, where TU = U x R™ C R?™, such that (ui,...,%n,q1,-..,qm) € TU rep-
resents the vector qla%l 4. +qm% over (ug,...,Uny) € U or ¢(uq,... ’um)~€ g(
Under change of coordinates (ui,...,un) ~ (G1,...,0y,) from (U,¢) to (U,d),
the corresponding change (w1, ..., Um,q1y---sqm) ~> (U1,y..., Um, G, .-, Gm) from
(TU, T¢) to (TU,T(%) is determined by aiui = Z;nzl gi;z(ul, ey U 6%]" S0
that g; = >.", gi;i(ul, ey U )G

(b) Intrinsically in terms of germs: For 2 € X, write C°(X) for the set of germs [a] at x
of smooth functions a : X — R defined near x € X. That is, elements of C2°(X) are
equivalence classes [a] of smooth functions a : U — R in the sense of §2.1, where U is
an open neighbourhood of z in X, and a : U — R, a’ : U’ — R are equivalent if there
exists an open neighbourhood U” of z in UNU’ with a|y» = &'|y». Then C(X) is a
commutative R-algebra, with operations A[a]+ p[b] = [Aa+pb] and [a] - [b] = [a-b] for
[a], [b] € C°(X) and A, u € R. It has an evaluation map ev : C°(X) — R mapping
ev : [a] — a(x), an R-algebra morphism.
Then there is a natural isomorphism

T,X = {v:vis a linear map C3°(X) — R satisfying
v([a]-[b]) =v([a])ev([b]) +ev([a])v([b]), all [a], [b] € C3°(X)}.

This also holds with C*°(X) in place of C°(X).
Also there is a natural isomorphism of C*°(X)-modules

(2.13)

C>(TX) = {v:v is a linear map C*(X) — C*(X) satisfying
v(ab) = v(a) - b+ a-v(b) for all a,b € C=(X)}.

Elements of C*°(T'X) are called vector fields.

Now suppose f: X — Y is a smooth map of manifolds with corners. We will define
a natural smooth map T'f : TX — TY so that the following commutes:

TX ” TY
-
X Y.

For definition (a) of TX, TY, let (U, ¢) and (V, %) be coordinate charts on X, Y with
U C R}, V C R}, with coordinates (uy,...,un) € U and (v1,...,v,) € V, and let
(TU,T¢), (TV,T) be the corresponding charts on TX, TY, with coordinates (uq,
e Uy 1y -5 @m) € TU and (vi,...,0p,71,...,7) € TV. Equation (2.1) defines a
map 1! o f o ¢ between open subsets of U, V. Write v»"* o fo ¢ = (f1,..., fn), for
f; = fi(u1,...,up). Then the corresponding T ="' o T'f o T'¢ maps
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Ty L oTfoTd: (ut,... , Un,q1y-- - GQm) — (fl(ul,...,um),...7

fn(U17~-~7um)7Z£1 g{: (ula“':um)qia"'azzfll g{f (U17-"7um)qi)-

For definition (b) of TX, TY, Tf acts as Tf : (z,v) — (y,w) for y = f(z) € Y and
w=wvo f* where f*: C;°(Y) — C*(X) maps f*: [a] = [ao f].

If g: Y — Z is smooth then T'(go f) =TgoTf :TX — TZ, and T(idx) = idrx :
TX — TX. Thus, the assignment X — TX, f +— Tf is a functor, the tangent functor
T : Man® — Man®. It restricts to 7' : Mang,, — Man{, .

If f: X — Y is only weakly smooth, the same definition gives a weakly smooth map
Tf:TX — TY.We can also regard T'f as a vector bundle morphism df : TX — f*(TY)
on X.

The cotangent bundle T*X of a manifold with corners X is the dual vector bundle

of TX. Cotangent bundles T* X are not functorial in the same way, though we do have
vector bundle morphisms (df)*: f*(T*Y) - T*X on X.

Here is the parallel definition for b-(co)tangent bundles:

Definition 2.15. Let X be an m-manifold with corners. The b-tangent bundle °TX — X
of X is a natural (unique up to canonical isomorphism) rank m vector bundle on X. It
has a natural inclusion morphism Ix : ®TX — T X, which is an isomorphism over the
interior X °, but not over the boundary strata S*(X) for & > 1. Here are three equivalent
ways to characterize *TX, Ix:

(a) In coordinate charts: let (U, ¢) be a chart on X, with U C R]" open. Then over

qS(U) T X is the trivial vector bundle with basis of sections u; ai ) Uk %, 8#11
8_ for (u1,...,u;,) the coordinates on U. There is a correspondmg chart

(bTU bT¢) on bTX where *TU = U x R™ C RY™, such that (uy,...,un,s1,...,
Sm) € € YTU represents the vector 31“16%1 + -+ skuk% + Sk“ﬁiﬂ + -+
sm% over (uy,...,Uy) in U or ¢(ug,..., um) in X. Under change of coordinates
(U1, ... Um) ~ (Gy,...,0y) from (U,¢) to (U,@), the corresponding change (uj,
Uy STy Sm) ~ (U1, ... T, 81, .. ., 8p) from (PTU,PT¢) to (*TU,*T¢) is

k ~—1 U ~_1 .
Zi:luj Uvau 51+Zz k1 Uy du - s, J <k,

5 =
J
k )
Do lulauf 314-21 kil 8u Si, ji>k.

The morphism Ix : °TX — TX acts in coordinate charts (*TU,*T¢), (TU,T¢) by
(Ugy e oy Uy STy e ey Sm) > (UL, ooy Uy Gy« -+, Gim)
= (U]_,...,Um,ulsl,...,UkSk,8k+17...,Sm)-

(b) Intrinsically in terms of germs: Let € X. As in Definition 2.14(b), write C2°(X)
for the set of germs [a] at = of smooth functions a : X — R. Then C°(X) is an
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R-algebra, with evaluation map ev : C°(X) — R, ev : [a] — a(z). Also write Z,(X)
for the subset of germs [b] at € X of interior maps b : X — [0,00). Then Z,(X)
is a monoid with operation multiplication [b] - [¢] = [b- ¢] and identity [1]. It has an
evaluation map ev : T,(X) — [0,00), ev : [b] — b(z), a monoid morphism. There
is also an exponential map exp : C(X) — Z,(X) mapping exp : [a] — [expal],
which is a monoid morphism, regarding C$°(X) as a monoid under addition, and
an inclusion map inc : Z,(X) — C2°(X) mapping inc : [b] — [b], which is a monoid
morphism, regarding C'2°(X) as a monoid under multiplication.

Then there is a natural isomorphism

"T,X = {(v,v) : v is a linear map C3°(X) — R,
v’ is a monoid morphism Z,(X) — R,

v([a]-[b]) =v([al)ev([b]) +-ev([a])u([b]), all [a], [b] € CZ°(X),
v" oexp([a]) = v([a]), all [a] € C°(X), and

voine([p]) = ev([t])v ([B]), all [b] € T.(X)}. (2.14)

Here in pairs (v,v') in (2.14), v is as in (2.13). If [b] € Z,(X) with ev([b]) > 0,
then [logb] € C°(X) with v/([b]) = v([logb]). So the extra data in v is v([b]) for
[0] € Z.(X) with ev([b]) = 0.
The morphism Iy : *TX — TX acts by Ix : (v,0') — v.
If X is a manifold with faces, as in Remark 2.4, then we can replace C°(X), Z,(X)
by C*(X), Z(X), where Z(X) is the monoid of interior maps X — [0, 00). But if X
does not have faces, in general there are too few interior maps X — [0, 00) for the
definition to work. This is why we use germs C2°(X), Z,(X) in (2.14).

(¢) In terms of T'X: there is a natural isomorphism of C*°(X)-modules

COO(bTX)%{vEC‘X’(TX) : v|gk(x) is tangent to S*(X) for all k}. (2.15)

Elements of C>(*T X) are called b-vector fields.

The morphism Ix : *TX — TX induces (Ix). : C®°(*TX) — C*>(TX), which
under the isomorphism (2.15) corresponds to the inclusion of the right hand side of
(2.15) in C=(TX).

In Definition 2.14, we defined T'f : TX — TY for any smooth (or even weakly smooth)
map f: X — Y. As in [25, §2], [20, §1] the analogue for b-tangent bundles works only
for interior maps f: X — Y. So let f: X — Y be an interior map of manifolds with
corners. We will define a natural smooth map *T'f : ®TX — *TY so that the following
commutes:
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bTX by
K 'Tf \IY‘\
TX o TY
- N
X ! Y.

For definition (a) of *T'X, *TY above, let (U, ¢) and (V,4) be coordinate charts on
X,Y with U C R}, V C R}, with coordinates (u1,...,un) € U and (vy,...,v,) € V,
and let (°TU,°T¢), (*TV,°T1) be the corresponding charts on TX, TY, with coordi-
nates (U1, ..., Um, 81, -,8m) € TU and (v1,...,vp,t1,...,t,) € TV. Then (2.1) defines
a map 1! o f o ¢ between open subsets of U, V. Write "L o fod = (f1,..., fn), for
fi = fi(u1, ..., up). Then the corresponding *T% =1 o *T'f 0 *T'¢) maps

STy~ LobT foT g (Upy ooy Uy STy v ey Sm)— (U1, ooy Uny b1, ey En),

where v; = fj(u1,...,um), j=1...,n,
or . (2.16)
Zz 1f uz ] 81+Z k+1f u SZ) j gla
and tj: & of; of, )
D1 Uigt S+ 2 i Sis j>1

Since f is interior, the functions f “za L for i < k, j <1 and f_1 f7 for ¢ > k,

< [ occurring in (2.16) extend uniquely to smooth functions of (ul, .. um) where

f; = 0, which by Definition 2.1(b)(i) is only where u; = 0 for certain i = 1, Lk IS

is not interior, we could have fi (ul, ooy Upy) =0 for all (ug, ..., Un), and then there are

no natural values for f u; gﬁ L f (Just setting them zero is not functorial under
change of coordinates), so we cannot deﬁne bTf.

For definition (b) of °T'X, *TY, T f acts by °T'f : (z,v,v") = (y,w,w’) for y = f(z),
w=vo f*and w’ = v'o f* where composition with f maps f*: C;°(Y) — C°(X),
f i Zy(Y) = 1,(X), as f is interior.

If g: Y — Z is another interior map then *T'(go f) =Tgo T f :*TX — *TZ, and
'T(idx) = idepx : °TX — *TX. Thus, writing Mang, for the subcategory of Man®
with morphisms interior maps, the assignment X — *TX, f + YT f is a functor, the
b-tangent functor *T : Mang, — Mang, . The maps Ix : 'TX — TX give a natural
transformation I : ®T — T of functors on Mang,

We can also regard ®T f as a vector bundle morphism *df : *TX — f*(°TY) on X. The
b-cotangent bundle *T*X of X is the dual vector bundle of *T'X. B-cotangent bundles
®T* X are not functorial in the same way, though we do have vector bundle morphisms
(Cdf)*: f*(°T*Y) — *T* X for interior f.

The next proposition describes the functorial properties of TX, *TX. The proof is
straightforward.
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Proposition 2.16.

(a) As in Definitions 2.14-2.15, we have tangent functors T : Man® — Man®,
T : Man® — Man® preserving the subcategories Mang;, Many{ , Mang,, Mangt,

\/ c N c b . c c b . W c
Mang,, Mang{,, and b-tangent functors °T' : Man{, — Man{ , °T : Man, —

\/ c : [ c
Mang, preserving Mang,, Mang,.

(b) The projections 7 : TX — X, m: °TX — X, zero sections 0: X — TX, 0: X —
T X, and inclusion Ix : *TX — TX induce natural transformations

m:T=1d, 7:'T=1d, 0:Id=1T, 0:1ld="'T, I:'T—=1T (2.17)

on the categories on which both sides are defined.

(¢) The functors T, *T preserve products and direct products in cach category. That is,
there are natural isomorphisms T(W x X) =2 TW xTX, " T(W x X) 2 *TW x*TX,
such that if f : W =Y and g : X — Z are smooth or interior then the following

commute
T(WXX) T(YXZ) bT(WxX) bT(YxZ)
T(fxg) J/ *T(fxg)
J/i TfxTg B i: bTrx®Tyg Zi
TW xTX TY x TZ, bTW X bTX bTY % bTZ7

and if f: X =Y, g: X = Z are smooth or interior then the following commute

TX T(Y x Z) brx bT(Y x Z

l‘d T(f.9) ( N J i'd "T(f,9) ( N i)
(Tf.Tg) (T 10 Tg) -

TX TY xTZ, bpx ———— Ty x'TZ.

These isomorphisms T(W x X) X TW x TX, *T(W x X) 2 *TW x *TX are also
compatible with the natural transformations (2.17).

Remark 2.17.

(i) Tt is part of the philosophy of this paper, following Melrose [20,26-28], that we prefer
to work with b-tangent bundles ®T'X rather than tangent bundles TX when we can.
One reason for this, explained in §3.5, is that for manifolds with g-corners in §3,
the analogue of ®T'X behaves better than the analogue of TX (which is not a vector
bundle).

(ii) If f : X — Y is a smooth map of manifolds with corners, we can define *T'f : *TX —
®TY only if f is interior. But C(f) : C(X) — C(Y) is interior for any smooth
f:X =Y by Proposition 2.11(a). Hence *T o O(f) : *T'C(X) — *TC(Y) is defined
for all smooth f: X — Y, and we can use it as a substitute for *T'f : *TX — °TY
when this is not defined.
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Definition 2.18. A smooth map f : X — Y of manifolds with corners is called étale if it
is a local diffeomorphism. That is, f is étale if and only if for all € X there are open
neighbourhoods U of z in X and V = f(U) of f(z) in Y such that f|y : U —» Visa
diffeomorphism (invertible with smooth inverse).

Here are two alternative characterizations of étale maps:

Proposition 2.19. Let f: X — Y be a smooth map of manifolds with corners. Then the
following are equivalent:

(i) f is étale;
(i) f is simple (hence interior) and *df : *TX — f*(°TY) is an isomorphism of vector
bundles on X ; and
(iii) f 4s simple and df : TX — f*(TY) is an isomorphism on X.

If f is €tale, then f is a diffeomorphism if and only if it is a bijection.
2.4. (B-)normal bundles of 0*X, Ci(X)

Next we study normal bundles of X, 9* X and Cy,(X) in X using (b-)tangent bundles
TX,TX. For tangent bundles the picture is straightforward:

Definition 2.20. Let X be a manifold with corners. From §2.3, the map ix : 0X — X
induces Tix : T(0X) — TX, which we may regard as a morphism dix : T(0X) —
i%(TX) of vector bundles on dX. This fits into a natural exact sequence of vector
bundles on 0.X:

d’iX TN

0 —— T(0X) — = i (TX) Nox 0, (2.18)

where Ngx — 0X is the normal bundle of 0X in X. While Nyx is not naturally trivial,
it does have a natural orientation by ‘outward-pointing’ normal vectors, and so Nyx is
trivializable. The dual vector bundle V5 of Nyx is called the conormal bundle of 0X
in X.

Similarly, we have projections II : 0*X — X and 7y,..., 7 : 0*X — 0X mapping
Im: (x,5,...,0k) — xand 7; : (x,51,...,0k) — (x, ;) under the identification (2.7).
As for (2.18), we have a natural exact sequence

dIl TN

0 —— T(0"X)

*(TX)

NGkX —0

of vector bundles on 9*X, where Ny y is the normal bundle of 9*X in X, a vector
bundle of rank k. Clearly, there is a natural isomorphism
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Notx = @, 7 (Nox), (2.19)

so that Ny« x is the direct sum of k trivializable line bundles, and is trivializable. It has
dual bundle NakX

As in (2.8) the symmetric group Sy acts freely on 9F X, with Cj,(X) = 0% X/Sy. The
action of Sy lifts naturally to Nprx, with Ngxx/Sk = N¢,(x), the normal bundle of

Ck(X) in X, in the exact sequence

dIl

0 — T(Crx(X)) m*(TX) Ne, (x) = Norx /S — 0. (2.20)
The action of S on Ngrx = @Z 17 (Nax) permutes the k line bundles 7} (Npx
i=1,...,k Thus, Ng, x) does not have a natural decomposition like (2.19) for k >

Similarly, N¢, ) = a6/ Sk

) for

For the corners C'(X) = dlm X €1 (X), we define vector bundles of mixed rank Nexys
Ni(xy on C(X) by Ncm‘ck X) Ney(x), Néxlew = Néy (x)- As dim Ne, (x) =
dim X, these are objects of Man® rather than Man®.

Now let f: X — Y be a smooth map of manifolds with corners. Form the diagram of
vector bundles of mixed rank on C'(X), with exact rows:

0 —= T(C(X)) an I*(T'X) ™ Ne(x) —= 0
ldc \LH*(df) vNc(f) (2.21)
o Ol CUrEm_C(prr(Iy)) Cure Gy,
(T(C(Y))) =II"(f(TY)) (New))

As the left hand square commutes, by exactness there is a unique morphism N¢(y) as
shown making the diagram commute.

Suppose g : Y — Z is another smooth map of manifolds with corners. By considering
the diagram

dIT TN

0 —— T(C(X)) (T X) Nex) —= 0
dC(gof) l do(f) T (d(gof)) l () Negon) l Negs)
0| CU) C)”(dm ( )(I(TY)) ¢ ) | O(f)r 0
(T(C(Y))) =II"(f*(TY)) (Neyy)
C(f)*(dC(9)) l " (IT" (dg)) l CU)* (Nog))
0 — Clgof)r ClelT@) C(gof)*(II*(TZ)) ool (xn) Clgof)”
(T'(C(2))) =1I*((go f)*(TZ)) (Ne(z)) ’

and using uniqueness of N¢(y) in (2.21), we see that

Negory = C(f) (Neqg)) © Negy)- (2.22)
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We can also regard N¢ () as a morphism Ne sy : No(x) —+ Ne(yy. Then (2.22) implies
that Nec(gor) = Neg) o Neqy) - NC(X) — NC(Z)7 so X — Ng(x), fe Ne(pyisa functor
N¢ : Man® — Man® and N¢ : Man® — Man®. The zero section z : C(X) — Ne(x)
and projection 7 : Ng(x) — C(X) give natural transformations z : C = N¢g and
m : No = C. As in Propositions 2.11(f) and 2.16(c), one can show that N preserves
products and direct products.

Next we consider the analogue of the above for b-tangent bundles *TX, which is
more subtle. As ix : X — X is not interior, we do not have an induced map °dix :
"T(0X) — i%(*TX), so we cannot form the analogue of (2.18) for *T'(0X). We begin
with analogues of N¢(x), N¢(y) above:

Definition 2.21. Let X be an n-manifold with corners, and k = 0,...,n. As in Defini-
tion 2.7, points of Cy(X) are pairs (z,v) for z € X and v a local k-corner component
of X at z, and there is a natural 1-1 correspondence between such v and (unordered)
sets {f1,..., Bk} of k distinct local boundary components fi,..., 5 of X at x. Define
a rank k vector bundle 7 : *Ng, (x) — Ci(X) over Ci(X) to have fibre *Ne, (x)|(+)
the vector space with basis 1, ..., for each (z,7) € Ci(X) with 7 corresponding to
{B1,--., Bk} Considering local models, we see that the total space of bNCk(X) is naturally
an n-manifold with corners.

Points of *Ng, (x) will be written (z,7v,b181 + -+ + bpfx) for (z,7) € Cr(X) and
bi,...,bx € R, where  corresponds to {1, ...,k }. Since Cx(X) = 9*X/S, by (2.8)
there is an isomorphism *N¢, (x) = (0¥ X x R")/ Sk, where the symmetric group Sy acts
on R* by permuting the coordinates.

For reasons that will become clear in Proposition 2.22, we call bNCk(X) the b-normal
bundle of C(X) in X. The dual bundle Né (x) Is called the b-conormal bundle of

Define the monoid bundle Mc, x) as a subset in *N¢, (x) by

Me, (x) = {(z,7,b181 + -+ biBe) € "Neyx) : b € N},

where 7 corresponds to {f1,...,8k} and N = {0,1,2,...}. It fibres over Cy(X) with
fibres Nk, and is a submanifold of ch(x) of dimension n — k. The ‘M’ in Mg, x)
stands for monoid, as we will regard 7 : M¢, (x) — Crx(X) as a locally constant family
of commutative monoids N* over Cy(X), that is, each fibre 77! (p) has a commutative,
associative addition operation + with identity 0.

Define the dual monoid bundle Mgk(x) to be
Mgk(x) = {(2',b) € bNé*k(x) ra’ € Op(X), b(Me,(x)lr) € N}

It is a subbundle of bNé (X) with fibre N¥.
For more about monoids, see §3.1. The importance of the monoids M¢, (x) in un-
derstanding fibre products and blow-ups of manifolds with corners was emphasized by
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Kottke and Melrose [20, §6], in their basic smooth monoidal complezes. Gillam and Mol-
cho [6] work with the dual monoids Mgk( X):

Define morphisms iz : *Ne, (x) — II*(*TX) of vector bundles and Yir : M, (x) —
I*(*TX) of monoids on Cy(X) as follows, where II : Cj(X) — X is the projection.
Given (z,v) € Ckx(X) where v corresponds to {01,...,8k}, choose local coordinates
(x1,...,2y) € R} on X near z, where k <[ < n with z = (0,...,0) and 3; = {z; = 0}
fori=1,...,k. Then define

biT|(ac:y) 2b1B1 4+ b B Zf:l bi - H*(xiaifﬂi).

One can show this is independent of the choice of coordinates. We can also think of these
as smooth maps Yip : bNCk(X) = tTX, g Mc,(x) — *T X of manifolds with corners.
There is a dual morphism i% : TI* (T X*) — sz*k(X)'

In the next proposition, the local existence and uniqueness of ’7wr is easy to check
using a local model R}* for X. The bottom row of (2.23) is (2.20). The top row of (2.23) is
the analogue of (2.20) for *T X, *T(Cx(X)) (note the reversal of directions), and justifies
calling bNCk(X) the b-normal bundle of Cy(X) in X.

Proposition 2.22. Let X be a manifold with corners, and k = 0,...,dim X. Then there
is a unique morphism Ymp : II* (*TX) — *T(Cy (X)) which makes the following diagram
of vector bundles on Cy(X) commute, with exact rows:

0 —= "Neyx) ———=II°(PTX) = PT(C(X)) — 0
io \LH*(IX) ilck(x) (2.23)
I (TX) =< 7(Cp(X)) = o.

0<~— NCk(X)

When k = 1, we have C1(X) = 90X and bNCl(X) > Opyx, the trivial line bundle on
0X. So the top line of (2.23) becomes the exact sequence
b

biT T

0 Oox i ("TX) ———= T (0X) —= 0

of vector bundles on 90X, the analogue of (2.18) for b-tangent spaces.
As for the N¢, (x), the chk (x) are functorial, but only for interior maps:

Definition 2.23. In Definition 2.21, set *Noxy = IIr_o"Neyx) and Mex) =
o Mg, (x)- Then bNC(X) is an n-manifold with corners, and M¢(x) an object of
Man®. We have projections 7 : bNC(X), Mec(xy — C(X), making bNC(X) into a vector
bundle of mixed rank over C(X), and M¢(x) into a locally constant family of commu-
tative monoids over C(X).
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Now let f : X — Y be an interior map of manifolds with corners. From §2.2 C(f) :
C(X) — C(Y) is also interior, so from §2.3 we have smooth maps *T'f : *TX — *TY
and *TC(f) : *TC(X) — *TC(Y), which we may write as vector bundle morphisms
baf : TX — f(*TY) on X and *dO(f) : *TC(X) — C(f)*(*TC(Y)) on C(X).
Consider the diagram

0 — PNy —— " (*TX) PT(C(X)) —= 0
MNeaw ! lH*(’“df) ’ lhdcm (224

. C(f) CurCin) O(f)oll*("TY) _CUY () C(fy

("Negyy) =I*of*("TY) tT(C(Y))) '

The rows come from the top row of (2.23) for X, Y, and are exact. One can check using
formulae in coordinates that the right hand square commutes. Thus by exactness there
is a unique map bNC( ) as shown making the diagram commute.

We can give a formula for *Ng(y) as follows. Suppose z € S (X) € X with
f(z) =y e S'(Y) C Y. Then we may choose local coordinates (z1,...,z,) € R
on X with z = (0,...,0) and (y1,...,yn) € R} on Y with y = (0,...,0), so that

Xiyeeos Ty Y1, -5y € [0,00) and Zprg1, .oy T, Yirg1, - -+, Yn € R, Write f in coordi-
nates as (f1 X1y @m)ye ey frlX1, ..o ,xm)). As f is interior, Definition 2.1 shows that
for j=1,...,l', near x = (0,...,0) we have

k/

fi@e, . xm) = Fj(x, ... zm) - [y o,

where Fj is smooth and positive and a;; € N. Since f;(0,...,0) = 0, we see that for
each j =1,...,0" we have a; ; > 0 for some ¢ = 1,... k'

The local boundary components of X at x are 5; := {a; = 0} for i = 1,...,k, and
of Y at y are 3; := {y; = 0} for j = 1,...,I". Let v be a local k-corner component of
X at x corresponding to {8;,,..., 8, } for 1 <41 < --- < i <K, and 7 a local I-corner
component of Y at y corresponding to {5;,,..., 3} for 1 < j; < --- < j; <, so that
(x,7) € Cp(X) and (y,7) € Ci(Y), and suppose f.(y) = 4, so that C(f) : (z,v) — (y,7).

Then we can check from the definitions that
{,-.oat={ie{l,....,I'}: a;,; >0, somec=1,...,k},
and *Ng (g acts by
PNegry (2,760 Biy + -+ 00, Bi) — (17 Yoy [Sony @i Bra) . (2:25)
Since a;; € N, *Ne(p) maps Mc(x) = C(f)*(Mc(y))- So write
Me(py = "Ne(p) Mo : Mox) = C() (Meyy)-

Note that f is simple if and only if M¢ sy and bNC(f) are isomorphisms.
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Suppose g : Y — Z is another interior map. From the diagram

0 —— Ng(x) ———— > I*(*TX)

bP(C(X)) ——= 0

i T
"Ne(gor) ll’Ncm " ("d(gof)) \Ll‘[*(”df) *dC(gof) lbdcm
c()*(Pir) c) (Prr)
0 —= C(f)*("New)) ———= C(f) oll*(*TY) ———— C(H(*T(C(Y))) —= 0
\Lc(f)*(bNag)) \Lc(f)*(n*(bdg)) lc(f)*(”dc(g))
C(gof)*("ir) C(gof)*("mr)

0 = C(gof)*("Ne(z)) — Clgof) oll*("TZ) —— C(gof)*("T(C(2))) — 0,

using the functoriality of C, *T', we find that ch(gof) = C(f)*(bNC(g)) o ch(f), and
hence Mo gor) = CUJ)"(Morg)) © Mo(p)-

We can also interpret NC( ) as a smooth map of manifolds with corners bNC( f
bNC( x) — Nc(y), and Mg(y) as a morphism Mg s @ Mgxy = Mgy in Man
both of which are interior as C(f) is. Then for interior f : X - Y, g :Y — Z we
have NC(gof) = NC(g)o NC(f) NC(X) — NC(Z) Thus X — NC (X)> fi—> NC(f)
defines functors *N¢ : Man{, — Mang{, and bNe s Manm — Manm, which we call
the b-normal corner functors. Similarly X — M¢g(x), f +— Mgy defines functors Mc :
Man ln,Man — Man¢

The dual bundles N (X ME( x) are not functorial in the same way.

which we call the monoid corner functors.

in>

The next proposition is easy to check:

Proposmon 2.24. Definition 2.23 deﬁnes functors ’Ne : Manf, — Man{, "N¢ :
Man® — Man and Mc : Man

1n

¢ Man¢, — Mang,, preserving (direct) products
with a commutatwe diagram of natural transformations:

Mc m

Zey \
¢ \ Hmclusion/\;
zero section 0 bN II

c

C.

Here is some similar notation to bNC(X), Mc(x), but working over X rather

than C'(X).

Definition 2.25. Let X be a manifold with corners. For z € S*(X) C X, let 31,..., B
be the local boundary components of X at x, and define
"N X = {b1f1+ -+ bpBe by, ... by € R},
PNZOX = {b1f1 + -+ 0Bt bi,... by € [0,00)},
MZX: {b151+"'+bkﬂk:bla"';bk GN},
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so that MIX - be“X - szX. That is, bNIX >~ R” is the vector space with basis
the local boundary components fi,..., 3 at =, with dim®N, X = depthy x. We will
think of M, X = N* as a toric monoid, as in §3.1.1 below, with *N, X = M, X @y R
the corresponding real vector space, and beoX > [0, 00)* as the corresponding rational
polyhedral cone in *N, X, as in §3.1.4.

Now let f : X — Y be an interior map of manifolds with corners, and z € S¥(X) C X
with f(z) =y € S{(Y) C Y. Write f31,..., B for the local boundary components of X
at x, and /1, ..., ] for the local boundary components of Y at y. We can choose local
coordinates (x1,...,ZTm,) € RY" near x in X with = (0,...,0), such that 8; = {z; = 0}
for i =1,...,k, and local coordinates (y1,...,y,) € R} near y in Y with y = (0, ...,0),
such that 3 = {y; = 0} for j = 1,...,l. Then as in §2.1, near x we may write f
in coordinates as f = (f1,..., fn), where for j = 1,...,0 we have f;(z1,...,2y) =
Fj(z1,...,@m) 27" - 2™ for some a; ; € N and positive smooth functions F}. Define
a linear map *N, f : °N, X — bNyY by

ONLf:biBy + -+ bifh

— (a11br + -+ apabr) B+ o+ (a1br + -+ arabi) B,

as for Ne(yy in (2.25). Define *N2°f : "N2°X — bNy?OY and M,f : M,X — M,Y to
be the restrictions of N, f to beOX and M,X. Note that f is simple if and only if
Myf: MyX — MyY is an isomorphism for all x € X.

