Dominic Joyce

Differential Geometry

Questions on Lie Groups. Sheet 1

A1. Let M be a manifold and u, v, w be vector fields on M. The Jacobi identity is

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

Prove the Jacobi identity in coordinates (x^1, \ldots, x^n) on a coordinate patch U. Use the coordinate expression for the Lie bracket of vector fields.

In the following, $M_n(\mathbb{R})$ is the algebra of $n \times n$ real matrices, e_{ij} is the matrix in $M_n(\mathbb{R})$ which is 1 in position (i, j) and 0 elsewhere, and I is the identity matrix. If $A \in M_n(\mathbb{R})$ then A^t is the transpose of A, and $GL(n, \mathbb{R}) \subset M_n(\mathbb{R})$ is the Lie group of invertible matrices in $M_n(\mathbb{R})$.

- **A2.** Define O(n) to be the subset of matrices A in $GL(n, \mathbb{R})$ such that $AA^t = I$.
 - (i)^{*} Show that O(n) is a compact Lie subgroup of $GL(n, \mathbb{R})$.
 - (ii) Show that the Lie algebra $\mathfrak{o}(n)$ is $\{A \in M_n(\mathbb{R}) : A + A^t = 0\}$.
 - (iii) For $1 \le i < j \le n$, define $f_{ij} = e_{ij} e_{ji}$. Find an expression for the Lie bracket $[f_{ij}, f_{kl}]$.
 - (iv) Show that the f_{ij} form a basis for $\mathfrak{o}(n)$, and hence find the dimension of O(n).
- **A3**^{*}(a) Let G, H be Lie groups, and let $\Phi : G \to H$ be a Lie group homomorphism. Prove carefully that Ker Φ is a Lie subgroup of G, and that Im Φ is a Lie subgroup of H if and only if it is *closed*.
 - (b) Let G be the Lie group \mathbb{R} , and let H be the Lie group $\mathbb{R}^2/\mathbb{Z}^2$, that is, the torus T^2 . Define a Lie group homomorphism $\Phi: G \to H$ by $\Phi(t) = (t + \mathbb{Z}, \sqrt{2t} + \mathbb{Z})$. Show that $\Phi(G)$ is a subgroup of H, but it is not closed, and thus is not a submanifold of H.
- **A4**^{*}(a) Prove that the vector subspace $\langle f_{12} + f_{34}, f_{13} + f_{42}, f_{14} + f_{23} \rangle$ of $\mathfrak{o}(4)$ is a Lie subalgebra of $\mathfrak{o}(4)$ isomorphic to $\mathfrak{o}(3)$.
 - (b) Hence show that $\mathfrak{o}(4)$ is isomorphic as a Lie algebra to $\mathfrak{o}(3) \oplus \mathfrak{o}(3)$.
 - (c) Let SO(n) be the connected component of O(n) containing the identity. For n > 2, define Spin(n) to be the universal cover of SO(n). Deduce that $Spin(4) \cong Spin(3) \times Spin(3)$ as Lie groups.

Note: Here in part (b), if \mathfrak{g} and \mathfrak{h} are Lie algebras, then the Lie algebra $\mathfrak{g} \oplus \mathfrak{h}$ is the vector space $\mathfrak{g} \oplus \mathfrak{h}$ with the Lie bracket $[(x_1, y_1), (x_2, y_2)] = ([x_1, x_2], [y_1, y_2])$, for $x_1, x_2 \in \mathfrak{g}$ and $y_1, y_2 \in \mathfrak{h}$.

Questions for practice

- **B1.** By definition $GL(n, \mathbb{C})$ is the group of invertible $n \times n$ matrices over \mathbb{C} . It is a complex Lie group of complex dimension n^2 , but we may also regard it as a real Lie group of real dimension $2n^2$. Define U(n) by $U(n) = \{A \in GL(n, \mathbb{C}) : A\overline{A}^t = I\}$, where \overline{A}^t is the transpose of the complex conjugate of A.
 - (i)^{*} Show that U(n) is a compact, real Lie group.
 - (ii) Show that the Lie algebra $\mathfrak{u}(n)$ of U(n) is $\mathfrak{u}(n) = \{A \in M_n(\mathbb{C}) : A + \overline{A}^t = 0\}$, and calculate its dimension.
 - (iii) Show that $\mathfrak{u}(2)$ is isomorphic to $\mathbb{R} \oplus \mathfrak{o}(3)$ as a Lie algebra.