If g: Y — Z is another interior map of manifolds with corners then

Nu(go f)="Nygo Nuf, "N7°(go f)="N;"go"NZ°f, M.(go f)=Mygo M.f,

and N, id x, b](]f"idx, M,idx are identities. So the °N, X, be“X, M, X, bNxf, beof,
M, f are functorial.

We could define "NX = {(z,v) : z € X, v € °N,X} and °Nf : *’NX — *NY
by PN f : (z,v) — (f(x)," N, f(v)), and similarly for *N>°X, *N>°f and M X, M f, and
these would also be functorial. However, in contrast to bNC(X) above, these "N X, P N>0X
would not be manifolds with corners, even of mixed dimension, since the dimensions of
the fibres N, X, P’ N2°X vary discontinuously with = in X. They are useful for stating
conditions on interior f: X — Y.

3. Manifolds with generalized corners

We will now define a category Man8¢ of manifolds with generalized corners, or mani-
folds with g-corners for short, which contains the manifolds with corners Man€® of §2 as
a full subcategory. We extend §2 to manifolds with g-corners, with the exception of the
ordinary tangent bundle X and normal bundle N¢(x), which do not generalize well.
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3.1. Monoids

We now discuss monoids, from the point of view usual in the theory of logarithmic
geometry, in which they are basic objects. Some good references are Ogus [30, §I], Gillam
[5, §1-§2], and Gillam and Molcho [6, §1].

3.1.1. The basic definitions
Here are the basic definitions we will need in the theory of monoids.

Definition 3.1. A (commutative) monoid (P,+,0) is a set P with a binary operation
+: Px P — P and a distinguished element 0 € P satisfying p+p’ = p'+p, p+(p'+p") =
(p+p)+p"and p+0=0+p=p for all p,p’,p” € P. All monoids in this paper will
be commutative. Usually we write P for the monoid, leaving +, 0 implicit.

A morphism of monoids p : (P,+,0) — (Q,+,0) is a map p : P — Q satisfying
w(p+p') = p(p) + p(p’) for all p,p" € P and p(0) = 0.

™ n copies

Ifpe PandneN={0,1,...}, we writen-p=p+---+p, with 0-p =0.

A submonoid of a monoid P is a subset Q C P such that 0 € Q and g+ ¢’ € Q for all
q,q¢' € Q. Then Q is also a monoid.

If @ C P is a submonoid, there is a natural quotient monoid QQ/P and surjective
morphism 7 : P — P/Q, with the universal property that 7(Q) = {0}, and if u: P - R
is a monoid morphism with ©(Q) = {0} then ¢ = v o7 for a unique morphism v :
P/Q — R. Explicitly, we may take P/Q to be the set of ~-equivalence classes [p| of
p € P, where p ~ p' if there exist ¢,¢ € Q withp+¢g=p' +¢ in P,and 7 : p+— [p].

A unit v in a monoid P is an element u € P for which there exists v € P with
u+v = 0. This v is unique, and we write it as —u. Write P* for the set of all units in P.
It is a submonoid of P.

Any abelian group G is a monoid. If P is a monoid, then P* is an abelian group, and
P is an abelian group if and only if P* = P.

If P is a monoid, there is a natural morphism of monoids 7 : P — P8P with PP an
abelian group, with the universal property that if ;4 : P — G is a morphism with G an
abelian group, then u = vor for a unique morphism of abelian groups v : P8? — G. This
determines P8P, 7 up to canonical isomorphism. Explicitly, we may take P®P to be the
quotient monoid (P x P)/Ap, where Ap = {(p,p) : p € P} is the diagonal submonoid
of Px P,and 7:p+ [p,0].

Let P be a monoid. Then:

(i) We call P finitely generated if there exists a surjective morphism 7 : N* — P for
some k > 0. Any such 7 may be uniquely written 7(ny,...,ng) = ni-p1+- - +ng-pr
for p1,...,px € P, which we call generators of P.
If P is finitely generated then P®P is a finitely generated abelian group.

(ii) A finitely generated monoid P is called free if P 22 N* for some k > 0.
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(iii) We call P integral, or cancellative, if w: P — P®P is injective. Equivalently, P is
integral if p + p” = p’ + p” implies p = p’ for p,p’,p” € P. For integral P, we can
regard P as a subset of PSP.

(iv) We call P saturated if it is integral, and p € P8P withn-p € P C P8P for n > 1
implies that p € P C P*P.

(v) We call P torsion-free if P#P is torsion-free, that is, n-p =0 for n > 1 and p € P8P
implies p = 0.

(vi) We call P sharp if P* = {0}. The sharpening P* of P is P* = P/P*, a sharp
monoid with surjective projection 7 : P — P¥.

(vii) We call P a weakly toric monoid if it is finitely-generated, integral, saturated, and
torsion-free.

(viii) We call P a toric monoid if it is finitely-generated, integral, saturated, torsion-free,
and sharp. (Saturated and sharp together imply torsion-free.)

Note that definitions of toric monoids in the literature differ: some authors, including
Ogus [30], refer to our weakly toric monoids as toric monoids, and to our toric monoids
as sharp toric monoids.

Write Mon for the category of monoids, and Mon'®, Mon"t, Mon®® for the full
subcategories of finitely generated, weakly toric, and toric monoids, respectively, so
that Mont® C Mon"* ¢ Mon'® C Mon.

If P is a toric monoid then P8P is a finitely generated, torsion-free abelian group, so
per = 7F for k > 0. We define the rank of P to be rank P = k.

If P is weakly toric then P* = Z' and P! is a toric monoid, and the exact sequence
0 — P* — P — P! — 0 splits, so that P = P! x Z! for P* a toric monoid. We define
rank P = rank P#P = rank P* + 1.

Here are some examples:
Example 3.2.

(a) (Q,+,0) is a non-finitely generated monoid. It is integral, saturated, and torsion-free,
but not sharp, as Q* = Q.

(b) ([0,00),-,1) is a non-finitely generated monoid. (Note here that the monoid operation
is multiplication ‘-’ rather than addition, and the identity is 1 not 0.) We have
[0,00)8P = {0}, so [0,00) is not integral, and [0,00)* = (0,00), so [0,00) is not
sharp.

(c) N is a toric monoid for k = 0,1,..., with (N*)&p = 7,

(d) ZF is a finitely generated monoid. For instance, as generators take the k + 1 vectors
(1,0,...,0),(0,1,0,...,0),...,(0,...,1),(=1,-1,...,—1). Also ZF is integral, satu-
rated, and torsion-free. But Z* is not sharp, as (Zl‘z)X = 7F £ 0, so Z" is weakly
toric, but not toric.

(e) Set P=NII{l'}, with ‘+’ asusual on N,and n+1 =1 4+n=n+1forn >0 in
Nyand 04+ 1" =1"40=1". Then P is a finitely generated monoid, with generators
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1, I/, and is torsion-free and sharp. We have P8P = Z, with 7 : P — P8P mapping
m:n—nforne€Nand 7 :1 — 1. Then n(1) = n(1’), so 7 : P — P8P is not
injective, and P is not integral, or saturated, or toric.

(f) Set P={0,1} with 0+0=0and 1+0=0+1=1+1= 1. Then P is a finitely
generated monoid with generator 1, torsion-free, and sharp. But P8P = {0}, so P is
not integral, saturated, or toric.

(g) P =1{0,2,3,...} is a submonoid of N, with P8? = Z D P. It is finitely generated,
with generators 2, 3, and is integral, torsion-free, and sharp. But it is not saturated,
since 1 € P8P with 2-1 € P but 1 ¢ P, so P is not toric.

(h) Set P =NII{1’,2,3/,...}, with m+n = (m+n), m'+n = (m+n)’, m4+n’ = (m+n)’,
m' +n' = (m+n)forallmn>0inN,and 0+ p=p+0=pfor p € P. Then P
is a finitely generated monoid, with generators 1, 1’, and is integral, saturated, and
sharp. We have P8P = Z xZy, where 7 : P — P®P is w(n) = (n,0) and 7(n’) = (n, a),
writing Zo = {0, a} with a + o = 0. Thus P is not torsion-free, as 0 # (0, ) € P&P
with 2 - (0,«) =0, so P is not toric.

8.1.2. Duality
We discuss dual monoids, following Ogus [30, §2.2].

Definition 3.3. Let P be a monoid. The dual monoid, written PV or D(P), is the monoid
Hom(P,N) of morphisms p : P — N in Mon, with the obvious addition (¢ + v)(p) =
wu(p) + v(p) and identity 0(p) = 0.

If « : P — @ is a morphism of monoids, the dual morphism, written o : Q¥ — PV
or D(a) : D(Q) = D(P),is " : p+— poa forall p:Q — N.

Then D : Mon — Mon®? mapping P — D(P), a — D(«) is a functor, where Mon®°?
is the opposite category to Mon.

Define a morphism n(P) : P — (PY)¥ by n(P) : p — (u — p(p)) for p € P and
1 € PV. Then 7 : Idpion = D oD is a natural transformation of functors Mon — Mon,
where Idnion : Mon — Mon is the identity functor.

From Ogus [30, Th. 2.2.3] we may deduce:

Theorem 3.4. If P is a finitely generated monoid, then PY = D(P) is toric. Hence
D : Mon — Mon®P restricts to D : Mon® — (Mont®)°P and DY : Mon* —
(Mon®®)°P. Also, the natural morphism n(P) : P — (PY)V is an isomorphism if and
only if P is a toric monoid. Thus nt® : Idytonte = D 0 D is a natural isomorphism
of functors Mon*® — Mon®®, and D* : Mon® — (Mon®®)°P is an equivalence of
categories.

Example 3.5.

(a) (N*)Y =N".
(b) (Z*)V = {0}, and more generally GV = {0} for any abelian group G.
(¢) [0,00)" = {0}.
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Write RE = DY o D8 : Monfs — Mon®°, and I : Mon®® < Monf® for the
inclusion functor. Then for each P € Mon® and Q € Mon*® we have

Hom (RES(P), Q) = Hom((PY)", Q) = Hom(P,Q) = Hom(P, I;5(Q)),

where in the second step we use that as @ is toric, any morphism P — @ factors uniquely
through the projection P — (PY)Y. Thus Rg is a left adjoint for I,

3.1.8. Pushouts and fibre products of monoids
Next we discuss pushouts and fibre products of monoids. Some references are Gillam
[5, §1.2-§1.3] and Ogus [30, §1.1].

Theorem 3.6.

(a) All direct and inverse limits exist in the category Mon, so in particular pushouts
and fibre products exist. The construction of inverse limits, including fibre products,
commutes with the forgetful functor Mon — Sets. Finite products and coproducts
coincide in Mon.

(b) The category Monf® is closed under pushouts in Mon. Hence pushouts exist in
Monfe.

(c) The category Mon®® is not closed under pushouts in Mon'®. Nonetheless, pushouts
exist in the category Mon®®, though they may not agree with the same pushout in
Monf8. If « : P — Q and f : P — R are morphisms in Mon®® then Q It R =~
R}g(QH%R), where QU R, QH%R are the pushouts in Mon®®, Mon'8 respectively,
and REQ is as in §3.1.2.

(d) The categories Monf® and Mon®® are closed under fibre products in Mon. Thus,
fibre products exist in both Mon® and Mon*®, and can be computed as fibre products
of the underlying sets.

Proof. Part (a) can be found in Ogus [30, §1.1] or Gillam [5, §1.1-§1.2]. f o : P = Q
and 8 : P — R are morphisms in Mon, then as in [5, §1.3] the pushout S = QIl, pg R
is S=Q® R/ ~, where ~ is the smallest monoidal equivalence relation on Q ¢ R with
(a(p),0) ~ (0,8(p)) for all p € P. Actually computing ~ or Q ITp R explicitly can be
tricky.

For (b), if S = Q IIp R is as above with Q, R € Mon®®, and q1,...,qx, 71,...,7
are generators for @, R, then [q1,0],...,[gk,0],[0,71],...,[0,7] are generators for S, so
S € Mon'®, and Mon8 is closed under pushouts in Mon.

For (c), as RE2 : Mon™ — Mon® has a right adjoint I from §3.1.2, it takes
pushouts in Mon'®8 to pushouts in Mon®®. Thus, if P,Q, R € Mon®® then

RE(QTIE R) = REQ(Q) 'S, p) RE(R) = QI R.



D. Joyce / Advances in Mathematics 299 (2016) 760-862 791

For (d), Gillam [5, Cor. 1.9.8] shows Mon® is closed under fibre products in Mon.
If 4 : P— Rand v:@Q — R are morphisms in Mon®® then the fibre product P x g @
in Mon is finitely generated, integral, and saturated by Ogus [30, Th. 2.1.16(6)], and
it is torsion-free and sharp as P X ) is a submonoid of P & @), which is torsion-free
and sharp since P, Q are toric. Hence P x p @ is toric, and Mon®® is closed under fibre
products in Mon. O

3.1.4. Toric monoids and rational polyhedral cones

Definition 3.7. Let A be a lattice (that is, an abelian group isomorphic to ZF for k > 0),
so that Ag := A ®z R is a real vector space isomorphic to R*, with a natural inclusion
A — Ar. We identify A with its image in A, so that A C Ag. We also have the dual
lattice A* := Hom(A,Z) and dual vector space A, = Hom(Ag,R), and we identify A*
with a subset of Ag.

A rational polyhedral cone in Ay is a subset C' C A of the form

C={XeAr:a;(N)>20,i=1,....k}, (3.1)

for some finite collection of elements «y, ..., ar € A*. An integral polyhedral cone Cz C A
is a subset of the form Cyz = C' N A for some rational polyhedral cone C C Ag. We call
C or Cy pointed it CN—C = {0} or Cz N —Cz = {0}. Note that an integral polyhedral
cone C is a monoid, as it is a submonoid of A.

For C as in (3.1), a face of C' is a subset D C C of the form

D={ eAp:a;(A\)=0, i€J, o(A\) =0, ie{l,....k}\J},

for some J C {1,...,k}. That is, we require equality in some of the inequalities in (3.1).
Each face D of C' is also a rational polyhedral cone, and the collection of faces D C C'is
independent of the choice of oy, ..., ay, for C fixed.

The next proposition is well known (see for instance Gillam [5, Proof of Th. 1.12.3]).
Gordan’s Lemma says that an integral polyhedral cone C7 is finitely generated, and the
rest of the proof that C7 is (weakly) toric is easy.

Proposition 3.8. A monoid P is weakly toric if and only if it is isomorphic to an integral
polyhedral cone Cy C A, and toric if and only if it is isomorphic to a pointed integral
polyhedral cone Cyz C A. In both cases, we may take the lattice A to be P8P and o, . . ., g
in (3.1) to be generators of the dual monoid PV .

Rational and integral polyhedral cones give us a geometric, visual way to think about
(weakly) toric monoids, as corresponding to a class of polyhedra in R", and are partic-
ularly helpful for studying faces of (weakly) toric monoids.
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3.1.5. Ideals, prime ideals, faces, and spectra of monoids
The next definition is taken from Ogus [30, §1.4] and Gillam [5, §2.1].

Definition 3.9. An ideal I of a monoid P is a subset I C P such that for all i € [
and p € P we have p+1i € I. Then 0 ¢ I, as otherwise p = p+0 € [ for all p € P,
contradicting I # P. An ideal [ is called prime if p,q € P and p+q € I imply that p € T
orqel.

A submonoid F' C P is called a face of P if p,q € P and p+ q € F imply that p € F
and g € F. If is easy to see that F' C P is a face of P if and only if I = P\ F is a prime
ideal in P. This gives a bijection F +— I = P\ F between faces F' of P and prime
ideals I in P.

The codimension codim F' of a face F' C P is the rank of the abelian group (P/F)gP,
which is defined when (P/F)8P is finitely generated. If P is toric then rank F'+codim F' =
rank P.

The union (J,¢ 4
in P. Dually, the intersection (1, 4 o of any family F,, : a € A of faces of P is a face
of P.

The minimal ideal in P is @), and the maximal ideal is P\ P*. Both are prime. Dually,

I, of any family I, : a € A of prime ideals in P is a prime ideal

the maximal face in P is P, and the minimal face is P*.

The spectrum Spec P is the set of all prime ideals of P, which under [ — F = P\ I
is bijective to the set of faces of P.

There is a natural topology on Spec P called the Zariski topology, generated by the
open sets S; = {I € Spec P : J C I} for all ideals J C P.

If u: P — Q is a morphism of monoids, and I is a (prime) ideal in @, then (1)
is a (prime) ideal in P. Dually, if F is a face of @, then p~!(F) is a face of P. Defining
Specu : Spec@ — Spec P by Specu : I + p~1(I), then Specy is continuous in the
Zariski topologies. The natural projection 7 : P — P¥ induces a homeomorphism Spec 7 :
Spec P* — Spec P.

The parts of the next lemma are proved in Gillam and Molcho [6, Lem.s 1.2.4 & 1.4.1],
or are obvious.

Lemma 3.10.

(i) Suppose F is a face of a monoid P. If P is finitely generated, or integral, or sat-
urated, or torsion-free, or sharp, or weakly toric, or toric, then F is also finitely
generated, ..., toric, respectively.

(i) Suppose F is a face of a finitely generated monoid P. If py,...,p, generate P, then
{pi:pi € F,i=1,...,n} generate F.

(iii) If P is a finitely generated monoid, then Spec P is finite.

The next proposition summarizes some facts about (weakly) toric monoids, which are
well understood in toric geometry.
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Proposition 3.11. Let P be a weakly toric monoid. Then:

(a) By Proposition 3.8 we may identify P = C N A, where A = P&P is a lattice and
C C Agr = A ®z R is a rational polyhedral cone. This identifies faces F' C P of the
monoid P with subsets DNA C CNA where D C C' is a face of the rational polyhedral
cone C as in Definition 3.7, and this induces a 1-1 correspondence between faces F
of P and faces D of C.

(b) The faces F of P are exactly the subsets a=*(0) = {p € P : a(p) = 0} for all o in
PY = Hom(P,N), the dual monoid of P.

(c) Let F be a face of P, and write F" = {a € PV : a|p = 0}. Then F" is a face of
PV, with rank F” = rank P — rank ' = codim F', and the map F — F” gives a 1-1
correspondence between faces of P and faces of PV.

Now suppose P is toric. Then:

(d) Let A, Ar, C be as in part (a). Write A* = Hom(A,Z) for the dual lattice and
Ay =A@z R = (Ar)* for the dual vector space, and define

CV={aeA;: alc) >0 forallceC}.

Then CV is a rational polyhedral cone in A%, and there is a natural isomorphism
PY = CV N A*, where PV is the dual monoid of P.

(e) For each face F of P we have rank F =codim F", codim F =rank F'".

(f) The isomorphism n(P) : P — (PY)V from Theorem 3.4 induces an isomorphism
n(P)|g: F — (FM for all faces F C P.

3.1.6. Monoids and toric geometry

We now explain the connection between monoids and toric geometry over C. This
material will not be used later, but explains the term ‘toric monoid’, and may be helpful
to those already familiar with toric geometry. It also helps motivate the definition of
manifolds with g-corners in §3.2.

Let P be a weakly toric monoid. Define a commutative C-algebra C[P] to be the
C-vector space with basis formal symbols e? for p € P, with multiplication PP = ep TP
and identity 1 = e°. Write Zp = Spec C[P], as an affine C-scheme, which is of finite type,
reduced, and irreducible, as P is weakly toric.

There is a natural 1-1 correspondence between C-points of Zp (that is, algebra mor-
phisms z : C[P] — C), and monoid morphisms p : P — (C,-) (where (C, ) is C regarded
as a monoid under multiplication, with identity 1), defined by u(p) = z(e?) € C for
allpe P.

Define an algebraic C-torus Tp to be Tp = Hom(P,C*), where C* = C \ {0}, as an
abelian group under multiplication. If P& = Z* then Tp = (C*)*. There is a natural
action of Tp on Zp, which on C-points acts by (¢ - u)(p) = t(p) - u(p) for p € P, where
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t € Tp = Hom(P,C*) and p € Hom(P, (C,-)) corresponds to a C-point 2 of Zp. This
Tp-action makes Zp into an affine toric C-variety.

Every affine toric C-variety Z is isomorphic to some Zp, for a weakly toric monoid P
unique up to isomorphism, where P is toric if and only if T has a fixed point (necessarily
unique) in Zp.

3.2. The model spaces Xp, for P a weakly toric monoid

As in §2, manifolds with corners are locally modelled on [0, 00)* x R % for0 <k < n.
We will define manifolds with generalized corners in §3.3 to be locally modelled on spaces
Xp depending on a weakly toric monoid P. This section defines and studies these spaces
Xp, and ‘smooth maps’ between them.

Definition 3.12. Let P be a weakly toric monoid. Then as in §3.1, P is isomorphic to a
submonoid of Z* for some k > 0. In §3.3 we will suppose that P is equal to a submonoid
of some Z*. This is for set theory reasons: if X is a manifold with g-corners, then without
some such restriction on the monoids P?, the maximal g-atlas {(P?, U*,¢*) : i € I} on
X in Definition 3.19 would not be a set, but only a proper class.

Define Xp to be the set of monoid morphisms z : P — [0,00), where ([O,oo)7 )
is the monoid [0, c0) with operation multiplication and identity 1. Define the interior
X% C Xp of Xp to be the subset of x with z(P) C (0,00) C [0,00). For each p € P,
define a function A, : Xp — [0,00) by Ap(x) = z(p). Then Ap1q = A - Ay for p,q € P,
and \g = 1.

Define a topology on Xp to be the weakest topology such that A, : Xp — [0,00) is
continuous for all p € P. This makes Xp into a locally compact, Hausdorff topological
space, and Xp is open in Xp. If U C Xp is an open set, define the interior U° of U to
be U° =U N Xp.

Note that Xp and U are not manifolds, in general, so smooth functions on Xp, U
are not yet defined. Let f: U — R be a continuous function. We say that f is a smooth
function U — R if there exist r1,...,7, € P, an open subset W C [0,00)", and a
smooth map ¢g: W — R (in the usual sense, as in §2.1), such that for all x € U we have
(z(r1),...,z(ry)) € W and

f(z) = g(w(rl), . ,x(rn)) = g()\r1 (), s A, (ac)) (3.2)

We say that a continuous function f : U — (0,00) is smooth if f is smooth as a
map U — R.

We say that a continuous function f : U — [0,00) is smooth if on each connected
component U’ of U, we either have f|y = Ay|v - h, where p € P and h : U" — (0, 00)
is smooth, or f|y» = 0. Note that (as for manifolds of corners), f is smooth as a map
U — [0,00) implies that f is smooth as a map f: U — R, but not vice versa.

Now let @ be another weakly toric monoid, and V' C X an open set. We say that a
continuous map f : U — V is smooth if A\yo f : U — [0,00) is smooth for all ¢ € Q). We
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say that f is a diffeomorphism if f is invertible and f, f~! are smooth. We say that f is
interior if f is smooth and f(U°) C V°. The identity map idy : U — U is smooth and
interior.

Suppose R is a third weakly toric monoid, and W C Xi an open set, and g : V — W
is smooth. It is easy to show that go f : U — W is smooth, that is, compositions of
smooth maps are smooth. Also compositions of diffeomorphisms (or interior maps) are
diffeomorphisms (or interior maps).

Remark 3.13. In §3.1.6, given a weakly toric monoid P, we defined an affine toric
C-variety Zp = Hom(P, (C,)), acted on by an algebraic C-torus Tp = Hom(P,C*).
This is related to Xp above as follows. Write U(1) = {z € C : |z| = 1} c C*
and TH = Hom(P,U(1)) C Tp, so that TE is a real torus, the maximal compact
subgroup of Tp. Using C/U(1) = [0,00), we can show there is a natural identifica-
tion Xp = Hom(P, ([0,0),-)) = Zp/T5.

Thus, the spaces Xp appear in the background of complex toric geometry, and several
topics treated below — for instance, the boundary and corners of Xp — are related to
well known facts in toric geometry.

The next proposition gives an alternative description of the material of Definition 3.12
in terms of choices of generators and relations for the monoids P, Q. The presentation of
Proposition 3.14 is often easier to work with, but that of Definition 3.12 has the advantage
of being intrinsic to the monoids P, @, and independent of choices of generators and

relations.
Proposition 3.14. Suppose P is a weakly toric monoid. Choose generators pi,...,Dm
for P, and a generating set of relations for p1,...,pm of the form

a{p1+~~~+aznpm:b{p1+~-~+bf;npm in P forj=1,... k, (3.3)

where a’ bjeNforizl,...,m and j=1,... k. Then:

177
(@) Ap, X - x Ay, : Xp —[0,00)™ is a homeomorphism from Xp to

al b b

X;?: {(‘Tla-",xm) S [ano)m:xtlljl'”xmm :1'1 w”T’ j:]‘""’k}’ (34)

regarding X'p as a closed subset of [0,00)™ with the induced topology.

(b) Let U C Xp be open, and write U' = (Ap, X--- X Ap, )(U) for the corresponding open
subset of Xp. Then a function f: U — R is smooth in the sense of Definition 3.12
if and only if there exists an open neighbourhood W of U’ in [0,00)™ and a smooth
map g: W — R in the sense of §2.1, regarding W as a manifold with corners, such
that f = go (Ap, X --- X Ap, ) : U — R. The analogues hold for f : U — (0,00),
f:U—=1[0,00) and g: W — (0,00), g: W — [0,00).
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(¢) Now let Q be another weakly toric monoid. Choose generators qi,...,qn for Q. Let
V C Xg be open. Then a map f: U — V is smooth in the sense of Definition 3.12
if and only if there exists an open neighbourhood W of U’ in [0,00)™ and a smooth
map g : W — [0,00)" in the sense of §2.1, such that (Mg, X --- X Ag,) o f =
go(Ap, X oo x Ay, ): U —[0,00)".

Proof. For (a), let 2 € Xp, so that z : P — ([0,00),-) is a monoid morphism, and set

x; = x(pi) = Ap, (x) € [0,00) for i = 1,...,m. Since x is a monoid morphism, applying =
to (3.3) gives x'lljl x%” = xll)Jl ~-~x%", as in (3.4). As p1,...,pm generate P, and (3.3)
is a generating set of relations, we see that Ay, x -+ x A\, maps x — (z1,...,Zpm), and

gives a bijection Xp — Xbp.

Let p € P. Then we may write p = c1p1 + -+ + ¢mpPm for ci,...,¢p € N, and
Ap = (@ 28 ) o (A, X ---x Ay, ). The topology on Xp is the weakest for which A, :
Xp — [0, 00) is continuous for all p € P. This is identified by A\, x---x X, : Xp — Xp
with the weakest topology on X}, C [0,00)™ such that x7*---aim : Xp — [0,00) is
continuous for all ¢i, ..., ¢y, € N. But by taking ¢; = d;; for j = 1,...,m, we see this is
just the topology on X induced by the inclusion X} C [0, 00)™, which proves (a).

For functions f : U — R in (b), the ‘if’ part is trivial, taking rq,...,7, in Defi-
nition 3.12 to be p1,...,pm, with n = m. For the ‘only if’ part, let f : U — R be
smooth in the sense of Definition 3.12. Then f(z) = ¢'(2(r1),...,2(ry)) for all z € U,
where 71,...,7, € P and ¢’ : W — R is smooth for W’ an open neighbourhood of
(Apy X+ x A, )(U) in [0, 00)™. Since p1, . . ., py, generate P we may write 7; = Y 0" | ¢;;p;
forc;;j eN,i=1,...,m,j=1,...,n. Define W C [0,00)™ and g : W — R by

W ={(z1,...,2m) €[0,00)™ : (]t afmt, ... ,aP" - alrm) € W'},
g(z1,... 1) :g’(xin R a:fn")

Then W is an open neighbourhood of U’ in [0, 00)™ and g is smooth, and f = go (Ap, X
-++ X Ap,. ). This proves part (b) for f: U — R, and (b) for f: U — (0, 00) follows.

For functions f : U — [0,00) in (b), observe that if W C [0,00)™ is open and
connected and g : W — [0, 00) is smooth in the sense of §2.1 then either we may write
g(x1,.. . xm) =t xlm - h(x, ..., Ty), where ¢q, ..., ¢y € Nand b : W — (0,00) is
smooth, or g = 0. Using this and the argument of the first part of (b), we can prove (b)
for f: U — [0, 00).

For (c), first suppose f : U — V is a map, W is an open neighbourhood of U’ in
[0,00)™, and g : W — [0, 00)™ is smooth in the sense of §2.1, with (Ag, X --- X A, )0 f =
go(Ap, X - x Xy ): U — [0,00)". Write g = (g1,...,9n), so that g; : W — [0, 00)
is smooth. Then A, o f = go (Ap, X --- X Ay, ) : U — [0,00), so part (b) shows that
Ag; 0 f : U — [0, 00) is smooth in the sense of Definition 3.12, for i = 1,...,n. Let ¢ € Q.
Then we may write ¢ = c1q1 + + -+ + ¢pqy for c1,...,¢, € N, as q1,...,q, generate Q.
Then
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/\qof:()‘qlof)01"'()‘qnof)c":U—>[ano)v

80 Ago f: U — [0,00) is smooth as in Definition 3.12 as the Ay, o f are, and f: U -V
is smooth as in Definition 3.12. This proves the ‘if” part of (c).

Next suppose f : U — V is smooth in the sense of Definition 3.12. Then Ay o f :
U — [0,00) is smooth as in Definition 3.12 for each ¢ = 1,...,n, so by (b) there exists
W; € [0,00)™ open and g; : W; — [0, 00) smooth as in §2.1 such that Ay, o f = g;0(Ap, X
X Ap, ) U = [0,00). Set W =WiN---NW, and g = g1|w X+ - X gn|lw : W — [0,00)™.
Then g is smooth and (Ag, X -+ X Ay, )of =go(Ap, X =X\, ): U — [0,00)", proving
the ‘only if’ part of (¢), and completing the proof of the proposition. O

Example 3.15.

(i) When P = N, points of Xy are monoid morphisms z : N — ([0, 00), ), which may
be written uniquely in the form x(m) = y™, m € N, for y € [0,00). This gives an
identification Xy = [0, 00) mapping x — y = x(1).

In Proposition 3.14, we may take P = N to be generated by p; = 1, with no
relations. Then part (a) shows that A : Xy — X = [0,00) is a homeomorphism,
the same identification Xy = [0, 00) as above.

(ii) When P = Z, points of Xz are monoid morphisms z : Z — ([O7 00), ~), which may
be written uniquely in the form xz(m) = ¢™¥ for y € R. This gives an identification
Xz = R mapping = — y = logz(1).

In Proposition 3.14, we may take P = Z to be generated by p; = 1 and ps = —1,
with one relation p; +ps = 0. Then part (a) shows that A\; X A_; is a homeomorphism
from Xy to

X, = {(J;l,xg) € [(),oo)2 P Xy Ty = 1}.
In terms of the identification Xz = R € y above, we have
X7, ={(e?,e¥):ye R} =R
(iii) When P = N¥ x Z"7* combining (i), (i), points of Xp are monoid morphisms
z: P — ([0, 00), ~), which may be written uniquely in the form

$(m1, e ,mn) = y{”l e yZLk 6mk+1yk+1+"'+mnyn
for (yi,...,yn) € [0,00)’“ x R" % This identifies Xk wgn—r+ 2 [0, oo)’~C x Rk,

We will often use the identifications Xy = [0,00), Xz = R and Xy zn—+ = [0, 00)* x
R™F = R} in (i)-(iii). Using Proposition 3.14 we see that in each of (i)-(iii), the
topology on Xp, and the notions of smooth functions U — R, U — (0,00), U —
[0,00), agree with the usual topology and smooth functions (in the sense of §2.1) on
[0,00), R, [0, 00)* x R™*. Thus, the Xp for general weakly toric monoids P are a class of
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smooth spaces generalizing the spaces [0, 00)* x R™ " used as local models for manifolds
with corners.

If P, Q are weakly toric monoids then so is P x @, and monoid morphisms P x Q) —
([0,00),+) are of the form (p,q) — z(p)y(q), where z : P — ([0,00),-) and y : Q —
([O, 00), ) are monoid morphisms. This gives a natural identification Xpyxg = Xp x Xq.
Using this and Example 3.15 we deduce:

Lemma 3.16. Let P be a weakly toric monoid. Then P = P* x P>, where Pt is a toric
monoid and P* = 7! for 1 > 0. Hence Xp = X ps X Xy =2 Xpi X R,

Thus, we can reduce from weakly toric to toric monoids P by including products
with R in the spaces Xp. A different way to reduce from weakly toric to toric monoids
is to note that R’ is diffeomorphic to (0,00)" C [0,00)! = Xy, so Xp = Xp: x R is
diffeomorphic to an open subset in Xp, x [0,00)! = Xgq, where @ = Pt x N s toric,
giving:

Corollary 3.17. Let P be a weakly toric monoid. Then there exists a toric monoid Q and
an open subset Ug C X¢q such that Xp is diffeomorphic to Ug.

The next proposition describes the interior Xp of Xp.

Proposition 3.18. Let P be a weakly toric monoid, so that the interior Xp of Xp is an
open subset of Xp. Set n = rank P. Then:

(a) X3 is diffeomorphic in the sense of Definition 3.12 to R™ = Xyn.
(b) X3 is the subset of points x € Xp which have an open neighbourhood in Xp home-
omorphic to an open ball in R™.

Proof. For (a), points of X3 are monoid morphisms z : P — ((0, 00), ) As ((O,oo), )
is a group, any such morphism factorizes through the projection P — P8P, so points of
Xp correspond to group morphisms P& — ((0,00), ) But P8P = 7" as P is weakly
toric of rank n, and monoid morphisms Z" — ((0, 00), ) are points of Xz» = R"™. Thus,
a choice of isomorphism P8P = Z™ induces an identification X = R" =2 Xz, and it is
easy to see that this is a diffeomorphism in the sense of Definition 3.12.

For (b), if z € X3, part (a) implies that Xp is locally homeomorphic to R" near x.
And if z € Xp \ X} then using Proposition 3.14(a) we can show that Xp is not locally
homeomorphic to R™ near x. O

3.83. The category Man8°¢ of manifolds with g-corners

We can now define the category Man®® of manifolds with generalized corners, or
g-corners, extending Definition 2.2 for the case of ordinary corners.
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Definition 3.19. Let X be a second countable Hausdorff topological space. An n-
dimensional generalized chart, or g-chart, on X is a triple (P, U, ¢), where P is a weakly
toric monoid with rank P = n, and P is a submonoid of 7ZF for some k >0,and U C Xp
is open, for Xp as in §3.2, and ¢ : U — X is a homeomorphism with an open set ¢(U)
in X.

Let (P,U, ¢), (Q,V, %) be n-dimensional g-charts on X. We call (P, U, ¢) and (Q, V, )
compatible if v o ¢ : ¢7H(p(U) N (V) — v (¢(U) Np(V)) is a diffeomorphism
between open subsets of Xp, Xq, in the sense of Definition 3.12.

An n-dimensional generalized atlas, or g-atlas, for X is a family {(P,U? ¢%) :icI}
of pairwise compatible n-dimensional g-charts on X with X = (J,; ¢ (U?). We call
such a g-atlas mazimal if it is not a proper subset of any other g-atlas. Any g-atlas
{(P},U?,¢%) :i € I} is contained in a unique maximal g-atlas, the family of all g-charts
(P,U,¢) on X compatible with (P*,U*, ¢?) for all i € I.

An n-dimensional manifold with generalized corners, or g-corners, is a second count-
able Hausdorff topological space X with a maximal n-dimensional g-atlas. Usually we
refer to X as the manifold, leaving the g-atlas implicit. By a g-chart (P,U, ¢) on X, we
mean an element of the maximal g-atlas. Write dim X = n.

Motivated by Proposition 3.18(b), define the interior X° of an n-manifold with g-
corners X to be the dense open subset X° C X of points x € X which have an open
neighbourhood in X homeomorphic to an open ball in R™. Then Proposition 3.18 implies
that if (P,U,¢) is a g-chart on X then ¢~}(X°) = U°, where U° C U C Xp is as in
Definition 3.12, so (P,U°, ¢) is a g-chart on X°.

Let X, Y be manifolds with g-corners, and f : X — Y a continuous map of the
underlying topological spaces. We say that f : X — Y is smooth if for all g-charts
(P,U,¢) on X and (Q,V,v) on Y, the map

v lofod:(fod) (V) —V (3.5)

is a smooth map between the open subsets (f o ¢) ' (¢(V)) CU C Xp and V C Xg, in
the sense of Definition 3.12.

This condition is local in X and Y, and it holds locally in some charts (P, U, ¢) on X
and (@, V,¢) on Y if and only if it holds on compatible charts (P',U’,¢'), (Q',V',¢")
covering the same open sets in X, Y. Thus, to show f: X — Y is smooth, it suffices to
check (3.5) is smooth only for (P, U, ¢) in some choice of g-atlas {(P*,U?, ¢*) : i € I} for
X and for (Q,V,) in some choice of g-atlas {(Q7, V7, 47) : j € J} for Y, rather than
for all (P,U,¢), (Q,V,).

We say that f: X — Y is a diffeomorphism if it is a bijection, and both f: X — Y,
f~1:Y — X are smooth.

We say that a smooth map f: X — Y is interior if f(X°) C Y°. Equivalently, f is
interior if the maps (3.5) are interior in the sense of Definition 3.12 for all (P,U, ¢),

(@, V,9).
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In Definition 3.12 we saw that for open U C Xp, V C Xq, W C Xg, compositions
g o f of smooth (or interior) maps f: U — V, g: V — W are smooth (or interior), and
identity maps idy : U — U are smooth (and interior). It easily follows that compositions
gof: X — Z of smooth (or interior) maps f: X — Y, g:Y — Z of manifolds with
g-corners are smooth (or interior), and identity maps idx : X — X are smooth (and
interior).

Thus, manifolds with g-corners and smooth maps, or interior maps, form a category.
Write Man®8¢ for the category with objects manifolds with g-corners X, Y and mor-
phisms smooth maps f : X — Y, and Man{S C Man®® for the (non-full) subcategory
with objects manifolds with g-corners X, Y and morphisms interior maps f: X — Y.

Write Man2© for the category whose objects are disjoint unions H::O X, where X,
is a manifold with g-corners of dimension m, allowing X,,, = (J, and whose morphisms are
continuous maps f : [[)7_o Xp — 17— Yn, such that flx, ~r-1(v,) : Xm N f71(Yn) =
Y, is a smooth map of manifolds with g-corners for all m,n > 0. Objects of Man8°
will be called manifolds with g-corners of mized dimension. We regard Man8° as a full
subcategory of Man®® in the obvious way. Write Manﬁf for the (non-full) subcate-
gory of Man8¢ with the same objects, and morphisms f : oo Xm — 11—y Y with
flx,.nf-1(v,) an interior map for all m, n.

Alternatively, we can regard l\V/Iang"7 l\V/Ianing as the categories defined exactly as for
Man&°®, Manf; above, except that in defining g-atlases {(P*,U%,¢") : i € I} on X,
we omit the condition that all charts (P? U?, ¢°) in the g-atlas must have the same
dimension rank P’ = n.

Remark 3.20.

(a) Section 3.2 and Definition 3.19 were motivated by Kottke and Melrose’s interior
binomial varieties [20, §9)].
In fact Kottke and Melrose do rather less than we do: they define interior binomial
subvarieties X only as subsets X C Y of an ambient manifold with corners Y, rather
than as geometric spaces in their own right. Their local models for the inclusion
X CY are essentially the same as our inclusion X5 C [0, 00)™ in Proposition 3.14(a),
and they do not highlight the fact that Xp really depends only on the monoid P,
and not on the embedding Xp < [0,00)™. Nonetheless, it seems clear that Kottke
and Melrose could have written down a definition equivalent to Definition 3.19, if
they had wanted to.
Our Manf? is equivalent to a full subcategory of Gillam and Molcho’s category of
positive log differentiable spaces, [6, §6].

(b) In the definition of g-charts (P, U, ¢) above, we require that the weakly toric monoid
P is a submonoid of ZF for some k > 0. As in §3.1, every weakly toric monoid
P is isomorphic to a submonoid of some Zk, so this does not restrict P up to
isomorphism. We assume it for set theory reasons, as if we did not then the maximal
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g-atlas {(P*,U%, ¢%) : i € I} of all g-charts (P,U, ¢) on a manifold with g-corners X
would not be a set, but only a proper class. We will generally ignore this issue.

(c) As in Remark 2.5 for manifolds with (ordinary) corners, we can also define real
analytic manifolds with g-corners, and real analytic maps between them. To do this,
in Definition 3.12, if P is a weakly toric monoid and U C Xp is open, we call a
continuous function f : U — R real analytic if there exist r1,...,r, € P, an open
subset W C R", and a real analytic map g : W — R (i.e. the Taylor series of
g at w converges to g near w for all w € W), such that for all x € U we have
(z(r1),...,2(ry)) € W and (3.2) holds.

If @ is another weakly toric monoid, V' C Xg is open, and f : U — V is smooth in
the sense of Definition 3.12, we say that f is real analytic if Aqo f : U — R is real
analytic in the sense above for all ¢ € Q.

Then we define {(P,U% ¢%) : i € I} to be a real analytic g-atlas on a topological
space X as in Definition 3.19, except that we require the transition functions (¢7)~to
¢* for i,j € I to be real analytic rather than smooth. We define a real analytic
manifold with g-corners to be a Hausdorff, second countable topological space X
equipped with a maximal real analytic g-atlas.

Given real analytic manifolds with g-corners X, Y, we define a continuous map
f X — Y to be real analytic if whenever (P,U,¢), (Q,V,v) are real analytic
g-charts on X, Y (that is, g-charts in the maximal real analytic g-atlases), the
transition map ¥ ~! o fo ¢ in (3.5) is a real analytic map between open subsets of
Xp, X¢ in the sense above. Then real analytic manifolds with g-corners and real
analytic maps between them form a category Mangs.

There is an obvious faithful functor F%:E;g : Mang; — Man®&°, which on objects
replaces the maximal real analytic g-atlas by the (larger) corresponding maximal
smooth g-atlas containing it. Essentially all the material we discuss for manifolds
with g-corners also works for real analytic manifolds with g-corners, except for con-
structions requiring partitions of unity.

Example 3.21. Let P be a weakly toric monoid. Then Xp is a manifold with g-corners,
of dimension rank P, covered by the single g-chart (P, Xp,idx,).

Let p: @ — P be a morphism of weakly toric monoids. Define X,, : Xp — Xg by
X, (z) = zop, noting that points « € X p are monoid morphisms x : P — ([07 00), ) It is
easy to show that X, : Xp — X is a smooth, interior map of manifolds with g-corners,
and we have a functor X : (Mon"*)°P — Man8° mapping P — Xp on objects and
p — X, on morphisms.

We relate manifolds with g-corners to manifolds with corners in §2.
Definition 3.22. Let X be an n-manifold with (ordinary) corners, in the sense of §2.1.

Then X has a maximal atlas of charts (U, ¢), where U C R} = [0, 00)* x R"* is open
and ¢ : U — X is a homeomorphism with an open set ¢(U) C X, as in Definition 2.2. We
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can turn X into a manifold with g-corners as follows. Let (U, ¢) be a chart on X with U C
[0,00)% x R™™" open. As in Example 3.15(iii) we identify Xy yzn—r = [0, 00)% x R"7F,
so we may regard U as an open set in Xy, zn—+, and thus (Nk x 7"k U, ¢) is a g-chart
on X.

If (V,4) is another chart on X and (Nl x 2"V, 1) the corresponding g-chart, then
(U, ¢), (V,4) compatible in the sense of Definition 2.2 implies that (N* x Z"™% U, ¢),
(N' x Z"7" V,4) are compatible g-charts. Hence the maximal atlas of charts (U, $) on
X induces a g-atlas of g-charts (N¥ x Z"™* U, ) on X, which is a subatlas of a unique
maximal g-atlas of g-charts (P,U, ¢) on X, making X into a manifold with g-corners,
which we temporarily write as X.

Thus, every manifold with corners X may be given the structure of a manifold with
g-corners X IfX , Y are manifolds with corners and X , Y the corresponding manifolds
with g-corners, then Proposition 3.14(c) implies that a map f : X — Y is a smooth
map of manifolds with corners, as in §2.1, if and only f : X — Y is a smooth map of
manifolds with g-corners, in the sense above.

Define Fpfan¥ . Man® < Man8® by Fayans . X X on objects and FMan®e .
f +— f on morphisms. Then Fl\l\/f;?f ° is full and faithful, and embeds the category Man®
from §2 as a full subcategory of the category Man®&¢ above. Also Fl\l\/f:rrl‘cg ° takes inte-
rior maps in Man€ to interior maps in Man&®, and so restricts to a full and faithful
embedding th,;[::ff : Man§, — Manf’.

Similarly, we regard Man® in §2.1 as a full subcategory of Man®© above.

Let X be an n-manifold with g-corners. Then X = FMa0*(X) for some n-manifold
with corners X if and only if X admits a cover by g-charts of the form (Nk xZ"7* U, ?),
and then the maximal atlas for X is the family of all (U, ¢) with (Nk x Z" 7k U, 9) a
g-chart on X.

From this we see that the subcategory Fpp22e®(Man®) in Man&® is closed under iso-
morphisms in Man8° (it is strictly full), and is strictly isomorphic (not just equivalent)
to Man®. We will often identify Man® with its image Fppan” (Man®) in Man8®, and
regard Man® as a subcategory of Man&® (and similarly Mang, as a subcategory of
Man§{? C Man®&°), and manifolds with corners as special examples of manifolds with
g-corners. Since the only difference between a manifold with corners X and the corre-
sponding manifold with g-corners X is the maximal atlas {(U%,¢") : i € I} on X or
g-atlas {(P",U%,¢") : i € I} on X, and we rarely write these (g-)atlases down, this
identification should not cause confusion.

As in §2, we have full subcategories Man, ManP C Man® of manifolds without bound-
ary and manifolds with boundary, and non-full subcategories Mang,, Man{, C Man®
of strongly smooth and interior strongly smooth morphisms in Man®. We consider all
of these as subcategories of Man®°. If X is any manifold with g-corners then X° is a
manifold without boundary, that is, X° € Man C Man&°.
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(0,0,0,0) = 5o

(21,0,0,0) (21,0, 75,0) (0,0, z3,0)

(07 0,0, x4 (O,z2,0,14) ) )

Fig. 3.1. 3-manifold with g-corners Xp = Xp in (3.7).

Example 3.23. The Xp we now describe is the simplest example of a manifold with
g-corners which is not a manifold with corners. We will return to this example several
times to illustrate parts of the theory. Define

P={(a,bc) €Z’:a>0,b>0,a+b>c>0}.
Then P is a toric monoid with rank 3, with P& = Z3 > P. Write
p1=(1,0,0), p2=(0,1,1), p3=1(0,1,0), ps=(1,0,1). (3.6)
Then p1, p2, p3, p4 are generators for P, subject to the single relation

pP1+p2 = p3 + Py
Thus Proposition 3.14(a) shows that
Xp = Xp = {(21,22,23,14) € [0,00)* : 2129 = T3T4 ). (3.7)

We sketch X5 in Fig. 3.1. We can visualize Xp = X}, as a 3-dimensional infinite pyra-
mid on a square base. Using the ideas of §3.4, X has one vertex (0, 0,0, 0) corresponding
to 8y € Xp mapping &y : P — ([0,00), ) with dy(p) = 1 if p = (0,0, 0) and dy(p) = 0 oth-
erwise, four 1-dimensional edges of points (21,0, 0,0), (0, 22,0, 0), (0,0, 23,0), (0,0,0, x4),
four 2-dimensional faces of points (z1,0,z3,0), (21,0,0,24), (0,22,23,0), (0, 22,0, x4),
and an interior X = R? of points (21,29, 23,24). Then Xp \ {dp} is a 3-manifold
with corners, but Xp is not a manifold with corners near Jy, as we can see from the
non-simplicial face structure.

Remark 3.24. Looking at Fig. 3.1, it is tempting to try and identify Xp in Example 3.23
with a polyhedron in R®, with four linear faces, and one vertex like a corner of an
octahedron. However, this is a mistake. Although the combinatorics of the edges, faces,
etc. of Xp are those of a polyhedron in R?, the smooth structure near (0,0,0,0) is
different to that of a polyhedron.
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Definition 3.25. If P, () are weakly toric monoids then P x @ is a weakly toric monoid,
and Xpyxg = Xp x Xg. Thus, the class of local models for manifolds with g-corners is
closed under products. Therefore, if X, Y are manifolds with g-corners, we can give the
product X x Y the structure of a manifold with g-corners, such that if X, Y are locally
modelled on Xp, X near z, y then X x Y is locally modelled on Xpyg near (z,y).
That is, if (P,U, ¢) and (Q,V,4) are g-charts on X, Y then (P x Q,U X V,¢ x ¢) is a
g-chart on X x Y, identifying U x V' C Xp x X with an open set in Xpyg = Xp x Xg.

There are also two notions of product morphism in Man®¢: if f : W — Y and
g : X — Z are smooth (or interior) maps of manifolds with g-corners then the product
fxg:WxX =Y xZ mapping f X g: (w,x) — (f(w),g(x)) is smooth (or interior),
andif f: X - Y, g: X — Z are smooth (or interior) maps of manifolds with g-corners
then the direct product (f,g) : X =Y X Z mapping (f,g) : x — (f(z), g(x)) is smooth
(or interior).

3.4. Boundaries 0X, corners Cy(X), and the corner functor

In Definition 2.6 we defined the depth stratification X = H?;ISX S!(X) of a manifold
with corners X. We now generalize this to manifolds with g-corners.

Definition 3.26. Let P be a weakly toric monoid, and F a face of P, as in §3.1.5. For
Xp, Xp as in §3.2, define an inclusion map % : X < Xp by iL(y) = ¢, where y € Xr
so that y : F — [0, 00) is a monoid morphism, and g : P — [0, 00) is defined by

3(p) = y(p), p€EF,
0, p€ P\ F.

The condition in Definition 3.9 that if p,q € P with p+ ¢ € F then p, ¢ € F implies that
¢ is a monoid morphism, so § € Xp. Then it : X — Xp is a smooth, injective map of

manifolds with g-corners.
For each x € Xp, define the support of x to be

suppzx = {p € P:x(p) # 0}.

It is easy to see that supp z is a face of P. For each face F' of P, write
Xf; = {:E € Xp:suppzx = F}

Then the interior X% is X5, and we have a decomposition

_ P
XP - Hfaces F of P XF. (38)

From the definition of if; : Xp — Xp, it is easy to see that
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Xf =ip(Xp) and XE=ip(Xp)=]] xg, (3.9)

faces G of P with G C F

where X—I{f is the closure of X in Xp. By Proposition 3.18(a) we have a diffeomorphism
XE = xp = prankF — grank PrcodimF g (3.8) is a locally closed stratification of
Xp into smooth manifolds without boundary.

For z € Xp, define the depth depthy, 2 to be codim(supp ) = rank P—rank(supp z),
so that depthy,z = 0,...,dim Xp. For each [ = 0,...,dim Xp, define the depth [
stratum of Xp to be

S Xp) = {z € Xp :depthy, z = 1}.

Then the interior X3 is S°(Xp), and

s'xp) =11 X, (3.10)

faces F' of P: codim F =1
so that S'(X) is a smooth manifold without boundary of dimension dim Xp — I, and

(3.9) implies that S(Xp) = U™ X* S (X p). Hence

dim Xp
Xp = ]_[l:O SH(Xp)

is a locally closed stratification of Xp into smooth manifolds without boundary.

If U C Xp is an open set, we define S'(U) =U NS (Xp) ={u e U :depthy, u=1}
for | =0,...,dim Xp = dimU. Then U = [[0 Y S{(U).

As in Definition 2.15(b), for € Xp write Z,(Xp) for the set of germs [b] at = of
interior maps b : Xp — [0, 00). It is a monoid under multiplication. Using the notation of
§3.1, the units Z,(Xp)* are germs [b] with b(z) > 0, and Z,(Xp)* = Z,(Xp)/Z.(Xp)*.
Consider the monoid morphism

I, : P — Z,(Xp)®, T:pr— [N)] Zo(Xp)~.
Using Definition 2.10, we see that II is surjective, with kernel supp . Therefore
P/suppz =T, (Xp):.
Thus Z,(Xp)? is a toric monoid, with
rank (Z,(Xp)*) = rank P — rank(supp =) = depthy, @.
Hence if U C Xp is open then for [ =0,...,dim U we have
SHU) = {u € U : rank(Z,(U)*) = 1}. (3.11)

Now (3.11) depends only on U as a manifold with g-corners, rather than as an open
subset of some X p. It follows that the depth stratification U = ]_[?:8 USHU) is invariant
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under diffeomorphisms. That is, if P, ) are weakly toric monoids with rank P = rank @,
and U C Xp, V C Xg are open, and f : U — V is a diffecomorphism in the sense of
§3.2, then f(S'(U)) = SY(V) for 1 =0,...,dimU = dim V.

Let X be a manifold with g-corners. For z € X, choose a g-chart (P,U,¢) on the
manifold X with ¢(u) = z for v € U, and define the depth depthy x of z in X by
depthy 2 = depthy, u. This is independent of the choice of (P,U, ¢), by invariance of
the depth stratification under diffeomorphisms. For each [ = 0,...,dim X, define the
depth | stratum of X to be

SYX)={z € X :depthy z = 1}.
Then X = H?:gx SY(X). Each S'(X) is a manifold without boundary of dimension

dim X — [, with S°(X) = X°, and SI(X) = U™~ S*(X), since this holds for the
stratifications of the local models U C Xp.

Example 3.27. Let P = N* x Z"7% and identify Xp with RY = [0,00)* x R" 7" as
in Example 3.15(iii). Then faces F' of P are in 1-1 correspondence with subsets I C
{1,...,k}, where the face Fj corresponding to a subset I is

Fr = {(al,...7an) e N* xZn_k:aizoforiGI},
so that rank F; = n — |I| and codim F; = |I|. We can show that
Xp ={(z1,...,2) ERY :2;=0,i€l,and z; #0, j € {1,...,k}\ I},

so that XE = (0,00)F Ml x R"F = R™ M. Thus, for (z1,...,2,) € Xp = RY,

depthy, @ in Definition 3.26 is the number of xy, ...,z which are zero, and
SHRY) = {(z1,...,2,) € R} : exactly [ out of a1,..., 7y are zero}.

But this coincides with the definition of depthg, = and S L(RY) in Definition 2.6. There-
fore we deduce:

Corollary 3.28. Let X be a manifold with corners as in §2, and regard X as a manifold
with g-corners as in Definition 3.22. Then the two definitions of depth depthy x for
z € X, and of the depth stratification X = ]_[?;rgx SYX), in Definitions 2.6 and 3.26
agree.

Following Definition 2.7 closely, we define boundaries X and corners Cj(X) of man-
ifolds with g-corners.

Definition 3.29. Let X be an n-manifold with g-corners, z € X, and k£ = 0,1,...,n.
A local k-corner component v of X at x is a local choice of connected component of
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Sk(X) near x. That is, for each sufficiently small open neighbourhood V of x in X,
7 gives a choice of connected component W of V' N S*(X) with x € W, and any two such
choices V, W and V', W’ must be compatible in that z € (W NW’). When k = 1, we
also call local 1-corner components local boundary components of X at x.

As sets, define the boundary 0X and k-corners C(X) for k =0,1,...,n by

0X = {(z,B) : x€ X, f is a local boundary component of X at z},
Cr(X) = {(z,7) : v € X, v is a local k-corner component of X at z},

so that X = C1(X). Since each z € X has a unique 0-boundary component [X°], we
have Cp(X) = X. Define maps ix : 0X — X, Il : Cx(X) — X, ¢t : X — Cop(X) by
ix:(x,p)—a,II: (z,7) = xand v: z— (z,[X°]).

We will explain how to give 90X, Ci(X) the structure of manifolds with g-corners, so
that ix, IT, ¢ are smooth maps, with ¢ a diffeomorphism. Let (P, U, ¢) be a g-chart on X,
and u € U C Xp with ¢(u) =z € X. Then (3.10) gives

. _ P
S (U) - Hfaces F of P: codimF = k XF nu

As X 1{3 ~ R"F s connected, and furthermore locally connected in Xp, we see that
local k-corner components of U at u are in 1-1 correspondence with faces F' of P with
codim F' = k, such that u € X—ﬁ. Hence by (3.9), local k-corner components of U at u
are in 1-1 correspondence with faces F' of P with codim F' = k such that u € i£(XF).
Thus, we have natural 1-1 correspondences

,v) iz € ¢(U) C X, v is alocal k-corner component of X at x}

=
22

"Y:u €U, is alocal k-corner component of U at u}

Py—1
Hfaces F of P: codim F = k(ZF) (U)7 (312)

where (i£)71(U) C Xf is an open set.

For each face F of P with codim F = k, let ¢% : ('P)_l(U) — I Y(e(U)) C
Cr(X) be the map determined by (3.12). Then (F, (i£)~'(U),¢%) is a g-chart of di-
mension n — k on Ck(X), and the union of these over all F covers II71(¢(U)). If
(P",U’,¢') is another g-chart on X then (P,U,¢), (P',U’,¢’) are compatible. Using
this one can show that the g-charts (F,(i%)~!(U),¢%) on Cy(X) from (P,U,¢) and
(F, (ib)~ 1(U’),¢§:) from (P’,U’,¢') are pairwise compatible. Hence the collection of
all g-charts (F, (i£)~*(U), ¢%) on Ci(X) from all g-charts (P,U,$) on X is a g-atlas,
where C(X) has a unique Hausdorff topology such that ¢f is a homeomorphism with
an open set for all such g-charts, and the corresponding maximal g-atlas makes C(X)
into an (n — k)-manifold with g-corners, and 0X = C1(X) into an (n — 1)-manifold with
g-corners.
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Example 3.30. Let P be a weakly toric monoid, and take X = Xp in Definition 3.29, so
that X is covered by one g-chart (P, Xp,idx,). Then taking U = Xp in (3.12) gives a
diffeomorphism

Co(Xp) =] Xp. (3.13)

faces F of P: codim F =k

Then P has one face F' = P of codimension 0, four faces F' of codimension 1 all with
F = N2, four faces F of codimension 2 all with F = N, and one face F = {0} of
codimension 3. Thus by (3.13) we have diffeomorphisms

Co(Xp) = Xp, CL(Xp)=0Xp=(0,00)*T1[0,00)*IT[0, 00)*IT[0, 00)?,
C2(Xp) = [0,00) I11[0,00) IT [0, 00) I1 [0, 00) and C3(Xp) = .
From these we deduce that
0*Xp = 8 copies of [0,00), 0°Xp = 8 points.
We use these to show that some results in §2.2 for manifolds with corners are false
for manifolds with g-corners. For a manifold with (ordinary) corners X, equations (2.5),

(2.7), (2.8) and (2.9) say that

Cr(X) = {(x,{ﬂl,...,,é’k}) : xe X, By,..., Bk are distinct

local boundary components for X at a:}, (3.14)

X = {(2,p1,....,Bk): v €X, Bi,...,B are distinct (3.15)
local boundary components for X at x},

Cr(X) =2 9*X/ S, (3.16)

OCKL(X) 2 Cr(0X), (3.17)

using in (3.16) the natural free Sy-action on O X permuting f31, ..., By in (3.15).

For the manifold with g-corners Xp, equation (3.14) is false for k = 2,3, as over
x = &g there are 4 points on the Lh.s. and 6 points on the r.h.s. for K = 2, and 1 point
on the Lh.s. and 4 points on the r.h.s. for k = 3. Similarly (3.15) is false when k = 2, 3.
Equation (3.16) is true when k = 2, but false when k = 3, since S3 cannot act freely
on 8 points, and even for a non-free action, 3>Xp/S3 would be at least two points. In
(3.17) for Xp when k = 2, both sides are four points. However, the 1.h.s. corresponds to
the four edges in Fig. 3.1, and the r.h.s. to the four faces in Fig. 3.1. There is no natural
1-1 correspondence between these two four-point sets equivariant under automorphisms
of Xp, so (3.17) is false for Xp, that is, there is no such canonical diffeomorphism.
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Example 3.31 shows that in general (3.14)—(3.17) are false for manifolds with g-
corners X, at least for k& > 3. But some modifications of them might be true, and
we certainly expect some relation between 0* X and Cy,(X). By considering local models
Xp, and some simple properties of faces in weakly toric monoids, one can prove the
following proposition. The moral is that for k = 2, equations (3.14)—(3.16) have a good
extension to manifolds with g-corners, but for k£ > 3 they do not generalize very well.

Proposition 3.32. Let X be a manifold with g-corners. Then:

(a) There are natural identifications

Co(X) 2 {(2,{B1,B2}) : z€X, B1, B2 are distinct local boundary (318)
3.18
components of X at x intersecting in codimension 2},

82X%{(x,ﬁ1,ﬂ2) : x€X, B1, B are distinct local boundary
(3.19)
components of X at x intersecting in codimension 2}.

There is a natural, free action of So = 7o on 0*X, exchanging 1, B2 in (3.19), and
a natural diffeomorphism Ca(X) = 02X/ Ss.

(b) For all k = 0,1,...,dim X there are natural projections m : O*X — Cy(X) which
are smooth, surjective, and étale (a local diffeomorphism).

(c) The symmetric group Sy for k > 2 is generated by the k — 1 two-cycles
(12),(23),-- -, (k—1k), satisfying relations. Thus, an Si-action on a space is equiv-
alent to k — 1 actions of Sa = Zs, satisfying relations.

We can define k — 1 actions of Sy on 90X as follows: for j =0,...,k — 2, part (a)
with 3 X in place of X gives an Sa-action on 712X, and applying 0* 72 induces
an Sy-action on O X. If X has ordinary corners, these k — 1 Sy-actions satisfy the
relations required to define an Sy-action on OX, but if k > 3 and X has g-corners

they may not satisfy the relations, and so generate an action of some group G 2 Sk
on OFX.

Here in (3.18)—(3.19), distinct local boundary components (1, B2 of X at x may
intersect in codimension 2,3,...,dim X. For example, Xp in Example 3.23 has four
local boundary components (13, 832, [24, Ba1, at * = &g, of which adjacent pairs
(813, B32), (B32,524), (Pa4,Ba1) and (B41, f13) intersect in codimension 2, and opposite
pairs (813, 824) and (Bs2, B41) intersect in codimension 3.

Here is the analogue of Lemma 2.9.

Lemma 3.33. Let f : X — Y be a smooth map of manifolds with g-corners. Then f
is compatible with the depth stratifications X = [[,-, SHX), Y = >0 SUY) in
Definition 3.26, in the sense that if ) # W C S*(X) is a connected subset for some
k>0, then f(W) C SYY) for some unique | > 0.
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Proof. The lemma is a local property, so by restricting to single g-charts on X, Y, we
see it is sufficient to prove that if P, ) are weakly toric monoids, U C Xp, V C Xg
are open, and f : U — V is smooth in the sense of Definition 3.12, then f preserves the
stratifications U = [[,5, S*(U), V = 1,5 S (V).

In Definition 3.26, S*(U) is a disjoint union of pieces U N XL for codim F = k, where
the subsets X5 C Xp may be characterized as subsets where either A\, = 0 (if p ¢ F) or
Ap >0 (if p € F'), for each p € P. Thus we see that

{S C U :for some k >0, S is a connected component of S*(U)}
= {S C U : for some I C P, S is a connected component of (3.20)

fueU:N(u)y=0forpel, A\, >0forpe P\I}}.

The analogue also holds for V. Now as f : U — V is smooth, Definition 3.12 implies
that for each ¢ € @, locally on U we may write Ao f = h- A, for some p € P and h > 0,
or Ag o f = 0. Hence locally on U, f pulls back subsets {\; = 0} and {\; > 0} in V for
q € Q to subsets {\, = 0} and {\, > 0} for p € P, or else f pulls back {\;, =0} to U
and {\; > 0} to (). This implies that f maps each set in the r.h.s. of (3.20) for U to a
set in the r.h.s. of (3.20) for V. The lemma then follows by (3.20) for U, V. O

Here is the analogue of Definition 2.10.
Definition 3.34. Define the corners C(X) of a manifold with g-corners X by

dim X
C(X) = k=0~ Cr(X)
= {(az,’y) cx € X, v is alocal k-corner component of X at x, k > O},

considered as an object of Man®¢ in Definition 3.19, a manifold with g-corners of mixed
dimension. Define a smooth map IT: C(X) — X by I : (x,7) — z.

Let f: X — Y be a smooth map of manifolds with g-corners, and suppose 7 is a local
k-corner component of X at x € X. For each sufficiently small open neighbourhood V
of x in X, v gives a choice of connected component W of V' N S¥(X) with 2 € W, so
by Lemma 3.33 f(W) C SYY) for some [ > 0. As f is continuous, f(W) is connected,
and f(x) € f(W). Thus there is a unique I-corner component f.(y) of Y at f(z), such
that if V is a sufficiently small open neighbourhood of f (z) in Y, then the connected
component W of VNS (Y) given by f.(y) has W f(W) # 0. This f.(v) is independent
of the choice of sufficiently small V, V, so is well-defined.

Define a map C(f) : C(X) — C(Y) by C(f) : (z,v) — (f(z), f«(7)). A similar proof
to Definition 2.10 shows C(f) is smooth, that is, a morphism in Mang®. If g: Y — Z is
another smooth map of manifolds with corners, and - is a local k-corner component of X
at z, then (go f)«(7) = g«0 f«(7) in local m-corner components of Z at go f(x). Therefore
Clgof) =C(g)oC(f) : C(X) = C(Z). Clearly C(idx) = id¢(x) : C(X) — C(X).
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Hence C : Man8¢ — Man& is a functor, which we call the corner functor. We extend
C to C : Man#® — Man&® by C(I],,50 Xm) = [1u50 C(Xm).

m>=0“+m
As in §3.3 we have full subcategories Man® C Man8°, Man® C Mans®. Corol-
lary 3.28 implies that the definitions of C' : Man8¢ — Mangc, C : Man®® — Man8®
above restrict on Man€, Man® to the corner functors C' : Man® — 1\7Ian°, C : Man® —
Man® defined in §2.2.

We show corners are compatible with products.

Example 3.35. Let X, Y be manifolds with g-corners, and consider the product X x Y,
with projections mx : XxY — X, 1y : XXY =Y. Weform C(rx) : C(XxY) — C(X),
C(ny) : C(X xY) = C(Y), and take the direct product

(C(rx), Clmy)) : C(X x V) — C(X) x O(Y). (3.21)

Since S*(X xY) = [, ;-1 S*(X) x 87(Y), from Definition 3.34 we can show that (3.21)
is a diffeomorphism. Thus, as for (2.10)—(2.11) we have diffeomorphisms
(X X Y) 2 (dX x V)1 (X x dY),

Ce(X X Y) =TI, 550, iqj=r Ca(X) x C5(Y).

The functor C preserves products and direct products, as in Proposition 2.11(f).

Here is a partial analogue of Proposition 2.11. The proof is straightforward, by con-
sidering local models.

Proposition 3.36. Let f: X —Y be a smooth map of manifolds with g-corners.

(a) C(f) : C(X) — C(Y) is an interior map of manifolds with g-corners of mized
dimension, so C is a functor C': Man8® — Manigrf.
(b) f is interior if and only if C(f) maps Co(X) — Co(Y), if and only if the following

commutes:
X - Y
I Cff) y
C(X) c(Y).

Thus v : Id=C is a natural transformation on 1d, C|ppanse : Mangy — Man®°.
(c) The following commutes:

CX) —— c(y)
Jn f |
X Y.

Thus 11 : C' = 1d is a natural transformation.
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3.5. B-tangent bundles °TX of manifolds with g-corners

Here is the analogue of Definition 2.13.

Definition 3.37. We define vector bundles over manifolds with g-corners exactly as for
vector bundles over other classes of manifolds: a vector bundle E — X of rank rank E = k
is a smooth map 7 : £ — X of manifolds with g-corners, with a vector space structure
on the each fibre £, = 7~ !(z) for z € X, which locally over X admits a smooth
identification with the projection X x R* — X , preserving the vector space structures
on each E,.

Sometimes we also consider vector bundles of mized rank E — X, in which we allow
the rank k to vary on different connected components of X. This happens often when
working with objects X = [[°_; X, in Mans® from §3.3, for instance, the b-tangent
bundle *T'X has rank m over X,, for each m.

In §2.3 we defined tangent bundles 7X and b-tangent bundles *TX for a manifold
with (ordinary) corners. The expressions (2.13) for T,, X, and (2.14) for T}, X, also make
sense for manifolds with g-corners. The next example shows that for manifolds with
g-corners X, ‘tangent bundles’ T'X are not well-behaved.

Example 3.38. Let Xp be the manifold with g-corners of Example 3.23. Define T,, Xp by
(2.13) for all z € Xp. As Xp \ {do} is a manifold with corners of dimension 3, as in §2.3
we have dim 7, Xp = 3 for all §p # = € Xp. However, calculation shows that Ts5, Xp
has dimension 4, with basis vi, v2, vs, v4 which act on the functions A, : Xp — [0, o)
for p € P by v;([A\p]) = 1 if p = p; and v;([Ap]) = 0 otherwise, where p1, ps, p3, pa are
the generators of P in (3.6). Thus, 7 : TXp — Xp is not a vector bundle over Xp, but
something more like a coherent sheaf in algebraic geometry, in which the dimensions of
the fibres are not locally constant, but only upper semicontinuous. Also T Xp does not
have the structure of a manifold with g-corners in a sensible way.

Because of this, we will not discuss tangent bundles for manifolds with corners, but
only b-tangent bundles ?T'X, which are well-behaved. First we define *TX, and 7x :
TX — X, T f:°TX — *TY just as sets and maps.

Definition 3.39. Let X be a manifold with g-corners, and = € X. Define C°(X), Z,(X)
and ev, exp, inc as in Definitions 2.14 and 2.15. As in (2.14), define a real vector space
°T. X by
"X = {(v,v) : v is a linear map C3°(X) — R,
v’ is a monoid morphism Z,(X) — R,

v([a]- o) =v([a))ev([b]) +ev([a])ou([b]), all [a], [b] € CZ°(X),
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v' oexp([a]) = v([a]), all [a] € C2°(X), and
v o inc([b]) = ev([b])v'([b]), all [b] € T,(X)}. (3.22)

The conditions in (3.22) are not all independent. As a set, define *TX = {(z,v,v’) :
z € X, (v,v') € ’T, X}, and define a projection 7x : *TX — X by 7x : (z,v,v) — z,
so that 73! (z) = T, X.

If f: X = Y is an interior map of manifolds with g-corners, define a map of sets
OTf : °TX — *TY as in Definition 2.15 by °Tf : (z,v,v") = (y,w,w’) for y = f(z),
w=wvo fand w’ = v o f, where composition with f maps of : C;°(Y) — C°(X),
of :Z,(Y) = I,(X), as f is interior.

If g: Y — Z is a second interior map of manifolds with g-corners, it is easy to see
that *T(go f) =TgoTf : °TX — *TZ, and *T(idx) = idvpx : °TX — *T X, so the
assignment X — *TX, f — *Tf is functorial.

In Definition 3.43 below we will give °T'X the structure of a manifold with g-corners,
such that 7x : ®TX — X is smooth and makes *T'X into a vector bundle over X, and
bTf . *TX — TY is smooth for all interior maps f : X — Y. First we explain this
for the model spaces Xp. Equation (3.24) shows that for monoids, passing from Xp to
®T X p corresponds to passing from P to P x P8P,

Proposition 3.40. Let P be a weakly toric monoid, so that Xp is a manifold with g-corners
as in Example 3.21, with b-tangent bundle °TX p. Then there are natural inverse bijec-
tions ®p, Vp in the diagram

vp

STX p Xp x Hom(P#,R), (3.23)

op

where Hom (P& R) = R™ P and &p, Up are compatible with the projections m :
'TXp — Xp, Xp x Hom(P# R) — Xp. Also there are natural bijections

Xp x Hom(P® R) & Xp x Xper = Xpy pev. (3.24)

Proof. As P is weakly toric we have a natural inclusion P — P8P, where P8P = 7
for r = rank P, so that Hom(P®P,R) = R". There are obvious natural bijections
Hom(P®&P,R) = Xper and Xp X Xg = Xpxg, so (3.24) follows.

For (z,y) € Xp x Hom(P#,R) define a map v, : C3°(Xp) — R by

Vg o la) — D00 (%i(%(ﬁ), () () - y(rs) (3.25)

if U is an open neighbourhood of z in Xp, a : U — R is smooth, and as in Definition 3.12
we write a : ¥’ — g(x’(rl),...,x’(rn)) for z’ € U, where r1,...,7r, € Pand g: W - R
is smooth, for W an open neighbourhood of (A, X -+ x A )(U) in [0, 00)™.
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Similarly, define v, , : Z,(Xp) — R by

vy, b —y(p) + 200, %(log R)(x(r1),...,x(r)) - (r;) - y(ri) (3.26)

if U is an open neighbourhood of z in Xp, b: U — [0,00) is interior, and as in Defini-
tion 3.12 we write b : ' — :13'(p)-h(ac'(r1)7 ... ,x’(rn)) for 2’ € U, where p,71,...,7,, € P
and h : W — (0, 00) is smooth, for W an open neighbourhood of (A, X --- x A, )(U) in
[0, 00)™.

It is not difficult to show that v, ,, v}, ., are independent of the choices of presentations
€ T, Xp. Define

for a, b, and that they satisfy the conditions of (3.22), so (vz y, vy ,)

®p: Xp x Hom(P&,R) — "TXp by Op: (,y) — (2,020} ,)-

Now let (z,v,v") € °TX p, and consider the map P — R acting by p — v'([\,]). By
(3.22) this is a monoid morphism P — (R, +), so it factors through a group morphism
PgP — R as (R,+) is a group. Thus there exists a unique y, ., € Hom (P8P, R) with
V'([Ap]) = Yu,0r (p) for all p € P. Define

Up:*TXp — Xp x Hom(Pe R) by Up: (z,0,0) — (2, s ). (3.27)

We will show that ®p, Up are inverse maps. By definition Up o &p maps (x,y) —
(T, Yz, ), where for p € P#P we have

Yoo, () = U5, ([Mp]) = y(p) +log 1 = y(p),

using (3.26) for b = A, and h = 1. Thus Yo, , = Ys and YpoPp =id. Also Up o Pp
maps (z,v,0") = (2,02, , V5, ), Where if z € U C Xp is open, a : U — R is
smooth, and as in Definition 3.12 we write a : 2’ — g(2'(r1),...,a(ry)) for 2’ € U,
where 71,...,7, € P and g : W — R is smooth, then

Vg o1 ([a]) = >0, aai (x(rl), . x(rn)) ~x(ri) Yoo (1)
= 81’1( (r1)s -y x(ra)) - x(ri) - ' ([A])
=Y (1), x(ra)) - o([z(r)]) = v([a)),

&

using (3.25) in the first step, v'([Ap]) = Yz, (p) in the second, and v o inc([b]) =
ev([b])v'([b]) from (3.22) with b= A,, = x(r;) in the third. So vy, , =v.

Similarly, using (3.26) and v'([A,]) = Yx. (p) we find that v;, '
Up = id. Hence ®p, ¥Up are inverse maps, and bijections. Clearly they are compatible
with the projections 7 : ®TXp — Xp, Xp x Hom(P# R) — Xp. This completes the
proof. O

= ', so that ®p o

Yz v’
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Example 3.41. Let P = N¥ x Z"7% so that P2 = 7" and identify Xyiygn-r =
[0,00)F x R™™ as in Example 3.15(iii), and Hom(P2,R) = R"™ in the obvious
way. Following through the definition of ®p in Proposition 3.40, we find that if
Pp((z1,...,20), (W1, yn)) =((21,...,2p),v,0'), then v: CF(Xp)—Ris

v:[a] — ylxla;zla(xl,...,xn) +-~-+ykxk%a(ﬂc1,...,xn)
+yk+1%ﬂa($1,--~,xn) +"'+yn%a($17---,$n)~

Thus, the identification *TX p & Xp x R™ from (3.23) gives a basis of sections of *T'X p
corresponding to :1:18%1, . ,xka—‘zk, Wzﬂ, ceey 82 , as ordinary vector fields on Xp &
[0, 00)% x R"7F,

But in Definition 2.15(a) we defined the b-tangent bundle *T'([0,00)* x R"™*) of

[0, 00)F x R" % as a manifold with corners to have basis of sections xlai;m’ ... ,xk%,
896‘]11 e %. This shows the definitions of *T'([0, 00)* x R"™*) in §2.3, and in Defini-

tion 3.39 and Proposition 3.40 above, are equivalent.

Lemma 3.42. Let P, @ be weakly toric monoids, U C Xp, V C Xg be open, and f :
U — V be an interior map, in the sense of Definition 3.12. Then the composition of maps

Pp|...

b U

I...
bV

Q

U x Hom(P#?,R) bTU

V x Hom(Q#, R)

R
R

is an interior map of manifolds with g-corners in the sense of §3.2-§3.3, where T f is
as in Definition 3.39 and ®p, g as in Proposition 3.40.

Proof. Use the notation of Proposition 3.14(c). This gives a commutative diagram of
interior maps of manifolds with g-corners

Xp2U W C [0,00)™
Apy X X Ap,,
\Lf g (3.28)
Agy X XAy,
X2V [0, 00)™.
Consider the diagram
U x Hom(P®P R) W x R™
(Apy XX A ) X
\L@PlUXHQm(PgP,K) ((op1) XX (opm)) gi
'TU ; "TW
T()‘m XX App, )
lef "Tgi (3.29)
bT(A(I1X'”><)“1n)
bV *T([0,00)")
\L‘I’Q‘Z’TV (Agq XX Agp )X §\L

V x Hom(Qep, R) —oa/ex(ea) [0,00)" x R™.
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The middle rectangle commutes by applying the functor T of Definition 3.39 to (3.28),
and the upper and lower rectangles commute by the definitions.

The right hand column of (3.29) involves manifolds with corners W C [0, 00)™,
[0,00)", and Example 3.41 showed that for these the definitions of *TX in 2.3 and
above, are equivalent. This equivalence is functorial, so the definitions of *T'g in §2.3 and
Definition 3.39 are also equivalent. But *T'g in §2.3 is an interior map of manifolds with
corners. Hence the composition of the right hand column in (3.29) is an interior map of
manifolds with corners. Regarding U x Hom (P8P, R) and V x Hom(Q®%P,R) as open sets
in Xpyper, Xgxqsr as in Proposition 3.40, Proposition 3.14(c) with P x P8P, @ x (&P
in place of P, @ now implies that the composition of the left hand column of (3.29) is
an interior map of manifolds with g-corners. O

Note that (3.28)-(3.29) give a convenient way to compute the maps *Tf : *TX —
®TY in Definition 3.39 locally. We can now give *T'X the structure of a manifold with
g-corners, a vector bundle over X:

Definition 3.43. Let X be a manifold with g-corners, so that ?T'X is defined as a set in
Definition 3.39, with projection 7 : *TX — X. Suppose (P,U, ¢) is a g-chart on X. For
®p as in Proposition 3.40, consider the composition

@ P U x Hom(P8P &) bT¢

U x Hom(P®P,R) bTU

bTX,

which has image *T'(¢(U)) C *T X . Here U x Hom(P#P, R) is open in X p x Hom (PP, R) =
Xp X Xper & Xpy pev, so identifying U x Hom (P8P, R) with an open set in X py per, we
can regard

(P X ng7 U x Hom(ng, R)v bT¢ o (I)P|U><Hom(PgP,]R)) (330)

as a g-chart on *TX.

We claim that T X has the unique structure of a manifold with g-corners (including
a topology), of dimension 2 dim X, such that (3.30) is a g-chart on *TX for all g-charts
(P,U, $) on X, and that with this structure 7 : °TX — X is interior and makes *T'X into
a vector bundle over X. To see this, note that if (P, U, ¢), (Q, V,v) are g-charts on X, then
they are compatible, so the change of g-charts morphism ¢ ~to¢ : ¢! (¢(U) N w(V)) —
1/)’1(¢(U) N z/;(V)) is a diffeomorphism between open subsets of Xp, Xq. Applying
Lemma 3.42 to 9~ o ¢ and its inverse implies that the change of charts morphism
between the g-charts (3.30) from (P, U, ¢), (Q,V, ) is also a diffeomorphism, so (3.30)
and its analogue for (@, V) are compatible.

Thus, the g-charts (3.30) from g-charts (P,U, ¢) on X are all pairwise compatible.
These g-charts (3.30) also cover *T'X, since the image of (3.30) is *T¢(U) C *TX, and
the ¢(U) cover X. Since X is Hausdorff and second countable, one can show that there is a



D. Joyce / Advances in Mathematics 299 (2016) 760-862 817

unique Hausdorff, second countable topology on *T'X such that for all (P, U, ¢) as above,
*T¢(U) is open in *TX, and *T'¢ 0 ®p|y xHom(per,r) : U x Hom(P8P, R) — *T(U) is a
homeomorphism. Therefore the g-charts (3.30) form a g-atlas on *T'X with this topology,
which extends to a unique maximal g-atlas, making *7'X into a manifold with g-corners.
That 7 : ®TX — X is interior and makes *7T'X into a rank n vector bundle over X
follows from the local models.

Since 7 : °T'X — X is a vector bundle, it has a dual vector bundle, which we call the
b-cotangent bundle and write as m: *T*X — X.

Now let f : X — Y be an interior map of manifolds with g-corners. Then for all
g-charts (P, U, ¢) on X and (Q,V,%) on Y, the map ¢»"!o fo¢ in (3.5) is an interior map
between open subsets of Xp, X¢g. Applying Lemma 3.42 shows that the corresponding
map for T f : *TX — PTY and the g-charts (3.30) from (P,U,¢), (Q,V,v) is also
interior. As these g-charts cover *TX, YTY, this proves that *Tf : ®TX — *TY is an
interior map of manifolds with g-corners.

Clearly °T'f : *TX — PTY satisfies 7 o *Tf = f o7 and is linear on the vector space
fibres *T, X, bTyY. Thus, °Tf induces a morphism of vector bundles on X, which we
write as *df : *TX — f*(*TY), as in §2.3. Dually, we have a morphism of b-cotangent
bundles, which we write as (°df)* : f*(*T*Y) — *T*X.

If g : Y — Z is another interior map of manifolds with g-corners, then *T(g o f) =
bTg o *Tf implies that ®d(g o f) = f*(bdg) o bdf : °TX — (go f)*(*TZ), and dually
("d(go f))* = ("df) o f*((*dg)*) : (g0 f)*("T*Z) = "T*X.

Define the b-tangent functor *T : Manf® — Manf to map T : X — °TX on
objects, and °T : f — °T'f on (interior) morphisms f : X — Y. Then °T is a functor,
as in Definition 3.39. Tt extends naturally to *T : Man®® — Man£°. The projections
7 :°TX — X and zero sections 0 : X — ®TX induce natural transformations 7 : *T" = Id
and 0 : Id = °T. On the subcategories Man§, C Manf’, l\V/IaniCn C Manigrf , these
functors ®T restrict to those defined in §2.3.

We show b-tangent bundles are compatible with products.

Example 3.44. Let X, Y be manifolds with g-corners, and consider the product X x Y,
with projections 7x : X XY — X, my : X XY — Y. These are interior maps, so we
may form "Tryx : *T(X xY) = *TX, Ty : PT(X x Y) — *TY, and take the direct
product

("Trx,"Try) :"T(X xY) — *TX x °TY. (3.31)

Considering local models as in Proposition 3.40, it is easy to check that (3.31) is a
diffeomorphism. We sometimes use (3.31) to identify *T(X x Y) with °TX x *TY, and
T4y (X xY) with *T, X T, Y. The functor °T preserves products and direct products,
in the sense of Proposition 2.11(f).
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3.6. B-normal bundles of Cj(X)

In §2.4, if X is a manifold with (ordinary) corners, and II : C(X) — X the projection,
we constructed a canonical rank k vector bundle 7 : bNCk(X) — Ci(X), the b-normal
bundle of Cr(X) in X, fitting into an exact sequence

B (TX) T V(O (X)) — O, (3.32)

0— bNCk(X)

and a monoid bundle Mc,(x) C bNCk(X), a submanifold of bNCk(X) such that 7 :
Mg, (x) — Cr(X) is a locally constant family of toric monoids over C,(X). We showed
that bNC(X) = H,@O bNCk(X) and Mc(x) = Hk>0 Mg, (x) are functorial over interior
f:X =Y, as for the corner functor C' : Man® — Man®.

We now generalize all this to manifolds with g-corners. As for *T'X in §3.5 we do
this in stages: first we define bNCk(X), Mc, (x) just as sets, and 7 : bNCk(X) — Cr(X),
ch(f) : bNC(X) — ch(y), MC(f) : MC(X) — MC(Y) just as maps. Then after some
calculations, in Definition 3.48 we will give bNCk(X), Mg, (x) the structure of manifolds
with g-corners, such that «, bNC(f), Mgc sy are smooth.

Definition 3.45. Let X be a manifold with g-corners, and let (x,v) € Ci(X) for k > 0.
As in Definition 2.14 we have R-algebras C2°(X) of germs [a] at = of smooth functions
a:X — R, and C7} ) (Cr(X)) of germs [b] at (z,7) of smooth functions b : Cj,(X) — R.
Then composition with II defines a map

IT* : C2°(X) — O (Cr(X)), I : [a] =+ [a o TI]. (3.33)

This is an R-algebra morphism.

As in Definition 2.15 we have monoids Z,(X) of germs [c] at x of interior functions
c: X —[0,00), and Z, )(Cr(X)) of germs [d] at (z,) of interior functions d : Cy(X) —
[0,00). Ifz € U C X isopen and ¢ : U — [0, 00) is interior, setting V = II"1(U) C Cj(X)
and d = colIl : V — [0,00), then (z,7) € V C Cr(X) is open and either d is interior
near (x,7), or d =0 near (z,v). Thus composition with IT defines a map

I Zo(X) — Lz (Ci(X)) L {0},
(3.34)
IT" : [¢] = [coII].

This is a monoid morphism, making Z, ,)(Ck(X)) II {0} into a monoid by setting
[d] -0 = 0 for all [d] € Z,)(Cr(X)). (Note that [1] € Z(,,)(Cr(X)) is the monoid
identity element, not 0.) Define

"New ()l @) = {a € Hommon (Z,(X),R) : (3.35)
almey-1ze, ) (cux)) = 0
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MCk(X)|(m,'y) = {Oé S HOmMon(Ix(X),N) : (3 36)
al @11z, ((x)) = 0}

Then bNCk(X)\(I’,Y) is a real vector space, and Mg, (x)|(z,y) i a monoid, and
Mey,(x)l () S bNCk(X)|(93,'y) as N C R. In Example 3.46 we will show that
bNCk(X)|(xW) ~ R*, and Me, (x)|(z,+) is a toric monoid of rank k, with

PNewx) @ = Moy (x)l@y) @n R. (3.37)

Equation (3.22) defines °T, X as a vector space of pairs (v,v’). We claim that if
a € bNCk(X) |(z,), then (0,a) € ®T, X . To see this, note that the first three conditions of
(3.22) for (0, ) are immediate, and the final two follow from the fact that if [¢] € Z,(X)
with c(x) # 0 then II*([c]) € Z(,,)(Cr(X)), so a([c]) = 0. Thus we may define a linear
map

b’L'T|(x7,Y) : bNCk(X)‘(ac,fy) — szX, biT‘($77) Lo (0,0[). (338)

Now let (v,v’) € *T,, X. We will show in Example 3.46 that there is a unique (w,w’) €
T4 ~)Cr(X) such that w(IT*([a])) = v([a]) for all [a] € C°(X) and w'(II*([b])) = v'([b])
for all [b] € Z,(X) with II*([b]) # 0, where the IT* maps are as in (3.33)—(3.34). Define a
linear map *7r|(y) : "ToX = *T(4 ) Cr(X) by P7r|(44) 1 (v,0) = (w,w’). So we have
a sequence

biT'(w,w) bﬂ—Tl(z,'y)

0 —= *Ne, (0] @) T, X Ty (Cr(X)) —= 0 (3.39)

of real vector spaces, as in (3.32). It follows from the definitions that (3.39) is a complex.
We will show in Example 3.46 that (3.39) is exact.

Just as sets, define the b-normal bundle bNCk(X) and monoid bundle Mc, (x of Cr(X)
in X by

"Newxy = {(@,7, ) : (z,7) € Ch(X), @€ "Neywx)l@) )
Me, x) = {(z,7,0) : (z,7) € Ch(X), @€ M, (x)l@@}

so that Mg, (x) C bNCk(X). Define projections m : bNCk(X) = Cy(X) and 7 :
Mcy(x)y — Cp(X) by 7 @ (z,7,0) = (,7). Define Yip : "Ng,(x) — I*(°TX)
by Yip i (z,7,0) — ((x,7),%71]@q(@) and Pap : I*(PTX) — PT(Cr(X)) by
brr: ((2,7), (v,0) = (7). 77| (2,4) (v, ")) In Definition 3.48 we will make *N¢, (x),
Mg, (x) into manifolds with g-corners, such that 7 : bNCk(X) — Ci(X) is smooth and
makes "N¢, (x) into a vector bundle over Ci(X) of rank k, and 7 : Mc, (x) = Ci(X) is
smooth and makes Mc, (x) into a bundle of toric monoids over C(X), and (3.32) is an
exact sequence of vector bundles.

Define *Ne(x) = HdlmX "Ney( X), with projection 7 : "Ngxy — C(X) =

dim X . dim X
be0 C’k(X)glvenbyﬂchk(X) :PNey(x) = Cr(X). Set Mecxy = [imo” Mey(x),
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so that Mo (x) C bNC(X), and define m = 7T|MC(X) : Me(xy — C(X). Later we will see
that bNC(X) is a manifold with g-corners of dimension dim X, with 7 : bNC(X) — C(X)
is a vector bundle of mixed rank, and Mg (x) is an object in Mans¢, with 7 : Mcxy —
C(X) a bundle of toric monoids.

Next let f : X — Y be an interior map of manifolds with g-corners, so that C'(f) :
C(X) — C(Y) is a morphism in Man2° as in §3.4. Define a map of sets "Negpy
"Nexy = "Negyy as in Definition 2.23 by *Nep) « (2,7,0) = (f(2), fo(7), a0 f7),
where f* : Ty (Y) — Z,(X) maps [c] = [co f], and is well-defined as f is interior.
From (3.35) we can check that if a € bNCk(X)|(mry) then ao f* € bNCI(y)|(f(z)’f*(,y)).
As C(f) : C(X) = C(Y) maps C(f) : (z,7) = (f(2), f«(7)), we have m o *Ng(p) =
C(f)om: bNC(X) — C(Y). From the definitions of *T'f in Definition 3.39 and %ir above,
we see that the following commutes:

*Negx) » br X
i
VPN . 'Tf J/ (3.40)
7
bNeg) - bTY

This characterizes *Ne gy, as Yip in (3.38) is injective.

Now Mc(x) is the subset of points (x,7v,a) in bNC(X) such that o maps to N C R.
If @ maps to N then a o f* maps to N, so bNC(f) maps Mc(x) — Mc(y). Define
Mep) : Me(x) = Moy by Moy = "Nog e -

If g: Y — Z is a second interior map of manifolds with g-corners, as a o f* o g* =
ao (go f)* we see that "Ne(gor) = "Ne(g) © *Negy) : "Nexy — "Nz, which implies
that MC(gof) = MC(g) o MC(f)~ Also bNC(idx) = idec(X) : bNC(X) — ch(x), and
Mc(iax) = idmey, - Hence the assignments X — bNC(X), f— ch(f) and X — Mg (x),
[ = Mgy are functorial.

Now let X be a manifold with (ordinary) corners. Then §2.4 defined a rank k vector
bundle *N¢, (x) = Ck(X). Comparing the top row of (2.23) with (3.32), and noting that
the definitions of ®TX agree in §2.3 and §3.5 agree for manifolds with corners, we see
that there is a canonical identification between bNCk(X) defined in §2.4, and bNCk(X)
defined above. One can show this identifies the subsets M¢, (x) C bNCk(X) in §2.4 and
above. Comparing (2.24) and (3.40), we see that for f : X — Y an interior map of
manifolds with corners, the maps bNC( 1) defined in §2.4 and above coincide under these
canonical identifications.

We work out the ideas of Definition 3.45 explicitly when X = Xp.

Example 3.46. Let P be a weakly toric monoid, so that Xp is a manifold with g-corners
as in Example 3.21. Example 3.30 gives a canonical diffeomorphism

Ck(XP) - Hfaces F of P: codimF =k XF. (341)
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Suppose (z,7) € Cr(Xp) is identified with 2’ € X by (3.41), for some face F' of P.
Let [a] € Z,(Xp). Then by Definition 3.12, there exist an open neighbourhood U of x
in Xp, an element p € P and a smooth function h : U — (0, 00) such that a = \p|y - h:
U — [0,00). Then

I ([a]) = [(\plv) - ho ik € La ) (Cr(Xp)) 11 {0}
> T, (Xr) I1{0},

where z'l{f : X < Xp is as in Definition 3.26. But

Y- eF,
/\poigz p P
0, p¢Fr

where A, means \,, but on Xp rather than Xp. Therefore IT*([A, - h]) lies in
T(a,)(Cr(Xp)) if and only if p € F. So (3.35) becomes

bNCk(XP) l(zy) = {a {[Ap-h]:p € P, hagerm of positive smooth functions

near z in Xp} — R is a monoid morphism, and a([A, - h]) =0 if p € F}.
Ifae bNCk(XP)|(wN) then as « is a monoid morphism and 0 € F
a([Ap b)) = a([Ap]) + al[ho - h]) = a((Ap]) +0 = a([Ap]).

Thus we have canonical isomorphisms

"New(xm)l @) = {8 € Hompon (P, R) : Blp = 0} = Hom(P#/FEP R). (3.42)
Here in the first step we identify o € N, (xp)|(2,,) With 8: P — R by if a([), - h]) =
B(p) for all p, h. In the second step, such § : P — R with §|p = 0 factor through
B’ : P8P /F8P — R as R is a group. Similarly we have

My (xp)l(2,0) = {8 € Hommon(P,N) : |l =0} = F", (3.43)

where F” is as in Proposition 2.16(c). It is a toric monoid of rank k. We have

"Newxp) @) = Mey (x| (2,0) ©n R, proving (3.37).
Combining (3.41), (3.42) and (3.43) gives identifications like ¥p in (3.27):

Ut "Ney (xpy — 11 Xp x Hom(P8P/F&P R),  (3.44)
faces F of P: codim F =k
U Moy (xp) — II Xp x FN (3.45)

faces F' of P: codim F =k
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These give bNCk( xp) and Mg, (x,) the structure of manifolds with g-corners of dimen-
sions rank P and rank P — k, respectively. The projections 7 : *Ne¢, (x,) = Ci(Xp), 7 :
Mg, (xp) — Cr(Xp) are identified with the projections X x Hom(P®P/F¢? R) — Xp,
Xr x FN — Xp for each F', and so are smooth.

For the case P = N*xZ" ™" so that Xp = [0, 00)¥ x R" " is a manifold with (ordinary)
corners, it is easy to check that the manifold with corner structures on bNCk( xp) and
Mg, (xp) above coincide with those in §2.4.

Continuing with the notation above for (z,7) € Cr(Xp) identified with 2’ € Xp,
Proposition 3.40 defined isomorphisms

"T,Xp = Hom(P®*,R), and T, . (Ck(Xp)) =T, Xp = Hom(F=, R).

Under these isomorphisms and (3.42), one can show that equation (3.39) is identified
with the natural exact sequence

|ng

0 — Hom(P#/F#? R) —"+ Hom (P R) — = Hom(F*",R) — 0,
where 7 : P8P — P&P/F'8P is the projection. Hence (3.39) is exact.

Here is an analogue of Lemma 3.42. It can be proved by the same method, using the
fact that *Ne(y) defined in §2.4 for manifolds with (ordinary) corners is a smooth map,
and agrees with Definition 3.45 in this case.

Lemma 3.47. Let P, Q) be weakly toric monoids, U C Xp, V C Xg be open, and f :
U — V be an interior map, in the sense of Definition 3.12. Then the composition of

maps
P\—1 U)xH pgp ng,R ~ \
f‘ms]ﬁ[ OfP(Z ) xHom{PEr ) 1 New
Upll.
' *Nes) l
(ig)*l(V)xHom(Qgp/Ggp’R) Tyl .
faces G of Q % o

is an interior map of manifolds with g-corners in the sense of §3.2-§3.3, where ch(f)
is as in Definition 3.45 and W'p, Wg as in Ezxample 3.46.

Definition 3.48. Let X be a manifold with g-corners, so that bNCk(X), Mg, (x) are defined
as sets in Definition 3.45. Suppose (P, U, ¢) is a g-chart on X. For each face F of P with
codim F' = k, define a g-chart on bNCk(X)

(F x P /FeP (i)' (U) x Hom(P2/F& R),"Neg) o (¥p) 7 1...). (3.46)

Here (i£)~'(U) x Hom(P®"/F&P R) is open in Xp x Hom(P&/Fe? R) = Xp x
Xpeo per = Xy pee /e, we identify (i5)71(U) x Hom (PP /F& R) with an open set
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in Xpy pev/per, and W', is as in (3.44). Similarly, for each o € F, with ¥% as in (3.45),
define a g-chart on M¢, (x)

(F, (i5) "1 (U), " Meg) 0 (¥h) 1o (id x a)), (3.47)

where id x a : (i£)7(U) = Xp x F” maps id X a : y — (y, a).

We claim that bNCk( x)> M¢, (x) have unique structures of manifolds with g-corners
(including a topology), of dimensions dim X and dim X — k respectively, such that
(3.46)—(3.47) are g-charts on "Ng, (x), Mc,(x) for all g-charts (P,U,$) on X, faces
F of P, and o € F/. To see this, note that if (P,U, ¢), (Q,V,) are g-charts on X, then
they are compatible, so the change of g-charts morphism ¢~ 'o¢ : ¢! (gi)(U) N w(V)) —
L ((;S(U) N w(V)) is a diffeomorphism between open subsets of Xp, Xg. Applying
Lemma 3.47 to ¥~ ! o ¢ and its inverse implies that the change of charts morphisms
between the g-charts (3.46)—(3.47) from (P, U, ¢), (@, V, ) are also diffeomorphisms, so
(3.46)—(3.47) and their analogues for (Q, V,) are compatible.

Thus, the g-charts (3.46) on bNCk(X) from g-charts (P,U, ¢) on X are all pairwise
compatible. These g-charts also cover bNCk( x), since for fixed (P,U,¢) the union over
all faces F' of image of (3.46) is bNCk(¢(U)) - chk(X), and the ¢(U) cover X, so the
bNCk(¢(U)) cover bNCk(X). Since X is Hausdorff and second countable, one can show
that there is a unique Hausdorff, second countable topology on bNCk( x) such that for all
g-charts (3.46), "N () o (¥5) ... is a homeomorphism with an open set. Therefore the
g-charts (3.46) form a g-atlas on bNCk( x) with this topology, which extends to a unique
maximal g-atlas, making bNCk( x) into a manifold with g-corners. The same argument
works for Mc, (x), using the g-charts (3.47).

Taking unions now shows that bNC( x) = H,@O bNCk( x) is a manifold with g-corners
of dimension dim X, and M¢(x) = Hk>0 Mg, x) an object of Man§e.

Definition 3.45 also defined an inclusion of sets M¢, (x) — bNCk(X), and maps of
sets 7 : bNCk(X) — Ck(X), T MCk(X) — Ck(X), biT . bNCk(X) — H*(bTX) and
brp : *(PTX) — PT(Cr(X)). Example 3.46 showed that in the local models Xp,
these are smooth, interior maps, with M¢, (x,) < bNCk(XP) an embedded submanifold,
T : PNey(xp) = Ck(Xp) a vector bundle of rank k, and 7 : Mc,(x,) — Ci(Xp) a
locally constant bundle of toric monoids, and %ip, w7 bundle-linear and forming an
exact sequence (3.32). Thus, using the g-charts (3.46)—(3.47), we see that for general
manifolds with g-corners X, M¢, (x) is an embedded submanifold of bNCk( x), and 7 :
bNCk(X) — Ck(X) is interior and makes bNCk(X) into a vector bundle of rank k, and
7 Me, (xy — Ci(X) is interior and a locally constant bundle of toric monoids, and bp,
b7 are morphisms of vector bundles in an exact sequence (3.32).

Since 7 : * N, (x) = Ci(X) is a vector bundle, it has a dual vector bundle, which we
call the b-conormal bundle and write as 7 : bNé‘k(X) — Cx(X). Similarly, 7 : M, (x) —
Cr(X) has a natural dual bundle 7 : Mgk(X) — Ci(X), the comonoid bundle, with
fibres Mgk(X)|(w7v) the dual toric monoids Mck(x)|(vzﬁ)- Equation (3.37) implies there is

a natural inclusion Mgk x) < bNék( x) as an embedded submanifold.



824 D. Joyce / Advances in Mathematics 299 (2016) 760-862

Now let f : X — Y be an interior map of manifolds with g-corners. Then for all
g-charts (P,U,¢) on X and (Q,V,%) on Y, the map ¢! o fo ¢ in (3.5) is an interior
map between open subsets of Xp, Xg. Applying Lemma 3.47 shows that the corre-
sponding maps for bNC(f) : bNC(X) — ch(y) and Mc(y) : Mox)y — Mcy) and
the g-charts (3.46)—(3.47) from (P,U,¢), (Q,V,v) are also interior. As these g-charts
cover bNC(X), bNC(y), Mcxy, Moy, this proves that bNC(f) : bNC(X) — bNC(y) and
Mgy : Mo(xy — Mc(y) are interior morphisms in Man&® and Man®°.

Since 7 o bNC(f) = C(f)om and bNC(f) is bundle-linear, we may also regard ch(f)
as a morphism "N (s) : "Nex) = C(f)*(*Ne(y)) of vector bundles of mixed rank over
C(X), with dual morphism bN(*-/,(f) : C(f)*(bNg(Y)) — bNg(X). Similarly, we can regard
Me(yy as a morphism Me(p) @ Mexy — C(f)*(Mgy)) of toric monoid bundles over
C(X), with dual morphism Mg ) : C(f)" (M¢yy) = M xy-

Definition 3.39 showed that the maps N sy, Mc(y) are functorial. Thus X bNC(X),
f = "Ng(gy defines functors "N¢ : Man$;, — Manf; and *Ne : Manﬁf — Manigrf ,
which we call the b-normal corner functors. Similarly X — Mc¢(x), f = Mc(y) defines
functors M¢ : Manfy, Manigrf — Manig: , which we call the monoid corner functors.

We show "N, (x), Mc(x) are compatible with products.

Example 3.49. Let X, Y be manifolds with g-corners, and consider the product X x Y.
Then C(X xY) 2 C(X) x C(Y), as in §3.4. The projections 7x : X x Y — X,
my : X XY — Y are interior maps, so we may form bNC(ﬂX), bNC(m,), Mc(xx) Mc(ry)
and take the direct products

(*Netrxy: "Neyy) : "Nexxyy — "Nex < "Negy), (3.48)

(MC(Wx)’MC(Wy)) : MC(XXY) — MC(X) X MC(Y)' (349)

Considering local models as in Example 3.46, we find that (3.48)—(3.49) are diffeo-
morphisms. We sometimes use (3.48)—(3.49) to identify bNC(XXy), Me(xxy) with
bNC(X) X ch(y), Mc(xy X Mc(y)- The functors ®N¢, M¢ preserve products and direct
products, in the sense of Proposition 2.11(f).

As for Proposition 2.24 we have:

Proposition 3.50. Definition 3.48 defines functors *No : ManfS — ManfT, "N :

Man{® — Manf® and Mc : Manf,, Manf® — Manf:, preserving (direct) products,
with a commutative diagram of natural transformations:

ZEW% \
¢ \ ‘Umclu%on/
zero section 0 bN 11

C

Mc m
C.
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Here is the analogue of Definition 2.25.

Definition 3.51. Let X be a manifold with g-corners. For x € S¥(X) C X, as above
we have a monoid Z,(X) of germs [¢] at x of interior functions ¢ : X — [0,00), and a
submonoid C°(X, (0,00)) C Z,(X) of [¢] with ¢(x) > 0. In a similar way to (3.35)—(3.36),
define

"N.X = {a € Hommon (Zo(X),R) : a|c(x,(0,00)) = 0}, (3.50)
beOX = {a € HomMon(II(X), ([0, 0), —|—)) : a|Cg°(X,(o,oo)) = O}, (3.51)
M,X = {a € Hommon (Zo(X),N) : a|cx(x,(0,00)) = 0}, (3.52)

so that M,X C °N2°X C °N,X. Here ([0,00),4) in (3.51) is [0,00) with monoid
operation addition, rather than multiplication as usual. As in Example 3.46, one can show
that M, X = N¥ is a toric monoid of rank k = depthy x, with "N, X = M, X xR = R”
the corresponding real vector space, and beOX as the corresponding rational polyhedral
cone in "N, X, as in §3.1.4.

Now let f: X — Y be an interior map of manifolds with g-corners, and z € X with
flx) =y €Y. As for ch(f) in Definition 3.45, define maps *N,f : °N, X — bNyY,
PNZOf  PNZ°X — PNZ°Y and M,f : M,X — M,Y to map a — «o f*, where
f*:Z,(Y) = Z,(X) maps [c] = [co f]. Then °N,f is linear, and *N2°f, M, [ are
monoid morphisms. These * N, X, beoX, M,X,"N,f, beof, M, f are functorial.

When X, Y are manifolds with (ordinary) corners, these definitions of *N, X, ij"X ,
M,X, N, f, beOf, M, f are canonically isomorphic to those in §2.4.

We could define °NX = {(z,v) : 2 € X, v € °N,X} and °Nf : °NX — ’NY
by °Nf : (z,v) — (f(z),°N,f(v)), and similarly for *N>°X, *N>°f and MX, MF,
and these would also be functorial. They are useful for stating conditions on interior
f: X — Y. However, in contrast to bNC(X) above, these °’NX, "N>°X would not be
manifolds with g-corners, as the dimensions of °N, X, beoX vary discontinuously with
z in X. The rational polyhedral cones ijoX may not be manifolds with g-corners
either.

The relation between M¢, x)|(z,4) and M, X in Definitions 3.45 and 3.51 is this: for
each € S*(X) C X, there is a unique local k-corner component v to X at z, and then
Moy, ()l (zy) = M, X. More generally, if ¢ is some local [-corner component of X at x for
1=0,...,k, then Mc,(x)|(z,5) = M. X/F for some face F' of M, X with rank F' =k — 1,
and there is a 1-1 correspondence between such § and such F. Also, writing P = M, X,
as a toric monoid, then X near z is locally modelled on Xp x REMX=F near (00, 0).
Since X p is a manifold with (ordinary) corners near dy if and only if P = N*. we deduce:

Lemma 3.52. Let X be a manifold with g-corners. Then X is a manifold with corners if
and only if the following two equivalent conditions hold:
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(1) Mg, )@y = =~ N* for all (x,7) € Ck(X) and k > 0.
(i) M,X = N* for all z € X, for k > 0 depending on x.

4. Differential geometry of manifolds with g-corners

We now extend parts of ordinary differential geometry to manifolds with g-corners:
special classes of smooth maps; immersions, embeddings and submanifolds; transversality
and fibre products in Man®&°®, Man$,; and other topics. The proofs of Theorems 4.10,
4.15, 4.26, 4.27 and 4.28 below are deferred to §5.

4.1. Special classes of smooth maps
We define several classes of smooth maps of manifolds with g-corners.

Definition 4.1. Let f : X — Y be a smooth map of manifolds with g-corners. We call f
sitmple if either (hence both) of the following two conditions hold:

(i) Mc(py : Moxy — C(f)*(Mcgcyy) in §3.6 is an isomorphism of monoid bundles over
C(X).

(ii) f is interior and Myf : M, X — ]\;If(m)Y in Definition 3.51 is an isomorphism of
monoids for all x € X.

It is easy to show that (i) and (ii) are equivalent. For manifolds with (ordinary) corners,
this agrees with the definition of simple maps in §2.1.

Clearly, compositions of simple morphisms and identity morphisms are simple. Thus,
we may define subcategories Man C Man®¢ and Man C Man®® with all objects,
and morphisms simple maps. Slmple maps are closed under products (that is, if f: W —
Y, g: X — Z are simple then f X g: W x X =Y x Z is simple), but not under direct
products (that is, if f: X =Y ¢g: X — Z are simple then (f,g) : X = Y X Z need not
be simple).

Suppose f : X — Y is a simple morphism in Man®&®. Then C(f) : C(X) — C(Y)
is a simple morphism in Mang°. If (z,7) € Cp(X) with C(f)(z,7) = (y,8) € C(Y)
then MC(X)'(x,v) = MC(Y)'(y,E) by (1) But k£ = rankMC(X i(r 7)) l = rankMC(y i(y 8)
so k = [, and C(f) maps Cr(X) — Cr(Y) for all k = 0,1,..., and maps 0X — 9Y
when k = 1.

Thus, we may define a boundary functor d : Manf{ — Man£ mapping X — 0X
on objects and f +— 0f := C(f)|c,(x) : 0X — 0Y on (s1mple) morphisms f: X =Y,
and for all k& > 0 a k-corner functor Cy, : Man%® — Man${ mapping X — Cy(X) on
objects and f +— Cr(f) := C(f)lc,(x) : Cr(X) — Ci(Y) on morphisms. They extend
to 8, O}, : Manfic — Manfic.

Diffeomorphisms are simple maps. Simple maps are important in the definition of
Kuranishi spaces with corners in [11]. Next we define b-normal maps between manifolds
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with g-corners. For manifolds with (ordinary) corners, these were introduced by Melrose
[25-28], and several equivalent definitions appear in the literature, two of which we extend
to manifolds with g-corners. For manifolds with corners, part (i) below (translated into
our notation) appears in Grieser [7, Def. 3.9], and part (ii) in [26, §2|, [28, Def. 2.4.14].

Definition 4.2. Let f : X — Y be a smooth map of manifolds with g-corners. We call f
b-normal if either of the following two equivalent conditions hold:

(i) C(f) : C(X) = C(Y) in §3.4 maps Cp(X) — [[5_ C;(Y) for all k > 0.
(ii) fis interior, and "Ny : *Nexy — C(f)*
of vector bundles of mixed rank on C(X

) (ch(y)) in §3.6 is a surjective morphism
).

For manifolds with (ordinary) corners, this agrees with the definition of b-normal
maps in §2.1, by Proposition 2.11(c).

B-normal maps are closed under composition and include identities, so manifolds with
g-corners with b-normal maps define a subcategory of Man8¢. B-normal maps are closed
under products, but not under direct products, as Example 2.12(a) shows.

The following notation is sometimes useful, for instance in describing boundaries of
fibre products. If f : X — Y is b-normal then C(f) maps C1(X) — Co(Y) LI C1(Y),
where C1(X) = 0X, C1(Y) = 9Y, and ¢ : Y — Cy(Y) is a diffeomorphism. Define
01X = C(f)lgkx)(Co(Y)) and 92X = C(f)|5} ) (C1(Y)). Then 9L (X) are open and
closed in 9X, with 9X = 8 X 1197 X. Define f, : 91X — Y and f_: 8/ X — 9Y by
fr=u"10 C(f)|3£x and f_ = C(f)|afx’

Then fi are smooth maps of manifolds with g-corners. Also, C(fy) are related to
C(f) by an étale cover, so by (i) or (ii) we see that fi and f_ are both b-normal. So
we can iterate the process, and define f, _ : ol &{X — 0Y, and so on, where 92X =
ofrol xmorol x mol-of x maol-ol x.

A smooth map f : X — Y of manifolds without boundary is a submersion if
df : TX — f*(TY) is a surjective morphism of vector bundles on X. For manifolds
with corners, b-submersions and b-fibrations are two notions of submersions, as in Mel-
rose [25, §1], [26, §2], [28, §2.4]. Both are important in Melrose’s theory of analysis on
manifolds with corners. We extend to g-corners.

Definition 4.3. Let f : X — Y be an interior map of manifolds with g-corners. We call
f a b-submersion if °df : *TX — f*(*TY) is a surjective morphism of vector bundles
on X. We call f a b-fibration if f is b-normal and a b-submersion.

B-submersions and b-fibrations are both closed under composition and contain iden-
tities, and so define subcategories of Man®¢. B-submersions and b-fibrations are closed
under products, but not under direct products.

If f is a b-submersion or b-fibration of manifolds with (ordinary) corners, so that T'X,
TY are defined, then df : TX — f*(TY) need not be surjective.
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Example 4.4.

(i) Any projection mx : X x Y — X for X, Y manifolds with g-corners is b-normal,
a b-submersion, and a b-fibration.

(ii) Define f : [0,00)2 — [0,00) by f(x,y) = xy. Then ®df is given by the matrix (1)
with respect to the bases (22, ya%) for *T'([0,00)?) and zZ for *T'([0,00)), so bdf
is surjective, and f is a b-submersion. Also C(f) maps Cy([0,00)?) — Cy([0, 0)),
C1([0,00)2) = C1([0,00)), and C2([0,00)?) = C1([0,00)). Thus f is b-normal by
Definition 4.2(i), and a b-fibration.

(iii) Define g : [0,00) x R — [0,00)2 by g(w,z) = (w,we®). Then dg is given by the
matrix (i ?) with respect to the bases (w%, %) for bT([O, 00) XR) and (y%, z%)
for *T([0,00)?), so g is a b-submersion.

Also C(g) maps Cy ([0, 00) x R) — Co([0,00)?), but C;([0,00) x R) — C3([0, 00)?).
Thus g is not b-normal, or a b-fibration, by Definition 4.2(i).

4.2. Immersions, embeddings, and submanifolds

Recall some definitions and results for ordinary manifolds without boundary:

Definition 4.5. A smooth map ¢ : X — Y of manifolds without boundary X, Y is an
immersion if di : TX — *(TY) is an injective morphism of vector bundles on X, and
an embedding if also i : X — i(X) is a homeomorphism, where i(X) C Y is the image.

An immersed (or embedded) submanifold X of Y is an immersion (or embedding)
i : X — Y, where usually we take ¢ to be implicitly given. For the case of embedded
submanifolds, as in Remark 4.7(A) below we often identify X with the image i(X) C Y,
and consider X to be a subset of Y.

Theorem 4.6. Let i : X — Y be an embedding of manifolds without boundary X, Y of di-

mensions m, n. Then for each x € X, there exist local coordinates (yi, .. .,yn) defined on
an open neighbourhood V' of i(x) in'Y, such that i(X)NV = {(yl, ey Ym,0,...,0) € V},
and setting U =i~ (V) C X and v, =y, 01 : U — R, then (21,...,7y) are local coor-

dinates on U C X.

Remark 4.7. Theorem 4.6 has two important consequences:

(A) We can give the image i(X) the canonical structure of a manifold without boundary,
depending only on the subset i(X) C Y. Then i : X — i(X) is a diffeomorphism.
Thus, we can regard embedded submanifolds X < Y as being special subsets
X CY, rather than special smooth mapsi: X — Y.

(B) Locally in Y, we can describe embedded submanifolds X < Y in two comple-
mentary ways: either as the image of an embedding ¢ : X — Y, or as the
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zeroes Ym+1 = -+ = Yo = 0 of dimY — dim X local, transverse smooth func-
tions Ym+1,---,Yn 1 ¥ = R.

We now extend all this to manifolds with g-corners. Our aim is to give a definition of
embedding 7 : X — Y of manifolds with g-corners X, Y, which is as general as possible
such that an analogue of Theorem 4.6 holds, and in particular, so that the manifold
with g-corner structure on X can be recovered up to canonical diffeomorphism from the
subset ¢(X) C Y and the manifold with g-corner structure on Y. This turns out to be
quite complicated.

For interior maps i : X — Y of manifolds with g-corners, the obvious way to define
immersions would be to require di : *TX — i*(*TY) to be injective. This is implied by
the definition, but we also impose extra conditions on how i acts on the monoids M, X,
M,Y and tangent spaces to strata 7, S*(X), T, S'(Y).

Definition 4.8. Let i : X — Y be a smooth map of manifolds with g-corners, or more
generally a morphism in Mang°. We will define when i is an immersion, first when i is
interior, and then in the general case.

If 4 is interior, we call i an immersion (or interior immersion) if whenever z €
SE(X) C X with i(z) =y € SY(Y) C Y, then:

(i) d(ilse(x))le : TeS*(X) — T,S'(Y) must be injective;
(ii) The monoid morphism M,i: M, X — M,Y (defined as i is assumed interior) must
be injective; and
(iii) The quotient monoid M, Y /(M,4)[M,X] must be torsion-free.

To understand this, note that we have noncanonical splittings
', X = (M, X @z R) @ T,5%(X), ‘T,Y = (M,Y ®,R)®T,S'(Y),

and with respect to these we have

by — (Mg:z' ®zR * ) . M, X ®zR M,Y ®zR (4.1)

0 Alilsr)le | - @ TSP (X) ~ " @ T,SUY).

Conditions (i), (ii) are equivalent to the diagonal terms in this matrix being injective, and
so imply that *Tyi : °T, X — T, Y is injective. Conversely, T injective implies (ii), but
not necessarily (i). So for i to be an interior immersion implies that °di : *TX — i*(*TY)
is an injective morphism of vector bundles, but is stronger than this.

If i : X — Y is a general smooth map of manifolds with g-corners then C'(3) : C(X) —
C(Y) is an interior morphism in Man®¢, and we call i an immersion if C(i) is an interior
immersion in the sense above. It is not difficult to show that C(i)|¢,(x) : Co(X) — C(Y)
an interior immersion implies C(i)|c, (x) : Cx(X) — C(Y') is an interior immersion for
k > 0, so we could instead say i is an immersion if C(i)|c,(x) : Co(X) — C(Y) is an
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interior immersion. If 4 is interior then C'(7)|c, (x) maps Co(X) — Co(Y’) and is naturally
identified with 7 : X — Y, so this yields the same definition of immersion as before.

We call i : X — Y an embedding if it is an immersion, and i : X — i(X) is a
homeomorphism (so in particular, ¢ is injective). We call i : X — Y an s-immersion (or
s-embedding) if it is a simple immersion (or simple embedding).

An immersed, or embedded, or s-immersed, or s-embedded submanifold X of Y is an
immersion, or embedding, or s-immersion, or s-embedding i : X — Y, respectively, where
usually we take i to be implicitly given. For the case of (s-)embedded submanifolds, we
often identify X with the image i(X) C Y, and consider X to be a subset of Y.

Example 4.9.

(i) Define X =Y =[0,00), and f: X — Y by f(z) = z%. Then f is interior, and ®df :

"TX — f*(*TY) maps 22 — 2y8%, and so is an isomorphism of vector bundles.
However, f is not an immersion or embedding, because My f : My X — MY is the
map N — N, n — 2n, so the quotient monoid MY /(Mo f)[MoX] is N/2N = Z,,
which is not torsion-free.
We do not want f to be an embedding, as Remark 4.7(A) fails for f. As f(X) =Y,
the only sensible manifold with g-corners structure on f(X) depending only on
f(X) €Y and the manifold with g-corners structure on Y, is to give f(X) the
same manifold with g-corners structure as Y. But then f : X — f(X) is not a
diffeomorphism. The torsion-free condition in Definition 4.8(iii), which fails for f,
will be needed to prove the analogue of Remark 4.7(A).

(ii) Define X =[0,00), Y =[0,00)?, and g : X — Y by g(x) = (z%,23) = (y,2). Then
g is interior, and ®dg : *TX — ¢*(®TY) maps x% — 2y6% + 32%, and so is an
injective morphism of vector bundles.

The monoid morphism Myg : MoX — MY is the map N — N? n — (2n,3n).
The quotient monoid MY / Mog[MOX ] is Z, which is torsion-free, with projection
MyY — MOY/MOg[MOX} the map N — Z taking (m,n) — 3m — 2n. So g is
an embedding. Here the torsion-free condition holds as the powers 2, 3 in g(z) =
(22, 23) have highest common factor 1.

Note that the embedded submanifold g(X) C Y may be defined as the solutions of
the equation y® = 22 in Y, in smooth maps Y — [0, 00).

Note too that the smooth function « : X — [0, 00) cannot be written h o g for any
smooth function h : Y — [0,00). So when we identify X with the diffeomorphic
embedded submanifold ¢g(X) C Y, this does not imply that the smooth functions
X —- Ror X — [0,00) can be identified with the restrictions of smooth functions
Y >RorY —[0,00) to g(X) CY.

(iii) Define X =[0,00) xR, Y = [0,00)%,and h: X — Y by h(w,z) = (w, we®) = (y, 2).
Then h is interior, and ®dh : *TX — h*(°TY) is given by the matrix (1 (1)) with
respect to the bases (w%, 8%) for *TX and (ya%, Za%) for *TY, so ’dh is an iso-
morphism. The monoid morphism M(O’x)h : M(O’w)X — M(O,O)Y maps N — N2,
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n +— (n,n), and the quotient monoid M(OVO)Y/M(O@)h[]\Zf(O@)X] is Z, which is
torsion-free.

However, h is not an immersion or embedding, as at (0,z) € S*(X) with h(0,z) =
(0,0) € S2(Y), the map d(hls:(x))|(0.2) : T(0,:)5*(X) = T(0,0)S*(Y) in Defini-
tion 4.8(i) maps R — 0, and is not injective.

As in Proposition 3.14, let P be a weakly toric monoid, choose generators p1, . .., pm
for P and a generating set of relations (3.3) for p1, ..., pm, and consider the interior
map A = A, XX A, Xp — [0,00)™, which has image A(Xp) = X} C [0,00)™
defined in (3.4) by equations in [0, 00)™.

One can check that A : Xp — [0,00)™ is an embedding. In particular, °dA :
TXp — A*(°T[0,00)™) is the injective morphism of trivial vector bundles Xp x
Hom(P,R) — Xp x Hom(N™ R) induced by the injective linear map Hom(P,R) —
Hom(N™,R) by composition with the surjective morphism 7 : N™ — P mapping
(a1y...yam) — a1p1 + -+ + @mPm. Similarly, M,;OA : ]\;[%Xp — MO[O, 00)™ is the
map Hom(P,N) = Hom(N™, N) by composition with m, and this is injective with
torsion-free quotient as 7 is surjective.

Thus, any X p is an embedded submanifold of some [0, 00)™, so locally any manifold
with g-corners is an embedded submanifold of a manifold with corners.

Here are some local properties of immersions, proved in §5.1.

Theorem 4.10. Suppose Q, R are toric monoids, V is an open neighbourhood of (9,0) in
Xo xR™, andi:V — X x R" is an interior immersion with i(d,0) = (dp,0). Then:

(i)
(ii)

(iii)

(iv)

rank Q < rank R and m < n.

There is an open neighbourhood V of (89,0) in V such that iy : V — i(V) is a
homeomorphism, that is, i|y : V — Xp x R" is an embedding.

There is a natural identification of the monoid morphism

M((;O’O)Z' : M(zio,o)(XQ X Rm) — M((;O’O) (XR X Rn) (42)

with o¥ : QY — RY, for a: R — Q a unique monoid morphism.

Then Q, a and m are determined uniquely, up to canonical isomorphisms of @, by
the subset i(V) in Xg x R™ near (8o,0), for V as in (ii).

Suppose P is another toric monoid, U is an open neighbourhood of (8, 0) in Xp xR,
and f: U — Xg x R™ is a smooth map with f(8o,0) = (69,0) and f(U) Ci(V), for
V as in (ii). Then there is an open neighbourhood U of (89,0) in U and a unique
smooth map g : U — V with flg =iog:U — Xg x R".

Now suppose o : R — @ in (iii) is an isomorphism, and m = n. Then there
exist open neighbourhoods V' of (6,0) in V and W of (6,0) in Xp x R™ such that
ily 1V — W is a diffeomorphism.
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We give three corollaries of Theorem 4.10. The first is a factorization property of
embeddings.

Corollary 4.11. Suppose f: W — Y andi: X — Y are smooth maps of manifolds with
g-corners, with i an embedding, and f(W) C i(X). Then there is a unique smooth map
g:W = X with f =iog.

If also f is an embedding, then g is an embedding.

Proof. First assume i is interior. The fact that there is a unique continuous map g¢ :
W — X with f = i o g follows from ¢ : X — i(X) a homeomorphism. If w € W with
gw) =z € X and f(w) =y €Y, then W near w is locally modelled on Xp x R! near
(00,0), and X near x is locally modelled on X¢g x R™ near (dy,0), and Y near y is locally
modelled on Xg x R™ near (dy,0), for some toric monoids P, @, R and I, m,n > 0. Using
Theorem 4.10(iv) we see that g is smooth near w in W, so g is smooth.

If 4 is not interior, then C(i)|c,(x) : Co(X) = X — C(Y) is an interior embedding,
and we use basically the same proof with C(i)|¢,(x) in place of i.

The final part is easy to check from Definition 4.8. For example, in Definition 4.8(i), (ii)
d(f1sxw))lw, Maf injective imply d(glsxw))lw, Mg injective, as d(f]sxw))lw, Maf

factor via d(g|gr(w))|w, Mzg. O

The second is an analogue of Remark 4.7(A). It means we can regard embedded
submanifolds of manifolds with g-corners Y as being special subsets X C Y, rather than
special smooth maps i : X — Y.

Corollary 4.12. Suppose © : X — Y is an embedding of manifolds with g-corners. Then
we can construct on the image i(X) the canonical structure of a manifold with g-corners,
depending only on the subset i(X) CY and the manifold with g-corners structure on' Y
and independent of i, X, and with this structure i : X — i(X) is a diffeomorphism.

Proof. Since i : X — i(X) is a homeomorphism by Definition 4.8, there is a unique
manifold with g-corners structure on i(X), such that i : X — i(X) is a diffeomorphism.
We have to prove this depends only on the subset i(X) C Y, and not on the choice
of manifold with g-corners X and embedding ¢ : X — Y with image i(X). So suppose
i’ : X’ = Y is another embedding of manifolds with g-corners with /(X’) = i(X).
Corollary 4.11 gives unique smooth maps g : X — X’ withi=4o0g,and h: X' - X
with ¢ =ioh. Theniohog =149 0g=1,s0 hog=1idx as ¢ is injective, and similarly
go h = idx’.

Thus g and h are inverse, and g : X — X' is a diffeomorphism. Hence the manifold
with g-corners structure on #(X) making i : X — ¢(X) a diffeomorphism is the same as
the manifold with g-corners structure on X making i’ : X’ — i(X) a diffecomorphism,
and is independent of the choice of X, 7. O

Here are analogues of Definition 2.18 and Proposition 2.19.
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Definition 4.13. A smooth map f : X — Y of manifolds with g-corners is called étale if
it is a local diffeomorphism. That is, f is étale if and only if for all x € X there are open
neighbourhoods U of z in X and V = f(U) of f(z) in Y such that fly : U — V is a
diffeomorphism (invertible with smooth inverse).

Corollary 4.14. A smooth map f : X — Y of manifolds with g-corners is étale if and
only if f is simple (hence interior) and *df : *TX — f*(°TY) is an isomorphism of
vector bundles on X.

If f is étale, then f is a diffeomorphism if and only if it is a bijection.

Proof. Suppose f is étale. For x € X with f(z) = y, f has a local inverse g near z,
so bdf|, : °T, X — °T,Y is an isomorphism with inverse ®dgl|, : °T,Y — °T, X, and
sz My X — MyY is an isomorphism with inverse Myg : MyY — M, X. As this holds
for all z € X, bdf : *TX — f*(°TY) is an isomorphism, and f is simple. This proves
the ‘only if’ part.

Next suppose f is simple and d f is an isomorphism, and let z € X with f(z) =y €Y.
Then X near z is locally modelled on X x R™ near (d,0), and Y near y is locally
modelled on X x R™ near (g, 0), for some toric monoids @, R and m,n > 0. Also f is
an immersion, so we can apply Theorem 4.10. As f is simple, o : R — @ identified with
(4.2) is an isomorphism, and as df is an isomorphism, dim X = dim Y, so m = n. Thus
Theorem 4.10(v) says there exist open neighbourhoods x € V C X and Yy E W C Y with
flv: V — W a diffeomorphism. Hence f is étale, proving the ‘if’ part.

For the final part, diffeomorphisms are étale bijections, and if f: X — Y is an étale
bijection, then it has an inverse map f~!:Y — X, and the étale condition implies that
f~1is smooth near each point f(x)inY,so f~! is smooth, and f is a diffeomorphism. O

Next we investigate the analogue of Remark 4.7(B): the question of whether embed-
ded submanifolds X < Y can be described locally as the solutions of dimY — dim X
transverse equations in Y, and conversely, whether the solution set of k transverse equa-
tions in Y is an embedded submanifold X < Y with dimY — dim X = k. The answer
turns out to be complicated.

The next theorem, proved in §5.2, gives a special case in which a set of transverse
equations can be used to define an embedded submanifold. It will be used to prove
theorems in §4.3 on existence of transverse fibre products.

Theorem 4.15. Suppose Q is a toric monoid, V is an open neighbourhood of (6o,0) in
Xg x R", and fi,9; : V — [0,00) are interior maps for i = 1,...,k with f;(dp,0) =
9i(60,0), and hj : V. — R are smooth maps for j = 1,...,1 with h;(d,0) = 0, such
that *d f1](55,0)—="AG1] (50,0 - - - » "kl (50,0) = "AGk | (50,0)» AP1 | (85,00 - - - » AP 50,0y are linearly
independent in bT(TSO,O)V' Define

X°o={veV°: fi(v)=gi(v), i=1,...,k, hj(v)=0, j=1,...,1}, (4.3)

and let X = X° be the closure of X° in V. Suppose (y,0) € X.
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Here *df; is a vector bundle morphism *TV — fi*(bT[O, o0)), but we regard it as
a morphism TV — R, and hence a section of *T*V, by identifying *T[0,00) = R
with J;a% = 1, for x the coordinate on [0,00), and similarly for ®dg;. In effect we have
bdf; = f7ldf; = dlog fi, so that *df; — vdg; = dlog(fi/g:), but *dfi, bdg; are still
well-defined where f; =0 and g; =0 in V.

Then there exists a toric monoid P, an open neighbourhood U of (89,0) in Xp x R™,
where rank P+m = rank Q+n —k —1, an interior embedding ¢ : U — V with ¢(d¢,0) =
(60,0), and an open neighbourhood V' of (80,0) in V, such that p(U) =X NV".

Using the isomorphism

"Tis00)V = T Xq ®TGR" = (Q@nR) ©R", (4.4)

write bdfi|(50)0) dgl\ (50,0) = Bi @i fori=1,... k, where B; € Q®nZ C Q@R and
~v; € R™. Then there is a natural isomorphism

PY={peQ":p(Bi)=0 for i=1,...,k}, (4.5)

which identifies the inclusion PV — QV with M((;O’O)qb : M((;O’O)U — ]\Zf((;o’o)V.

Let us now make the additional assumption that B1,...,Bx are linearly independent
over R in @ ®n R. The r.h.s. of (4.5) makes sense without supposing that (60,0) € X.
Under our additional assumption, (dp,0) € X is equivalent to the condition that the r.h.s.
of (4.5) does not lie in any proper face F C QY of the toric monoid Q" .

Theorem 4.15 is only a partial analogue of Remark 4.7(B), as it proves that subsets
locally defined as the zeroes of transverse equations (as in (4.3)) are embedded submani-
folds, but it does not claim the converse, that embedded submanifolds are always locally
defined as the zeroes of transverse equations. The next example shows that the converse
of Theorem 4.15 is actually false.

Example 4.16. Define ¢ : [0,00) — [0,00)? by ¢(z) = (2% + 2%,23). Then ¢ is an
interior embedding. However, there do not exist interior f,9 :[0,00)2 — [0,00) with

f(0,0) = g(0,0) = 0 such that ¢((0,00)) = {(y,z 00)? : f(y,z) = g(y,2)} and
bdf — bdg is nonzero on ¢([0, 00)), even only near (0,0) in [0, o0)?. To see this, observe
that we must have

fly;2) = D(y,2)y"2", g(y,2) = E(y, 2)y"2"
for D,E : [0,00)2 — (0,00) smooth and defined near (0,0) and a,b,c,d € N. Then
bdf — bdg nonzero at (0,0) implies that (a,b) # (c, d).

The equation f(2? + 23, 23) = g(2? + 23, 2%) is now equivalent to

g2a3b=20=3d(1 | gye=c — F(y? 4 43 13)/D(2? + 28, 23). (4.6)
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Putting £ = 0 and using D, E > 0 gives 2a + 3b — 2c — 3d = 0. Applying % to (4.6) and
setting = 0 then yields a — ¢ = 0, so (a,b) = (¢, d), a contradiction.

We can write ¢([0, 00)) in the form {(y,z) € [0,00)? : h(y, z) = 0} for h : [0,00)> = R
smooth, e.g. with h(y,z) = (y — 2)* — 22, But then dh|,0) = 0 in both T{g )[0,00)? and
*T{0,0)[0,00)?, so h is not transverse.

Note that if we had defined ¢(z) = (22, 2%), we could write ¢([0,00)) = {(y,2) €
[0,00)% : f(y, ) =g(y,z } for f y,2) = y> and g(y,2) = 2%. The problem is with the
higher-order 23 term in 22 + 23 in ¢(x) = ( + a3, 23).

Using Theorem 4.15 we prove:

Corollary 4.17. Let Y be a manifold with g-corners, fi,g; - Y — [0,00) be interior for
it=1,...,k, and hj : Y — R be smooth for j =1,...,1, set

X°:{x6Y°:fi(x):gi(a:), i=1,...,k, hj(z)=0, j:l,...,l},

and let X = X° be the closure of X° in Y. Suppose that *dfi|, — °dgi|s, ..., dfx]e —
Ydgple, dhile, - - ., dhy|. are linearly independent in *T}Y for each x € X, interpreting
bdf; — vdg; as in Theorem 4.15. Then X has a unique structure of a manifold with
g-corners with dim X = dimY — k — [, such that the inclusion X — Y is an embedding.

Proof. Let « € X C Y. Then we can locally identify Y near z with Xo x R" near
(00,0), for some toric monoid @ and n > 0. Theorem 4.15 proves that X near z is of the
form ¢(U) for ¢ : U — Y an embedding, and U a manifold with g-corners of dimension
rank P+m =rankQ+n—k—1=dimY — k —[. Corollary 4.12 now shows that X near
x has a unique structure of a manifold with g-corners with dim X =dimY —k—1 > 0,
such that the inclusion X < Y near x is an embedding. As this holds for all z € X, the
corollary follows. O

Note that the corollary is false for X, Y manifolds with (ordinary) corners, as the
next example shows.

Example 4.18. Let Y = [0,00)* with coordinates (y1,%2,%s3,%4), and define f, g : Y —
[0,00)% by f(y1,92,93,94) = y1y2 and g(y1,¥2,y3,94) = ys3ya. Then *df —*dg is a
nonvanishing section of *TY, so Corollary 4.17 defines a manifold with g-corners X
embedded in Y, which is

X = {(y1,¥2,y3,y4) € [0,00)" : Y192 = y3ya }.

This is X% in (3.7), so X is diffeomorphic to Xp in Example 3.23, which is our simplest
example of a manifold with g-corners which is not a manifold with corners. Thus in
Corollary 4.17, if Y is a manifold with corners, X can still have g-corners rather than
(ordinary) corners.
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4.3. Transversality and fibre products
Here is a definition from category theory.

Definition 4.19. Let C be a category, and g : X — Z, h : Y — Z be morphisms in C.
A fibre product of g, h in C is an object W and morphisms e : W — X and f: W — Y
in C, such that g oe = h o f, with the universal property that if ¢’ : W/ — X and
f': W' =Y are morphisms in C with go e’ = h o f’ then there is a unique morphism
b: W' — W with e = eoband f' = fob. Then we write W = X x4 7z, Y or W = X x ;Y.
The diagram

w Y
be 7 ) (4.7)
X ! Z

is called a Cartesian square. Fibre products need not exist, but if they do exist they are
unique up to canonical isomorphism in C.

The next definition and theorem are well known.

Definition 4.20. Let g : X — Z and h : Y — Z be smooth maps of manifolds without
boundary. We call g, h transverse if T,g ® Tyh : T, X ®T,)Y — T,Z is surjective for all
xe€ X and y €Y with g(z) =h(y) =z € Z.

Theorem 4.21. Suppose g : X — Z and h :' Y — Z are transverse smooth maps of
manifolds without boundary. Then a fibre product W = X x4 75 Y exists in Man, with
dimW =dim X +dimY — dim Z. We may write

W={(z,y) € X xY :g(z) =h(y) in Z}

as an embedded submanifold of X XY, where e : W — X and f : W — Y act by
e:(z,y)—xand f: (z,y) —y.

The goal of this section is to extend Definition 4.20 and Theorem 4.21 to manifolds
with g-corners. We will consider fibre products in both the category Man8°, and in the
subcategory Manf: with morphisms interior maps. Remark 4.29 compares our results
with others in the literature.

Writing * for the point regarded as an object of Man®¢, for any manifold with g-
corners, morphisms e : * — X in Man8® correspond to points € X, and (interior)
morphisms e : * — X in Manf! correspond to points € X°. So applying the universal
property in Definition 4.19 with W’ =  yields:

Lemma 4.22. Suppose we are given a Cartesian square (4.7) in Man8®. Then as in
Theorem 4.21 there is a canonical identification of sets only
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W= {(z,y) € X xY :g(x) =h(y) in Z}, (4.8)

identifyinge : W = X, f W =Y withe' : (z,y) =z, f: (x,y) = y.
If instead (4.7) is a Cartesian square in Manfy, in the same way, for the interiors
We, X°, Y°, Z° we have a canonical identification of sets

We={(z,y) € X°xY°: g(z)=h(y) in Z°}. (4.9)

The next example shows the lemma may not hold at the level of topological spaces,
or embedded submanifolds, even for manifolds without boundary.

Example 4.23. Take X =Y =R and Z = R? and define g : X — Z, h: Y — Z by
g(z) = (z,0), h(y) = (v, e~ 1Y gin %) for y # 0, and h(0) = (0,0). Then a fibre product
W exists in Man. As in (4.8), as sets we may write

W={(z,y) e XxY:g@)=h(y)in Z} ={(£,2):0£neZ}U{(0,0)}.

However, W is a O-manifold, a set with the discrete topology, but the topology induced
on W by its inclusion in X x ¥ = R? is not discrete near (0,0). Thus in this case (4.8)
is not an isomorphism of topological spaces, and W is not an embedded submanifold of
X x Y. This does not contradict Theorem 4.21, as g, h are not transverse at (0,0).

Here are two notions of transversality for manifolds with g-corners, generalizing Def-
inition 4.20. We take g, h interior so that *T,g, *T,h are defined.

Definition 4.24. Let ¢ : X — Z and h : Y — Z be interior maps of manifolds with
g-corners, or more generally interior morphisms in Mans®. Then:

(a) We call g, h b-transverse if *T,g & *T,h : °T, X & *T,Y — T, Z is surjective for all
x€ X and y €Y with g(x) =h(y) =2 € Z.

(b) We call g, h c-transverse if they are b-transverse, and for all x € X and y € Y with
g(z) = h(y) = z € Z, the linear map °N,g ® °N,h : °N, X & ’N,Y — 'N.Z is
surjective, and the submonoid

{(\ 1) € My X x MY : Myg(N)=Myh(p) in M.Z} C M, X x MY (4.10)
is not contained in any proper face F' C MyX x MyY of M,y X x MyY.

If g (or h) is a b-submersion in the sense of §4.1, and h (or g) is interior, then g, h are
b-transverse.

B-normal maps and b-fibrations from §4.1 give conditions for c-transversality.
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Proposition 4.25. Let g : X — Z and h : Y — Z be interior maps of manifolds with
g-corners. Then g, h are c-transverse if either

(i) g, h are b-transverse and g or h is b-normal; or
(ii) g or h is a b-fibration.

Proof. For (i), suppose g, h are b-transverse and g is b-normal, and let x € X and y € Y
with g(z) = h(y) = z € Z. As g is b-normal, one can show that *N,g : *N, X — *N,Z
is surjective, which implies that *N,g ® *N,h : °N, X @ *N,Y — "N, Z is surjective, as
we want.

If P is a toric monoid, write P° = P\ U;,cos #  p F for the complement of all proper
faces F in P. Since h is interior, M,h maps (]\;[y+Y)° — (M.Z)°. Let u € (M,Y)°, and
set v = ]\foh(,u) S (]\;[ZZ)O. As ¢ is b-normal, one can show that M,g : M, X — M.Z is
surjective up to finite multiples: there exists A € (MxX )° with ng()\) = n - v for some
n > 0. Then (\,n - p) lies in (4.10) and in (M, X)° x (M,Y)°. So (4.10) does not lie in
any proper face of M, X x MyY, and g, h are c-transverse.

For (ii), g a b-fibration means it is a b-normal b-submersion, and g a b-submersion
implies g, h b-transverse, so (ii) follows from (i). O

The following theorem is proved in §5.3.

Theorem 4.26. Let g : X — Z and h: Y — Z be b-transverse (or c-transverse) interior
maps of manifolds with g-corners. Then C(g) : C(X) — C(Z) and C(h) : C(Y) = C(2)
are also b-transverse (or c-transverse, respectively) interior maps in Manse©.

The next two theorems, perhaps the most important in the paper, proved in §5.4 and
§5.5, show that b-transversality is a sufficient condition for existence of a fibre product
W =X X475, Y in Manfy, and c-transversality a sufficient condition for existence of a
fibre product in Man®&®, and in the latter case we have C(W) = C(X) X¢(qg),c(2),c(h)
C(Y) in Man2® and Manigrf. The explicit expressions for W°, W in (4.11)—(4.12) come
from Lemma 4.22.

Theorem 4.27. Let g: X — Z and h : Y — Z be b-transverse interior maps of manifolds
with g-corners. Then a fibre product W = X x4 7, Y exists in Manfs, with dim W =

in’

dim X +dimY — dim Z. Ezplicitly, we may write
We ={(z,y) € X°xY°: g(z) =h(y) in Z°}, (4.11)

and take W to be the closure W° of W° in X xY, and then W is an embedded submanifold
of X XY in the sense of §4.2, ande : W — X and f : W =Y act by e : (x,y) — x

and f: (z,y) — y.
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Theorem 4.28. Suppose g : X — Z and h : Y — Z are c-transverse interior maps of
manifolds with g-corners. Then a fibre product W = X X4 71, Y exists in Man®®, with
dim W =dim X + dimY — dim Z. Explicitly, we may write

W={(z,y) € X xY : g(z) = h(y) in Z}, (4.12)

and then W is an embedded submanifold of X xY in the sense of §4.2, ande : W — X
and f: W =Y act bye: (x,y) — x and f : (z,y) — y. This W is also a fibre product
in Mang?,

Furthermore, the following is Cartesian in both Man$® and l\V/Ianiglf:

and agrees with that in Theorem 4.27.

cw) 0 cy)

RO cm | (4.13)
C(9)

C(X) c(2).

Equation (4.13) has a grading-preserving property, in that if (w,8) € C;(W) with
Cle)(w,B) = (z,7) € Cj(X), and C(f)(w,B) = (y,6) € Cu(Y), and C(g)(x,7) =
C(h)(y,0) = (z,¢) € Ci(Z), theni+1=j+ k. Hence

C;(W) = Hj,k,lzo:i:jJrlcfl CJZ'(X) XC(g)l...,C1(Z),C(h)]... Cllc(Y)a (4.14)

where C]l»(X) =Cj(X)NC(g)~HCi(Z)) and CL(Y) = Cr(Y)NC(h)~YCi(Z)), open and
closed in C;(X), Cr(Y'). When i =1, this gives a formula for OW .

Remark 4.29. Here is how our work above relates to previous results in the literature. The
author [8, §6] defined ‘transverse’ and ‘strongly transverse’ maps g: X — Z, h:Y — Z
in the category Mang, of manifolds with corners and strongly smooth maps, similar to
b- and c-transverse maps above, and proved an analogue of Theorem 4.28 for (strongly)
transverse fibre products in Mang, .

Kottke and Melrose [20, §11] studied fibre products in the category Mang, of man-
ifolds with (ordinary) corners and interior smooth maps, in the notation of §2. They
defined ‘b-transversal’ maps g : X — Z, h : Y — Z in Man{,, which agree with our
b-transverse maps when X, Y, Z have ordinary corners. They prove an analogue of
Theorem 4.27, that if g, h are b-transversal and satisfy an extra condition, then a fibre
product X X, 7 Y exists in Mang,. Under further conditions including g, » b-normal,
they prove X x4 7z Y is also a fibre product in Man€, as in Theorem 4.28.

Kottke and Melrose’s extra condition is equivalent to saying that the fibre product
W = X X475 Y in Manf] given by Theorem 4.27 has ordinary corners rather than
g-corners. Without this condition, they know that W = X X, 7z, Y exists as an ‘interior
binomial variety’, which is basically a manifold with g-corners W embedded in a manifold
with ordinary corners X X Y. So they come close to proving our Theorem 4.27 when
X, Y, Z have ordinary corners and W has g-corners. Their results were part of the
motivation for this paper.
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Combining Proposition 4.25(ii) and Theorem 4.28 yields:

Corollary 4.30. Suppose g : X — Z and h : Y — Z are morphisms in Man®®, with
g a b-fibration and h interior. Then a fibre product W = X Xg4 75 Y with dimW =
dim X +dimY — dim Z exists in Man8°, which may be written W = {(m,y) eXxY:
g(z) = h(y)}, as an embedded submanifold of X x Y.

If we do not assume h is interior, Corollary 4.30 is false:

Example 4.31. Define X = [0,00)2, Y = %, Z = [0,00) and smooth maps g : X — Z,
h:Y — Z by g(z,y) = xy and h : x — 0. Then g is a b-fibration, but A is not interior. In
this case no fibre product W = X X, 7, Y exists in Man®°, as by Lemma 4.22 it would
be given as a set by W = {(z,y) € [0,00)? : zy = 0}, but no manifold with g-corners
structure on W near (0,0) can satisfy all the required conditions.

Here are examples of three phenomena which can occur with b-transverse but not
c-transverse fibre products in Man§, and Mang®:

Example 4.32. Let X = [0,00) x R, Y = [0,00) and Z = [0,00)2. Define g : X — Z by
g(x1,29) = (x1,z1€"2) and h: Y — Z by h(y) = (y,y). Then g, h are b-transverse, as g
is a b-submersion by Example 4.4(iii). But g, h are not c-transverse, since at (0,22) € X
and 0 € Y with g(0,22) = h(0) = (0,0) € Z, we may identify *N ,,)9 & *Noh :
"N0,20) X ®°NoY — *Ng ) Z with the map R&R — R? taking (\, p) — (A + p, A + ),
which is not surjective.

Theorem 4.27 gives a fibre product W = X x, 7, Y in Manf;, where

W = {(w,0,w) : w € [0,00)} = [0,00).

Lemma 4.22 shows that if a fibre product W/ = X x4 7, Y exists in Man®°, then as a
set with projections e : W/ — X, f: W’ — Y we have

W' = {(w,0,w) :w € [0,00)} U{(0,2,0): 2 € R} C X x Y.

This is the union of copies of [0, 00) and R intersecting in one point (0,0, 0). In this case
no fibre product X Xz Y exists in Man®®, as no manifold with g-corners structure on
W' near (0,0,0) can satisfy all the required conditions.

Theorem 4.26 shows C(g), C(h) are b-transverse, so by Theorem 4.27 (generalized to
Man®®) the fibre product C(X) X a(g).0(z2).cn C(Y) in Man exists. It is the disjoint
union of [0, 00) from Cy(X) X ¢y (z)Co(Y) and R from C1(X) x ¢, (z) C1(Y). But C(W) =
[O, OVO)H{O}, SO O(W) % O(X) Xc(2) C(Y) The fibre product C(X) XC(9),C(2),C(h) C(Y)
in Man®® does not exist.

Example 4.33. Let X = Y = [0,00) and Z = [0,00)?, and define g : X — Z, h :
Y — Z by g(z) = (z,2), h(y) = (y,4%). Then g, h are b-transverse. However, they
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are not c-transverse, as at 0 € X and 0 € Y with ¢(0) = h(0) = (0,0) € Z, although
Y Nog ® " Noh : "No X &P NyY — bN(O,O)Z is surjective, the submonoid (4.10) is zero, and
so lies in a proper face of My X x MyY = N?.

The fibre product W in Manf; in (4.11) given by Theorem 4.27 is W = {(1,1)},
a single point. Although Theorem 4.28 does not apply, it is easy to show that W' =
{(0,0),(1,1)} in equation (4.12) is a fibre product in Man8°. So fibre products X xz Y
in Man§? and Man®® ezist but do not coincide.

Note that W C W’. In general, if g, h are b-transverse but not c-transverse, and fibre
products W = X Xz Y in Man{ and W' = X xz Y in Man&® both exist, then W is
(diffeomorphic to) a proper, open and closed subset of W'.

In this case a fibre product C(X) x¢(z) C(Y) exists in Manigrf and is 2 points, so
agrees with C(W’) but not with C(W), and a fibre product C(X) x¢(z) C(Y) exists in
Man&¢ and is 3 points, so does not agree with either C'(W) or C(W").

Example 4.34. Let X =Y =[0,1)? and Z = {(21,22,;23,,24) €[0,00)2 : 2129 = z324}, as
in (3.7), so that Z =2 Xp for P the toric monoid of Example 3.23. Define g : X — Z,
h:Y — Z by g(x1,22) = (21,2123, 22, x722) and h(y1,y2) = (4193, Y1, Y37y2, y2). Then
the only points * € X, y € Y, z € Z with g(x) = h(y) = z are x = (0,0), y = (0,0),
z = (0,0,0,0). These g, h are b-transverse, but not c-transverse, as at * = y = (0,0)
the submonoid (4.10) is zero, and lies in a proper face of My X x M,Y = N*.

In this case the fibre product W = X x, 75, Y in Man§] given by Theorem 4.27 is
W = 0. A fibre product W' = X x4 7, Y in Man8® exists, with W’ = {((0,0), (0,0))}.
Note however that dimW’ =0 < 1 = dim X + dimY — dim Z, so the fibre product W’
in Man®¢ has smaller than the expected dimension.

Again, a fibre product C'(X) x¢(z) C(Y) exists in Mani‘f and agrees with C(W’) but
not with C(W), and a fibre product C(X) x¢(z) C(Y) exists in Man®® and is 2 points,
so does not agree with either C(W) or C(W’).

Remark 4.35. One could also look for useful sufficient conditions for fibre products
X Xgzn Y to exist in Man®® when g : X — Z, h : Y — Z are not both interior.
Example 4.31 shows that g a b-fibration and A general is not a sufficient condition, but
one can prove that g a simple b-fibration and h general is sufficient. A good approach
may be to suppose that C(g) : C(X) — C(Z2), C(h) : C(Y) — C(Z) are b-transverse
(they are already interior), so that a fibre product C'(X) x¢(z) C(Y) exists in Manigrf,

and then seek extra discrete conditions ensuring that the highest-dimensional component
of C(X) x¢(z) C(Y) is a fibre product X x4 75 Y in Man®°.

4.4. (1-)Kuranishi spaces with g-corners
‘Kuranishi spaces’ are a class of singular spaces generalizing manifolds and orbifolds,

which first appeared in the work of Fukaya, Oh, Ohta and Ono [3,4] as the geometric
structure on moduli spaces of J-holomorphic curves in symplectic geometry. One can
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consider both Kuranishi spaces without boundary [4], and with corners [3]. The definition
of Kuranishi spaces has been controversial from the outset, and has changed several times.

Recently it has become clear [11] that Kuranishi spaces should be understood as
‘derived smooth orbifolds’ and are part of the subject of Derived Differential Geometry,
the differential-geometric analogue of the Derived Algebraic Geometry of Jacob Lurie
and Toén—Vezzosi.

One version of Derived Differential Geometry is the author’s 2-categories of ‘d-
manifolds’ dMan and ‘d-orbifolds’ dOrb [9,10,13], which are defined as special classes of
derived schemes and derived stacks over C'*°-rings, using the tools of (derived) algebraic
geometry.

In a second approach, the author [11] gave a new definition of Kuranishi space, mod-
ifying [3,4]. This yielded an ordinary category of ‘u-Kuranishi spaces’ uKur, a kind of
derived manifold, and a 2-category of ‘Kuranishi spaces’ Kur, a kind of derived orbifold.
The definition involves an atlas of charts (‘Kuranishi neighbourhoods’ (V, E, T, s,v)) and
looks very different to that of d-manifolds and d-orbifolds, but there are equivalences of
categories uKur ~ Ho(dMan) and of 2-categories Kur ~ dOrb.

In [11, §3 & §5] the author also defined (2-)categories pKur®, Kur® of (u-)Kuranishi
spaces with corners. The construction starts with a category Man® of manifolds with
corners, as in §2, with the V' in Kuranishi neighbourhoods (V, E, T, s, %) objects in Man®.
The definition is not very sensitive to the details of the category Man® — variations on
Man€ satisfying a list of basic properties we expect of manifolds with corners will do
just as well.

So, as explained in detail in [11, §3.8 & §5.6], by replacing Man® by Man8® in
[11, §3 & §5], we can define a category pKur8® of u-Kuranishi spaces with g-corners
containing uKur®, Man®, Man®¢ as full subcategories, and a 2-category Kurs® of Ku-
ranishi spaces with g-corners containing Kur®, Man®, Man8° as full (2-)subcategories.

Fibre products in Kur®® exist under weaker conditions than in Kur®, as the same
holds for Man8¢, Man®. For example, in [14] we will prove analogues of Theorem 4.27
and Corollary 4.30:

Theorem 4.36.

(a) Suppose X, Y are Kuranishi spaces with g-corners, Z is a manifold with g-corners,
and g : X — Z, h :' Y — Z are interior 1-morphisms in Kur®®. Then a fibre
product W = X xg zn Y exists in the 2-category Kurfs of Kuranishi spaces with
g-corners and interior 1-morphisms, with virtual dimension vdim W = vdim X +
vdimY — dim Z.

(b) Suppose g : X — Z is a (weak) b-fibration and h :' Y — Z an interior 1-morphism
in Kur8®. Then a fibre product W = X X4 7z 1 Y ezists in Kur8®, with vdim W =
vdim X + vdimY — vdim Z.

Neither part holds in Kur® rather than Kurg®. Note that there is no transversality
assumption in (a), or any discrete conditions on monoids.



D. Joyce / Advances in Mathematics 299 (2016) 760-862 843

Kuranishi spaces with g-corners will be important in future applications in symplectic
geometry that the author is planning, for two reasons. Firstly, the author would like
to develop an approach to moduli spaces of J-holomorphic curves using ‘representable
2-functors’, modelled on Grothendieck’s representable functors in algebraic geometry. It
turns out that even if the moduli space is a Kuranishi space with (ordinary) corners, as
in [3], the definition of the moduli 2-functor near curves with boundary nodes involves
fibre products which do not exist in Kur®, and the moduli 2-functor cannot be defined
unless Theorem 4.36(b) holds. So we need Kur®® to define moduli spaces using this
method.

Secondly, some kinds of moduli spaces of J-holomorphic curves should actually have
g-corners rather than ordinary corners, in particular the moduli spaces of ‘pseudoholo-
morphic quilts’ of Ma’u, Wehrheim and Woodward [23,24,32-34], which are used to define
actions of Lagrangian correspondences on Lagrangian Floer cohomology and Fukaya cat-
egories.

Ma’u and Woodward [24] define moduli spaces M,, 1 of ‘stable n-marked quilted discs’
As in [24, §6], for n > 4 these are not ordinary manifolds with corners, but have an exotic
corner structure; in the language of this paper, the /\_/ln’l are manifolds with g-corners.
As in [24, Ex. 6.3], the first exotic example M, 1 has a point locally modelled on Xp
near dp in Example 3.23. Ma’u and Woodward [24, Th. 1.2] show the complexification
M%l of M,, 1 is a complex projective variety with toric singularities, which fits with our
discussion of complex toric varieties and the model spaces Xp in §3.1.6 and Remark 3.13.

More generally, if one omits the simplifying monotonicity and genericity assumptions
in [23,32-34], the moduli spaces of marked quilted J-holomorphic discs discussed in
[23,32-34] should be Kuranishi spaces with g-corners (though we do not claim to prove
this), just as moduli spaces of marked J-holomorphic discs in Fukaya et al. [3] are
Kuranishi spaces with (ordinary) corners.

In another area of symplectic geometry, Pardon [31] defines contact homology of
Legendrian submanifolds using moduli spaces of J-holomorphic curves which are a topo-
logical version of Kuranishi spaces with g-corners.

4.5. Other topics

Sections 4.2—4.3 extended known results for manifolds without boundary or with cor-
ners to manifolds with g-corners, but the extensions were not obvious, did not always
work, and required new proofs when they did. Quite a lot of other material in differen-
tial geometry does extend to manifolds with g-corners in an obvious way, and does not
require new proofs. This section gives some examples.

4.5.1. Orientations
Orientations on manifolds with corners are discussed by the author [8, §7], [13, §5.8]
and Fukaya et al. [3, §8.2]. We extend to manifolds with g-corners:
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Definition 4.37. Let X be a manifold with g-corners with dim X = n. Then A" (*T*X) is a
real line bundle on X. An orientation o on X is an equivalence class [w] of top-dimensional
forms w € C*(A"(*T*X)) with w|, # 0 for all 2 € X, where two such w, w’ are
equivalent if w’ = ¢-w for ¢ : X — (0,00) smooth. The opposite orientation is —o =
[~w]. Then we call (X, 0) an oriented manifold with g-corners. Usually we suppress the
orientation o, and just refer to X as an oriented manifold with g-corners. When X is an
oriented manifold with g-corners, we write —X for X with the opposite orientation.

This is the same as one of the usual definitions of orientations on manifolds or man-
ifolds with corners, except that we use *T*X rather than 7*X. Since *7*X and T*X
coincide on X°, the difference is not important.

As in conventional differential geometry, locally on X there are two possible orienta-
tions. Globally orientations need not exist — the obstruction to existence lies in H'(X, Zs)
— and if they do exist then the family of orientations on X is a torsor for H°(X, Zs).

As discussed in [8, §7], [13, §5.8], [3, §8.2] for manifolds with corners, if X is an
oriented manifold with g-corners we can define a natural orientation on 90X, and hence
on 0?X,0%X,...,0%m XX and if X, Y, Z are oriented manifolds with g-corners and
g: X — Z, h:Y — Z are b-transverse interior maps then we can define a natural
orientation on the fibre product W = X x4 7, Y in Manigtf from Theorem 4.27. To do
these requires a choice of orientation convention.

Orientations do not lift to corners Cj(X) for k& > 2. If X is oriented then 92X is
oriented, and the natural free Zy-action on 9>X from Proposition 3.32(a) is orientation-
reversing, so that Co(X) = 02X /Zy does not have a natural orientation, and Cj(X)
need not be orientable for k > 2, as in [8, Ex. 7.3].

In all of this, there are no new issues in working with orientations on manifolds with
g-corners, except for using A™(*T*X) rather than A"T* X, which is easy, and which one
can already do for manifolds with ordinary corners.

4.5.2. Partitions of unity
Partitions of unity are often used in differential-geometric constructions, to glue to-
gether choices of local data.

Definition 4.38. Let X be a manifold with g-corners and {U; : ¢ € I'} an open cover of X,
where I is an indexing set. A partition of unity on X subordinate to {U; : i € I} is a
family {n; : ¢ € I'} of smooth functions n; : X — R satisfying:

(i) n:(X) C[0,1] for alli € I.
(ii) milx\v, = 0 for all i € I.
(iii) Each € X has an open neighbourhood € V' C X such that |y = 0 for all
except finitely many ¢ € I.
(iv) > ;ermi = 1, where the sum makes sense by (iii) as near any x € X there are only
finitely many nonzero terms.



D. Joyce / Advances in Mathematics 299 (2016) 760-862 845

By the usual proof for manifolds, as in Lee [21, Th. 2.23], one can show:

Proposition 4.39. Let X be a manifold with g-corners and {U; : i € I} an open cover
of X. Then there exists a partition of unity {n; : i € I} on X subordinate to {U; :i € I}.

4.5.8. Riemannian metrics
Following Melrose [27, §2], [28, §4] for manifolds with corners, we define:

Definition 4.40. Let X be a manifold with g-corners. A b-metric g on X is a smooth
section g € C™ (Sz(bT*X)) which restricts to a positive definite quadratic form on
b7, X for all z € X.

This follows the usual definition of Riemannian metrics on manifolds without bound-
ary, but using *T X, *T* X rather than TX, T* X. By the usual proof for manifolds using
partitions of unity (as in §4.5.2) one can show that any manifold with g-corners X admits
b-metrics g.

On the interior X° we have *TX = TX, ’T*X = T*X, so ¢° := g|xo is an ordinary
Riemannian metric on the manifold without boundary X°. If X is a compact manifold
with g-corners, then (X°, ¢°) is a complete, generally noncompact Riemannian manifold,
with interesting asymptotic behaviour near infinity, determined by the boundary and
corners of X.

Melrose [25-28] studies analysis of elliptic operators on (X°,¢°) for X a compact
manifold with corners (and also more general situations). It seems likely that his theory
extends to X a compact manifold with g-corners.

4.5.4. Extension of smooth maps from boundaries
Let X be a manifold with corners. As in (2.7), there is a natural identification

0?X = {(x,b’l,ﬁg) :x € X, (B, B2 are distinct ( )
4.15
local boundary components for X at :10},

where igx : 0°X — 0X maps (x,31,32) — (x,61) and I : 9°X — X maps (=, 31,
B2) — x. There is a natural, free action of Zy = {1,0} on 9?X by diffeomorphisms, where
0:0?°X — 02X acts by o : (2,81, 82) = (2, B2, 81), with [T o o = IL. It is easy to show:

Proposition 4.41. Let X be a manifold with (ordinary) corners, and o : 9°X — 92X be
as above. Then:

(a) Suppose g : 0X — R is a smooth function. Then there exists a smooth function
f: X = R with flox = g if and only if gla=x : 9*X — R satisfies glo2x = glozx 00

(b) Suppose E — X is a vector bundle, andt € C*°(E|sx). Then there exists s € C*(E)
with slox =t if and only if tlo2x € C°(E|s2x) satisfies o*(t|o2x) = t|o2x -
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Since local solutions f or s to the equations flogx = g, slgx = t can be combined
using a partition of unity (as in §4.5.2) to make global solutions, it is enough to prove
Proposition 4.41 near 0 in X = R} = [0,00)F x R,

Note that the analogue of Proposition 4.41(a) for smooth maps X — [0, oo) is false. For
example, there is no smooth map f : [0,00)% — [0, 00) with f(z,0) =z and f(0,y) = v,
as f(z,y) = x +y is not a smooth map f : [0,00)% — [0, 00).

Now let X be a manifold with g-corners. By Proposition 3.32(a), we have

02X = {(z,B1,B2) : w€X, 1, B2 are distinct local boundary

components of X at x intersecting in codimension 2},

as in (4.15), and a free action of Zy = {1,0} on 92X by diffeomorphisms, where o :
0?X — 92X acts by o : (x, 81, 2) — (x, B2, 41). We can show:

Proposition 4.42. The analogue of Proposition 4.41 holds for X a manifold with g-corners.

Again, since partitions of unity exist for manifolds with g-corners as in §4.5.2, it is
enough to prove Proposition 4.42 near (d¢,0) in X = Xp x R" for P a toric monoid,
and we can do this by embedding Xp x R” in [0,00)Y x R"™ and using Proposition 4.41
for [0,00)™ x R".

Results like Proposition 4.41 are important in constructing virtual chains for Kuranishi
spaces with corners with prescribed values on the boundary, as in Fukaya et al. [3], and
Proposition 4.42 will be useful for applications of manifolds with g-corners and Kuranishi
spaces with g-corners that the author plans in symplectic geometry.

A different generalization of manifolds with corners would be to consider spaces X
locally modelled on polyhedra in R™, with the obvious notion of smooth map. For such
spaces, the analogue of Proposition 4.41 is false. For example, suppose X near z is
modelled on the corner of an octahedron in R®, as in Fig. 3.1. Consider smooth ¢ :
0X — R with glg2x = gla2x o 0. The possible sets of derivatives (019,029, 039, 01g) of
g at z along the four edges at x span a space R*, but for g = flox with f: X - R
smooth the derivatives (01g, d2g, 059, 049) lie in an R3 =~ TrX in R*, so there are many
smooth g : X — R with g|g2x = g|azx © o for which there exists no smooth f: X — R
with g = flox.

5. Proofs of theorems in §4
Finally we prove Theorems 4.10, 4.15, 4.26, 4.27, and 4.28.
5.1. Proof of Theorem 4.10

Let Q, R, m, n, ¢ be as in Theorem 4.10. Using §3 we can show there are canonical
isomorphisms Mg, )(Xq x R™) = Q" and M5, 0)(Xr xR"™) = RV, So (4.2) is identified
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with a monoid morphism Q¥ — RV, which must be of the form " for unique o : R — @,
as in (iii), since @ = (QV)Y, R = (RY)" for the toric monoids Q, R.

By Definition 4.8, ¢ being an immersion imposes strong conditions on the monoid
morphism (4.2), and hence on o : Q¥ — RY and « : R — Q. So oV is injective,
which implies that rank @ < rank R as in (i). The dual morphism « : R — @ need
not be surjective (e.g. in Example 4.9(ii), o : N> — N maps «a : (a,b) — 2a + 3b, so
a(N?) = N\ {1}), but « is close to being surjective — for example, a® : R&P — PgP
is surjective, and the map C, : Cr — Cg of the rational polyhedral cones Cq, Cr
associated to @, R in §3.1.4 is surjective. The surjectivity property we need, which can
be proved from Definition 4.8, is that if ¢ € @ then there exist r € R and a = 1,2, ...
such that a(r) = a - ¢, that is, « is surjective up to positive integer multiples in Q.

Choose a set of generators g1, ..., qy for Q. Then we can choose r1,...,7ry € R and
ai,...,ap =1,2,... with o(r;) = a;-g; for j =1,..., M. Extend r1,...,7ra to a set of
generators rq, ...,ry for R, for N > M. Then as in Proposition 3.14(a), Ag, X -+ X Ag,, :

Xo — [0,00)M and Ay, X -++ X Ay : Xg — [0,00)" are homeomorphisms from Xg,
Xr to closed subsets X¢, C [0,00)M, X7 C [0,00)" defined in (3.4) using generating
sets of relations for ¢1,...,qn in @ and r1,..., 7y in R. Hence (Mg, X -+ X Ay, ) X idgm
identifies X¢ x R™ with X¢, x R™ C [0, o0)M x R™. Let V' C X{ x R™ be the image
of V. Similarly (A, X -+ x A\, ) x idgn identifies Xg x R"” with X}, x R" C [0, 00)" x R".

Then Proposition 3.14(c) applied to i : V' — X x R" shows that there exists an open
neighbourhood Y of V’ in [0,00)™ x R™, and an interior map h : Y — [0,00)" x R" of
manifolds with (ordinary) corners, such that

[(Ay X+ X Ay ) Xidgr] 0d=h o [(Ag, X+ - X Agy, ) Xidgm] : U — [0,00)Y x R™.  (5.1)

We have simplified things here, since Proposition 3.14(c) does not allow for the factors
R™, R", but these can be included using embeddings R™ — [0, 00)™+1 R™ — [0, 00)" !
coming from minimal sets of monoid generators of Z™, Z™.

Write (w1, ..., war,T1,...,%,) for the coordinates on Y C [0,00)M x R™ and
(Y1, YN, 21, - -, 2n) for the coordinates on [0,00)Y x R™, and write h = (Hy, ..., Hy,
hi,... hy) for Hj = Hj(w1,...,%m), hj = hj(w1,...,Zm). Then near 0 in Y we have
Hj = Cj(wy, ..., xm)- 11, w!™ for b; ; € Nand C; : Y — (0, 00) smooth. Since the co-
ordinates wq, ..., wps correspond to the generators q1,...,qn € @, and the coordinates
Yi,...,yn tory,...,ry € R, and a(r;) = a; - g; for j =1,..., M, we see that we can
choose h such that

Hj(wi, .., wnr, @1, ) = Cj(wr, ) - w)7

j=1,....M. (5.2

We can now show that

b (ea (T 5 0)-alr),, ) |
dZ‘(z;o,O) = 0 (3hc (0))021,...,n :

6(1217

Hom(Q@,R) ® R™ — Hom(R,R) @ R"™.
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As i is an immersion, Definition 4.8(i) implies that (g};z (0));3; is injective. Hence

m < n, completing part (i) of Theorem 4.10. By applying a linear transformation to the

coordinates (z1,...,2,) on R", we can suppose that
Oh 1, b=c=1,...,m,
—(0,...,0) = (5.3)
Oy, 0, otherwise.

Define a continuous, non-smooth map IT : [0,00)" x R™ — [0,00)M x R™ by

IL: (Y1, YN, 21y e ey 2n) — (y%/al,...,y}\éa”’,zl,...,zm). (5.4)
By (5.2), the composition ITo h : V — [0,00)™ x R™ is given by

TMoh(wy,. .., Wrf,@1,y-e-y Tp) = (C’l(wl,...,xm)l/“l WL,
(5.5)
1/anm

Cy(wy, ..., Tm) ~wm,h1(w1,...,:cm),...,hm(wl,...,wm)),

which is smooth (as C. > 0), although II is not. By (5.3) and (5.5), the derivative of
ITohat (0,...,0) € Vis the (M 4+ m) x (M 4+ m) matrix

. diag(cl((])l/m,“.,CM(O)l/aM) 0
e ( (s 0N e )

which is invertible. Also (5.5) implies that IT o h is simple near 0. Therefore Proposi-
tion 2.19 shows IToh is étale near 0. So there exists an open 0 € Y C Y such that ITohl;
is a diffeomorphism from Y to its image.
Set V = [(Ag, X -+ X Agp,) X idgm]~1(Y). Then by (5.1) we have
(Toh)|5" o I [(Ay, x- - x Ay ) Xidso] 01l

= (Toh)[3" o (o h)ly o [(Aqy XX Agy) Xidem]l

= [()‘Ch Koo X )\QJW) XidRm”V'
Since (Ag, X+ - - X Ag,, ) Xidrm is a homeomorphism with its image, i|y is a homeomorphism

with its image, proving part (ii) of Theorem 4.10.
We have already proved the first part of (iii). For the second part, consider

S ={(u1,...,uy) € (—00,0)" : there exist sequences (Y,, zq)o;
in (V)N (X% x R™) and (1), in (0, 00) such that
as a — oo we have (y,, z,) = (dp,0) in Xp x R,

fta — 0in R, and pq - log[Ay, (y,)] = u; in Rfor j=1,...,N}.
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If (y,,2q) €i(V) N (X x R") is close to (dp,0) in Xr x R", then (y,,zq) = i(wq, T,)
for (wq,x,) € V C X§ x R", and (wq,z,) is close to (do,0) in Xq x R™ as i|; is a
homeomorphism with its image.

The definition of smooth maps in §3.2 now gives A (y,) = Dj(Wa, 2a) - Aa(r;)(Wa),
for some smooth D; : V — (0, 0c). Hence

Ha - lOgP‘f’j (Ya)] = Ha - logp\a(rj)(wa)] + o - 1og Dj(Wa, 2a)- (5.7)

As a — oo we have log Dj(wq,z,) — logD;(d,0), and p, — 0, so the final term in
(5.7) tends to zero. Thus we may rewrite (5.6) as

S = {(u17 . un) € (—00,0)V : there exist sequences (wy)2, in X5
and ((g)aep in (0,00) such that as a — oo we have w, — o in Xg,
pa — 0 in R, and p, - log[A () (wa)] = uj in R for j =1,... ,N}.

It is now easy to see that S is the intersection of (—oc,0)" with the image of the

composition of linear maps

ow (r1,--,7N)

Hom(Q, R) Hom(R, R) RY. (5.8)

Thus the subset z(f/) C Xg xR" near (dp,0) determines S, which determines the image

of (5.8). As rq,...,rny generate R, the second map in (5.8) is injective, so ¢(V) near

(60,0) determines the image of o : Hom(Q, R) — Hom(R, R).
We have a commutative diagram

Q" = Hom(Q,N) —— RY = Hom(R,N)
Hom(Q, R) - Hom(R, R).

Since (4.2) is identified with «, Definition 4.8(ii), (iii) say that «V is injective
and RY/aY(QY) is torsion-free. The torsion-freeness implies that o¥[QY] = RY N
(oa)[Hom(Q, R)]. Therefore i(V) near (6o, 0) determines the image oV (QV) in RY, where
a¥(QY) = QY. The inclusion a¥(QY) < R is dual to a: R — @, up to [aV(Q")]Y = Q.
Hence Q, a are determined uniquely, up to canonical isomorphisms of @, by (V) near
(60,0). Also i(V)N (X% xR™) is a manifold of dimension rank Q 4m, so m is determined.
This completes part (iii).

Let P, U, I, f be as in (iv). Since il : V — i(V) is a homeomorphism and f(U) C
Z(V), there is a unique continuous map ¢ : U — V with f =i o g. We must show that g
is smooth near (dp,0) € U. It is sufficient to show [(Ag, X -+ X Agy,) X idgm]og : U —
[0,00)M x R™ is smooth near (8, 0). But
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[(Agy X -++ X Ag,,) X idrm]oyg

= o lly) oMo by ol xwox dp) xidielog
5.9
= (Hohh})_l ollo [(Ap X+ XApy ) Xidgn] 0dog

= (H0h|}7)_1 ollo [(AT’lx"'X)‘TN)XidR"] o f,

where the first step uses [(Ag, X - -+ X Mgy, ) X idgm] 0 g(U) € Y and Mo h|y has a smooth
inverse, the second (5.1), and the third f = ¢ o g. In the last line of (5.9), each term is
smooth except IT in (5.4), which involves functions yjl»/ “,

As in part (iii), we can identify M, o) f with ¥ : P¥ — RY, for some monoid
morphism 8 : R — P. Since f(U) C i(V), using the argument of the proof of (iii) we
see that (o8)[Hom(P,R)] C (oa)[Hom(Q,R)] € Hom(R,R), and hence that 8Y(PV) C
a¥(QV) C RY. Since oV is injective, it follows that 8¥ : PV — RY factors through oV :
QY — RY. That is, there exists a monoid morphism vV : PV — QY with 8¥ = av oyV.
Then « : Q — P is a monoid morphism with 8 = v o a.

Hence as f is smooth, for j =1,..., M, near (do,0) in U we may write

Ay o f = Ej - Aairy) = Ej - Moatry) = Mayay) = Bi - Afy,) 2 U = [0,00),

where E; : U — (0, 00) is smooth, as a(r;) = a; - ¢;. Thus (A, o f)/% = E;/aj “A(gy)
U — [0,00) near (dp,0) in U, which is smooth. But by (5.4), the only potentially
non-smooth functions in the factor II in the last line of (5.9) are (A, o f)1/% for
j = 1,...,M. So by (5.9), [(Agy X -+ X Agy,) X idgm] 0 g is smooth on an open
neighbourhood U of (6y,0) in U, and therefore g is smooth on U. This completes
part (iv).

Finally suppose o : R — @ is an isomorphism, and m = n. Then in the proof above,
after choosing generators qi,...,qu for Q, we can take r; = a=!(g;) for j =1,..., M,
so that «a(r;) = ¢; with a; = 1, and then rq,..., 7y are already a set of generators
for R & @, so we take N = M. Then II in (5.4) is the identity, and Il o h = h, so
the proof above shows that h is étale near 0, and we choose open 0 € ¥ C Y with
0€ h(Y) C[0,00)™ x R™ open, and h|y : Y — h(Y) a diffecomorphism.

We have X{, = X C [0,00)™, and h maps the closed set Y N (Xg x R™) C Y
into a closed subset of h(Y) N (X} x R™) C h(Y). On the interior (0,00)™, h maps
YN (Xg xR™) to an open subset of R(Y)N (X xR™), as it is a local diffeomorphism of
manifolds without boundary. Hence h[Y' N (X xR™)] is open and closed in ~(Y)N (X5 x
R"™). As h(Y) N (X5 x R™) is connected near (do,0), making ¥ smaller we can suppose
R[Y N (Xg xR™)] = h(Y) N (X x R™), so taking closures gives h[Y N (Xg xR™)] =
R(Y)N (X, x R™).

Thus, h=' : A(Y) = Y maps h(Y) N (X x R") = ¥ N (X[, x R™). Setting V =
[(Agy X=X Ay, ) Xidgpm | "H(Y) CV and W =[(Ay, XX Ay, ) Xidgn ] “H(R(Y)) C X x R,
we see that il : V — W has a smooth inverse |y with
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[(Agy X+ X Mgy ) Xidgm] 0 d|7t =h ™ o [(Ayy X=X Ay, ) Xidgn] : W — [0, 00)M xR™,
as in (5.1), so i|]y is a diffecomorphism, as in (v). This completes the proof.
5.2. Proof of Theorem /.15

Let Q, n, V, fi, gi, hj, Bi, vi, X° and X 3 (d9,0) be as in Theorem 4.15. From §3.2,
on an open neighbourhood V' of (dp,0) in V' we can write

fi(yaz):Di(yaz) : A81(1/)7 gz(y,z):EZ(y,z) : Atl(y)7 2217 .. "k7 (510)

where (y,z) e V', y € Xg, z=(21,...,2,) € R", and s;,t; € Q, D;, E; : V' — (0, 00)
are smooth, for i = 1,..., k. Under the isomorphism (4.4), the components of bdfi|(5070),
*dg;|(s,0) in @ @ R D Q are s;, ;, so the component 3; of *dfi|(5,.0) — *dgil(s,,0) in
Q@NRiSﬁiZSi—ti.

Now f1, ..., Bk are elements of Q ®nyZ C Q ®yR. We will first show that if 81,..., B
are not linearly independent over R in () ®y R then we can replace f;, gi, si, ti, Bi, by
by fi, gi, si, ti, Bi fori=1,... k" and R} for j =1,...,’, such that k' <k, I > [ with
K +U=k+1, and B],..., [} are linearly independent over R, and X’° defined in (4.3)
using f;, gi, by for i =1,... K, j =1,...,0" agrees near (dp,0) with X° defined using
fisgi, hjfori=1,... k,7=1,...,1.

Since k +1 = k' +I’, this substitution does not change the equation rank P + m =
rank @ + n — k — [ in the theorem. Also the substitution does not change (51, ..., Bk)r,
and so does not change the expression for PV in (4.5). Note that in the last part of The-
orem 4.15 we assume that (5, ..., B are linearly independent over R, so the substitution
is unnecessary for the last part.

To do this, permute the indices i = 1,...,k in f;, g;, s;, t;, B; if necessary such
that B1,..., By are linearly independent over R, where k' = dimg{(f1, ..., Bk)r, and for
1=k +1,...,k we have

Bi = fozl Cii Bir (5.11)
for unique Cy;» € R. Then define I’ =1+ k — k', and f/ = fi, g} = gi, s} = s, th =,
Bi=pBifori=1,....k and b, = h; for j = 1,...,1, and define A’ for j =1+ 1,...,I'
by

B =log Dji—i —10g Bjyr—1 — Sy Cljpnr—vyir (log Dy — log Eyr). (5.12)

The point of this equation is that by (5.10)—(5.12), on V° we have



852 D. Joyce / Advances in Mathematics 299 (2016) 760-862

fivw—1(y,2) 17 90 (y,2) o o7
Gj+k—1(Y,2) 32 fu(y, z) ooy

B Dj+k/,l(y,z))\sj+k,7l(y) . lk_[ E; (y,z)0<j+k/_z)i/ A, (y)Cuﬂ/_z)i/
EjJrk’*l(yv Z))\tj+k’—l (y) =1 Dy (yv Z)C(]#k/il)i/ )\Si’ (y)c(]*k/il)i/
Dj iy (y, 2) Ei(y,z) 6 -0

= . :eXp h/- y7z .
B itw) L bty zymror — o0502)

Thus, if we assume f/ = ¢, for i = 1,..., k', which gives f; = ¢g; for i = 1,...,k,
then fjiw—1 = gj+r—1 is equivalent to exp(h;-) = 1 is equivalent to h;- =0on V°
forj=101+1,...,10.

That is, replacing fjir—1 = gjsr—1 by h} = 0 for j = 1+ 1,...,0" does
not change X° in (4.3), at least in V' where (5.10) holds. The (k + [)-tuples
*df1(50,0)="A11(50,0)s - - - » "ASrl(50,0) ~ Akl 50,0)> A1l 50,0+ - - - » APl 5,09 and *df1 | 50,00~
*dgi 10,05 - -+ "Afir|50.0) — "Gk (50,005 A (50,00 - - - At | (50,00 I PT(5, )V differ by
an invertible (k + 1) x (k + 1) matrix, so °df{]sy.0) — "dgil(50,0)- - -+ "dfbrl(60,0) —
*dgir1(50,0)» A4 | (50,0)s - - - » R |(5,,0) are linearly independent.

Note that fjix—1(60,0) = gj4r—1(60,0) does not imply that h; (60,0) = 0. Instead,
we can deduce h’;(do, 0) = 0 from the assumption that (do,0) € X, since A} is continuous
and (do, 0) is the limit of points v € X in (4.3) with h’;(v) = 0.

We will suppose for the next part of the proof that f;, g;, s, t;, D, E; fori=1,...k
and h; for j =1,...,0 are as above, and Ji,..., B, are linearly independent over R in
Q ®n R. Now dhi|(s.,0), - - - dhi](s,,0) are linearly independent in bT(*}mO)V = ngoXQ @
TyR™, and the components in ng‘OXQ are zero, so the components in TfR™ are linearly
independent. Hence | < n, and by a linear change of variables (z1, ..., z,) in R™ we can
suppose that

Oh,; 1, j=p=1,...,1,
—(00,0) = er (5.13)
6Zp 07 jzl)"'7l’ p:17""n7j#p'
Choose a set of generators q,...,qy for Q. Writing » = rank @, as in (3.3) choose
relations for q1,...,qx in @ of the form
a%q1+---+aﬁvq1\/ :b}q1+-'-+bqu1v fori=1,...,N —r, (5.14)

where a’, b’ € Nfor 1 <i < N —r, 1< j < N, such that the relations (5.14) form a basis

over R for Ker((N"V)" — @QV) @y R. Then following the proof of Proposition 3.14(a), we

can show that Ag, X -+ X Agy : X§ — (0,00)" is a homeomorphism from X§, to

X/O N a; iV bi biv .
6={(x1,...,an)€(0,00)" :2]" -y =ay" -y, i=1,... , N—r}. (5.15)
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Here we restrict to interiors Xp, X(’;j)7 (0,00)N as we don’t assume that the relations
(5.14) define @ as a quotient monoid of NY but only the weaker condition that they
span Ker((NV)Y — QY) @ R over R.

By Proposition 3.14(b) (slightly generalized as in the proof of Theorem 4.10 in §5.1),
there exists an open neighbourhood W of [(Ag, X - -+ X Ay ) X idgr](V) in [0,00)Y x R"
such that the interior functions f;, g; : V' — [0,00) and h; : V' — R are compositions of
(Agy X=X Agy ) Xidgn : V = [0,00)N xR™ with interior functions f;,g; : W — [0, 00) and

hj:W =R, fori=1,...,Nand j=1,...,n Asin (5.10), on an open neighbourhood
W' of (0,...,0) in W with

(A X -+ X Agy) X idgn (V') = W' N (X5 x R™), (5.16)

we can write
filw.2) = Di(@,2) o} a0y Gi@2) = Bilwz) -l -l (517)
for i = 1,...,k, where £ = (x1,...,2x) € [0,00)Y and z = (21,...,2,) € R" with
(x,z) € W' CW C[0,00)N xR", and Dy, E; : W — (0,00) are smooth, and s,¢/ € N

with slqr +---+sNgn = s, tlqr ++ - +tN gy = t; in Q. From equation (5.13) it follows
that

i 1, j=p=1,...,1
%(0,0)= P TP R _ (5.18)
0’ ]:1?"'?l) p:17"'7n7 ]#p'

Consider the (N —r + k) x N matrix

1 1 2 2 N N
o b i S i
az — by az — b3 ay — by
1 1 2 2 N N
a’Nfr_ber a’Nf'r_ber aNfr_ber
1 1 2 42 N 4N : (5.19)
174 e S S A
S5 — 13 55 — 13 s — 1y
1 1 2 2 N _ 4N
5, — U, s — g 5, — Uy

By definition of the az, bz, the first N — r rows are linearly independent over R. But
the last k rows are lifts of s; — ¢1,..., s — tx, which are linearly independent over R in
Q®nR, and Q ®y R is the quotient of RY by the span of the first N — 7 rows. It follows
that all N —r + k rows of (5.19) are linearly independent over R, and the matrix (5.19)
hasrank N —r+k < N.

By elementary linear algebra, N —r + k of the columns of (5.19) are linearly indepen-
dent over R. By permuting ¢i,...,gny we can suppose the first N — r 4+ k columns
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are linearly independent, so that the first N — r + k columns form an invertible
(N —r+k) x (N —r+ k) matrix. Write the inverse matrix as

GO ST e S S
I B A I
1 2 N—r 1 2 k

CNertk CNertk " CNerik ON_pyr ANk 0 dN_igg

Part of the condition of being inverse matrices is

N—r+k

S odi(a? —)=0, i=1,...,.N=r, j=1,...,k (5.20)
p=1
N—r+k . .
. 1, i=5=1,...,k,
PACEIE { - L (5.21)
| 0, 4,j=1,...,k, i#j.
Define interior functions Z1,...,2y : W' — [0,00) and smooth functions 21, ..., 2, :
W' — R by
k Di(m,z)d; _
T, | [ =22, =1,...,N —r+k,
ip(x,z) =" [lies B ¥ (5.22)
ZTp, p=N-—-r+k+1,...,2n,
hi(z,z), j=1,...,1,
2i(x, 2) = i(@2), g (5.23)
2, g=1l+1,...,n.
Then (5.17) and (5.20)—(5.23) imply that for all (x,z) € W’ we have
1 N 1 N 1 N 1 N
m(flx?\;zzﬁ‘x?\} = 3 ay :i?i~~-£%, i=1,...,N—n,
(5.24)
3 ~ st sN t! tNV
filx, z)=gi(x, 2) = B BN =3 T i=1,...,k,
(5.25)
hj(zx, z)=0 — 2 =0, j=1,...,1
(5.26)
Define a smooth function ¥ : W’ — [0,00)Y x R™ by
U(w, z) = (&1(x,2),....2n (2, 2), 21(2, 2), ..., 2n(2, 2)). (5.27)

Then (5.18) and (5.22)(5.23) imply that ¥ is simple with ¥(0) = 0, and *d¥|y = id :
RN+ — RV Thus Proposition 2.19 says U is étale near 0 in W’. So by making
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V', W’ smaller, we can suppose that W” := Im ¥ is an open neighbourhood of 0 in
[0,00)Y x R", and ¥ : W' — W” is a diffeomorphism. Equations (4.3), (5.15)—(5.16)
and (5.24)—(5.27) now imply that

o [(Ag X X Agy ) Xidpn ] (X NV ) ={(21,..., 2N, 21, ..., 20) EW:

N 1 bN
i

a; a; i S

xtxy =@y cxy, i=1,...,N =, (5.28)
1 N 1 N

S Si i t; - _ -

T xy =xf oz, t=1,..k, z; =0, j—l,...,l}.

As in equation (4.5), define

PY={peQ:p(B;)=0, i=1,....k}. (5.29)

Then PV is a toric monoid, a submonoid of QY. Equivalently, we have

PV = {(c,...,en) eNV SN (@) —bl)e; =0, i=1,...,N -,

j=1

N . ) ] (5.30)
ijl(sf —tf)cj =0, t=1,.. .Jﬂ}.

Write oV : P¥Y — QV for the inclusion morphism. Taking duals gives a toric monoid P
with a monoid morphism o : Q — P.

We expect PV and P to have rank r — k = N — (N — r) — k, since PV is defined
by k linearly independent equations in QV of rank r in (5.29), or by N —r + k linearly
independent equations in N of rank N in (5.30). This is not immediate, as for monoids
the rank could be lower than expected — consider for instance {(01,02) e N? c1 +
co = 0} = {(0,0)}, defined by 1 equation in a monoid N? of rank 2, but which has
rank 0 < 2 — 1.

To see that PV, P do have the expected rank r — k, note that as (Jp,0) € X by

assumption, (0,...,0) lies in the closure of the r.h.s. of (5.28), so we can find solutions
(z1,...,2n,0,...,0) to the equations of (5.28) with z1,...,zy > 0 arbitrarily small.
Setting ¢; = —log x;, we see (dp,0) € X implies that there exist solutions (c1,...,cn) to

the equations in (5.30) with ¢q,...,cnx > 0 large in R, and so also with ¢1,...,cy >0
large in N, as af,bg,sg,tg € N. The only way that PV could have smaller than the
expected rank is if all solutions (cy,...,cn) in (5.30) lay in some boundary face of NV,
but as there are solutions (ci,...,cn) with ¢; > 0 for all j, this does not happen. So
PV, P have rank r — k.

Set m = n — [, so that rank P +m = rank @ +n — k — [, as in the theorem. Define
Z: Xp xR™ = [0,00)N x R" by

Foon

E(v, (wi, .. .,wm)) = ()\a(ql)(v), co Aa(gn) (0),0,...,0,w1, ,wm).

It is easy to see that E is an embedding, and a similar proof to Proposition 3.14(a) shows
the image in the interior of [0, 00)" x R™ is
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(ImZ) N [(0,00)Y x R"] = {(21,...,2Nn,21,...,2n) € (0,00)" x R":

al alv 1 pN .

xtxy =@ oy, i=1,... N =, (5.31)
1 N 1 N

S; s; b t; . _ .

xeayy =a) oy, 1=1,...,k, z; =0, j—l,...,l}.

Define U = Z~1(W"), an open neighbourhood of (8, 0) in Xp x R™. Then comparing
(5.28) and (5.31) shows that

E(U°) =To[(Ag X+ X Agy) X idgn](X° NV,
so composing with =1 : W” — W’ and taking closures in U, V', W’ shows that
UL oZ(U) =[(Agy X - X Agy) X idgn](X N V). (5.32)

As [(Ag X =++ X Agy) X idgn]lys © V! < W’ and ¥~! o Z are both embeddings,
Corollary 4.11 shows that there is a unique embedding ¢ : U — V' with

[(Agy X v+ X Agy) X idpn] 0§ = vt ok,

which is interior as ¥ ~1oZ is. Then (5.32) gives ¢(U) = XNV" as (Mg, X -+ X Agy ) X idgn
is injective, and ¢ (g, 0) = (dp, 0) as U1 0= (dp, 0) = [(Ag, X -+ X Agy ) X idrn](do, 0) = 0.
The monoid morphism M(gmo)gﬁ : M((;O,O)U — M(éo,o)v is naturally identified with the
inclusion PV — QV from (5.29). This proves the first two parts of Theorem 4.15.

At the beginning of the proof, if 51, ..., 8 were not linearly independent over R then
we replaced fi, gi, si, ti, Bi, hj by fi, i, si, ti, B fori =1,... k" and ) for j = 1,..., 1/,
with f1,..., 0}, linearly independent over R. For the last part of Theorem 4.15, this
replacement would cause problems, as if (do, 0) & X we can have h’;(do,0) # 0 for A} as in
(5.12). Therefore, as in the last part of the theorem, we now assume that 3y, ..., 8 from
the theorem are linearly independent over R, and take f;, g, si, ti, B8i, h; to be as in the
theorem, without replacement. We also drop the standing assumption that (dp,0) € X.

The analysis above shows that (dg,0) € X if and only if 0 lies in the closure of the r.h.s.
of (5.28), if and only if there are solutions (z1,...,zn,0,...,0) to the equations of (5.28)
with x1,...,2x > 0 arbitrarily small. Setting ¢; = —logz;, we see (dp,0) € X if and
only if there exist solutions (¢q,...,cn) to the equations in (5.30) with ¢1,...,exy >0
large in R, and so also with ¢q,...,cy > 0 large in N, as a{, b{, sg, t{ € N. Such solutions
(c1,...,cn) € PV cannot lie in any boundary face of NV, and so not in any boundary
face of QV.

Conversely, if PV in (5.29) does not lie in any boundary face of QV, then the r.h.s.
of (5.30) does not lie in any boundary face of NV, and so contains solutions (ci,...,cxn)
with ¢; >0 for j =1,...,N. Then (z1,...,ZN,21,...,2n) = (75, ..., ¥ 0,...,0)
satisfies the equations of (5.30) for ¢ > 0, and taking ¢t — oo shows that (§p,0) € X.
Thus, (d9,0) € X is equivalent to the condition that the r.h.s. of (4.5) (i.e. equation
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(5.29)) does not lie in any proper face F' C QY of the toric monoid QV. This completes
the proof of Theorem 4.15.

5.8. Proof of Theorem 4.26
Let g: X — Z and h: Y — Z be interior maps of manifolds with g-corners. Suppose

(z,7) € C(X) and (y,0) € C(Y) with C(g)[(z,7)] = C(h)[(y, )] = (2,€) in C(Z). Then
we have a commutative diagram with exact rows (3.32)

0 bNC(X)|(x,7) ) bTwX &) bT(ac,'y)(C(X)) D 0
"New s viratic  LyY  trpeten Tye(C(Y))
i *Neo(g) (2,7 @ Nem)ly,6) \L T, 9@ Ty h \L T, C(9)®"T(y,5)C (h)

by b
0 —="Neg)l(pe) —— 1.2

bT(ZVE)(C(Z)) — 0.

If g, h are b-transverse, the central column is surjective, so the right hand column is
surjective, and C(g), C'(h) are b-transverse, as we have to prove.

Now suppose g, h are c-transverse. Then they are b-transverse, so C(g), C(h) are
b-transverse from above, which is the first condition for C(g), C(h) to be c-transverse.
We have a commutative diagram with exact rows

b b A7 b AT
0 — Newolen @ "N X & N (C(X)) & 0
Ne)lw.) NyY N5 (C(Y))
J,bNC<g>Mm)fBbNC(h)I(y,S) J,blvmg@bNyh \Lbﬁ(w,wC(Q)GBbN(y,&)C(h)

0 ——="Nezg)l (e —— 'N,Z —————— bN(z,e)(C(Z)) — 0.

As g, h are c-transverse, the central column is surjective, so the right hand column is
surjective, the second condition for C(g), C(h) to be c-transverse.
We have a commutative diagram of monoids with surjective columns

M, X - M.Z . M,Y
Mg Myh °
! ) | ) | (5.33)
~ M(I,’Y)C(g) ~ M(y,&)c(h) ~
My C(X) M. oC(Z) My, 5C(Y).

Equation (4.10) for g, h at x, y is constructed from the top line of (5.33), and (4.10) for
C(g), C(h) at (x,7), (y,0) from the bottom line of (5.33). Thus the columns of (5.33)
induce a morphism from (4.10) for g, h at z, y to (4.10) for C(g), C(h) at (z,7), (y,9). As
g, h are c-transverse, (4.10) for g, h at =, y does not lie in a proper face of M, X x MyY, SO
surjectivity of the columns of (5.33) implies that its image in M(I)W)C’(X) X ]\7[(%5)0(}/)
does not lie in a proper face of M, ,C(X) x M, 5yC(Y). Thus (4.10) for C(g), C(h) at
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(2,7), (y,6) does not lie in a proper face of M, ,yC(X) x M, 5yC(Y), the final condition
for C(g), C(h) to be c-transverse. This completes the proof.

5.4. Proof of Theorem /.27

Suppose X, Y, Z, g, h, W° and W = W° are as in Theorem 4.27. We first prove
that W is an embedded submanifold of X x Y, with dim W = dim X 4+ dimY — dim Z.
Suppose (z,y) € W. Then g(z) = h(y) = 2z € Z, since this holds for all (z/,y) € W°
and extends to W = W° by continuity of g, h. Thus *T,g ®*Tyh : *T, X ®°T,Y — *T.Z
is surjective by b-transversality.

Let X, Y, Z near z, y, z be modelled on Xg x R™, X x R", Xg x RY near
(60, 0) respectively, for toric monoids @, R, S and m,n,q > 0, and write points of
X,Y, Z near z, y, z as (u,x), (v,y), (w,2z) for u € Xg, ¢ = (z1,...,2m) € R",
v € Xp,y = (Y1,---,yn) € R", w € Xg, 2z = (21,...,2y) € RL Then write
g, h near z, y as g(u,xz) = (G(u, ), (g1(u,x),...,94(u,x))) = (w,2) and h(v,y) =
(H(v7y)7 (hl(v7y)a ) hq(v7y))) = (wv z)'

Set p = rank S. Choose s1,...,s, € S which are a basis over R of S ®yR. Then from
the definitions in §3.2 one can show that

{(0,0) :0€Xg}={(01,02) EXSXXG: A, (1) =g, (02), i=1,...,p}, (5.34)

although the analogue with Xg in place of Xg need not hold, as si,...,s, may not
generate S as a monoid. From (4.11) and (5.34) it follows that for open neighbourhoods
U of (z,y) in X xY and V of (do, d0,0,0) in Xg x XrxR™ xR"™, we have an identification

wenU = {(u,v,x,y) €V°: A, 0G(u,z) = A, 0 H(v,y), i=1,...,p,

g_](’uﬂw)_h](/vvy) 207 .]: 1aaQ}

We now apply Theorem 4.15 with Q@ X R, m+n, p, q, As, o G(u,x), As, o H(v,y),
gj(u,x) —h;(v,y) in place of Q, n, k, I, fi, i, hj, respectively, noting that Xg x Xp =
Xoxr- The fact that *T.g @bTyh X bTyY — YT, 7 is surjective and s1, ..., s, are
linearly independent in S ®y R implies that

bd[)\si o G(’LL, w)]|(50,50,0,0) - bd[)‘si o H(”? y)]|(50,50,0,0)a t=1,...,p,

d[gj(uam) _hj(v7y>]|(5o,5o,0,0)7 ] = 17"‘7Q7

are linearly independent in bT(*60,507070) (Xg x Xr x R™ x R™). So Theorem 4.15 implies
that in an open neighbourhood U’ of (x,%) in U C X x Y, W = W° is an embedded
submanifold of U, of dimension rank @ +rank R+m+n—p—g = dim X +dim Y —dim Z.
As this holds for all (z,y) € W, W is an embedded submanifold of X XY, with dim W =
dim X +dimY — dim Z.
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Write e : W — X and f: W — Y for the compositions of the inclusion W — X x Y
with the projections to X, Y. Then e, f are smooth, and interior as W° C X° x Y° so
that e(W°) C X°, f(W°) CY®° and goe=ho f as g(x) = h(y) for all (z,y) € W. We
claim that (4.7) is a Cartesian square in Manigrf . To prove this, suppose ¢/ : W/ — X,
f' W' — Y are interior morphisms of manifolds with g-corners, with goe’ = ho f’.
Consider the direct product (¢/, f') : W/ — X x Y. As ¢/, f/ are interior with go e’ =
ho f" we see from (4.9) that (¢/, f/)[W'°] C W° C X° x Y°. So taking closures implies
that (¢/, fHW]CWe =W C X xVY.

As the inclusion W — X xY is an embedding, Corollary 4.11 implies that b = (¢, ) :
W' — W is smooth, and in fact interior, and is unique with ¢’ = eob and f’ = fob. This
proves the universal property for (4.7) to be Cartesian in Manf:, so W = X X, 7, Y is
a fibre product in Mang; .

5.5. Proof of Theorem 4.28

Suppose g : X — Z and h : Y — Z are c-transverse morphisms in Man§>. Then
g, h are b-transverse, so Theorem 4.27, proved in §5.4, shows that a fibre product W =
X Xg.zp Y exists in Manfy, where as an embedded submanifold of X x Y we have
W = We for W° given by (4.11), with dim W = dim X +dim Y —dim Z, and projections
e:W =X, f:W =Y mapping e: (z,y) — z, f:(x,y) — y.

We first show that as g, h are c-transverse, W C X x Y has the simpler expression
W ={(z,y) € XxY :g(z) =h(y)}, asin (4.12). Clearly W C {(z,y) € X xY : g(z) =
h(y)}, since W° C {(z,y) € X XY : g(x) = h(y)} by (4.11), W = W°, and g, h are
continuous.

Suppose z € X and y € Y with g(x) = h(y) = z € Z, but do not assume (z,y) € W.
Follow the proof of Theorem 4.27 in §5.4 up to the point where we apply Theorem 4.15. As
g, h are c-transverse, bNrg®bNyh : bNmX@bNyY — YN, Z is surjective. In the notation
of Theorem 4.15 we can identify *N, g & bNyh with 81 @ --- @ Bk : Hom(Q,R) — R”, so
b]\?xg@b]vyh surjective is equivalent to 1, ..., B linearly independent over R in @ ®nR,
which is a hypothesis of the last part of Theorem 4.15.

Now W, (z,y), (4.10), M, X x M,Y above are identified with X, (8o, 0), (4.5) and Q"
in Theorem 4.15, respectively. Thus the last part of Theorem 4.15 says that (z,y) € W if
and only if the submonoid (4.10) is not contained in any proper face F ¢ M, X x M,Y of
MyX x MyY. The latter holds by Definition 4.24 as g, h are c-transverse, so (z,y) € W.
Therefore {(z,y) € X xY : g(z) = h(y)} CSW,s0 W = {(z,y) € X xY : g(z) = h(y)},
proving (4.12).

We can now show W is also a fibre product X x4 7, Y in Man®® using Corollary 4.11,

following the proof for Manf® in §5.4, but without supposing €', f are interior. This
proves the first part of Theorem 4.28.
For the second part, C(g) and C(h) are c-transverse in Man&¢ by Theorem 4.26, so

by the first part (extended to Man& in the obvious way), setting

W = {((x,7),(y,0)) € C(X) x C(Y) : C(9)[(w,7)] = C(W)I(y,9)]},
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then W is a submanifold of mixed dimension of C'(X) x C(Y), and is a fibre product
W = C(X) Xc(g),c(2),c(h) C(Y) in both Mans¢ and I\V/Ianﬁf. Applying the universal
property of the fibre product to (4.13) gives a unique map b C(W)— W, which is just
the direct product (C(e), C(f)) : C(W) — C(X) x C(Y) D W. We must show b is a
diffeomorphism.

From the construction of W in §5.4, we see that the strata S*(W) consist locally of
those points (z,y) € X x Y with z € §7(X), y € S*(Y) and g(z) = h(y) = z € SY(Z) for
some fixed strata 57(X), S¥(Y), S'(Z) of X, Y, Z. That is, locally S*(W) = S7(X) X g1z
Sk(Y). As this is a local transverse fibre product of manifolds without boundary, it has
dimension dim W —i = (dim X — j)+ (dim Y — k) — (dim Z — ), which forces i = j+k—1.
This shows that

SUW) = 1T SPH(X) X gl it xS D) bl gt o SkLY), (5.35)
4,k 1>0i=j4+k—1

where S7H(X) = S7(X)Ng~1(SY(Z)) and SFL(Y) = Sk(Y) N h~=1(S!(Z)), and the fibre
products in (5.35) are transverse fibre products of manifolds.

Since W € Man®® it is a disjoint union of manifolds with g-corners of different di-
mensions, which range from 0 to dim W. Write W for the component of W of dimension
dim W — 4, so that W = 2" 1. Then

Wi: H Cl(X) XC(g)

! CL(Y), (5.36)
Gk, 1>00i=j+k—1

‘Cé, (X)vcl(ZLC(h)lc,lc(y)

where C4(X) = C;(X) N C(g)~H(Ci(Z)) and C}(Y) = Cx(Y) N C(h) " (Ci(Z)), and the
fibre products in (5.36) are b-transverse fibre products in Manig: . Restricting to interiors
gives

”7i o ! o l .
W= H G;(X) XC(@)l ot (x)0-C1UZ)CM) g (310 CL(Y)°, (5.37)
G k0 >0=5+k—1 J

where the fibre products in (5.37) are transverse fibre products of manifolds.

Mapping (z,7) — =z gives a diffeomorphism C;(X)° — S7(X), which identi-
fies Cé (X)° = SH(X), and similarly Cr(Y)° = S*(Y), CL(Y)° = SH{(Y), and
C(Z)° = SY(Z). So comparing (5.35) and (5.37) shows we have a canonical diffeomor-
phism S(W) = (W#)°. But SH(W) = C;(W)°, so C;(W)° = (W)°. One can check that
this diffeomorphism C;(W)° — (W)° is the restriction to C;(W)° of b : C(W) — W.
Therefore E\C(W)o . C(W)° — W° is a diffeomorphism of the interiors C(W)°, W°.

There are natural projections II; : C(W) — X x Y by composing II : C(W) — W
with W < X x Y, and Il : W — X x Y by composing II x IT: C(X) x C(Y) = X x Y
with W < C(X) x C(Y). Both II;, II, are proper immersions, and II; = II, 0b. One can
prove using Corollary 4.11 that b : C(W) — W smooth with B\C(W)o CC(W)° — We
a diffeomorphism and II;, Iy proper immersions with II; = II5 o b together imply that
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b is a diffeomorphism. Therefore (4.13) is Cartesian in both Man&® and Manig: , as we
have to prove. For the last part, the grading-preserving property (4.14) holds on the
interior C(W)° by (5.35)—(5.37), and so extends to C(W) by continuity. This completes
the proof of Theorem 4.28.
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