Dominic Joyce

Differential Geometry

The complex classical Lie algebras and groups

Notation:

- $\mathfrak{gl}(n,\mathbb{C})$ is the Lie algebra of $n \times n$ complex matrices.
- For $i, j = 1, ..., n, e_{ij} \in \mathfrak{gl}(n, \mathbb{C})$ is the matrix which is 1 in the $(i, j)^{\text{th}}$ position, and 0 elsewhere.
- $GL(n, \mathbb{C})$ is the group of invertible matrices in $\mathfrak{gl}(n, \mathbb{C})$.
- If $A \in \mathfrak{gl}(n, \mathbb{C})$, A^t is the transpose of A, and $\operatorname{Tr}(A)$ the trace of A. Write I for the identity matrix.

1. The special linear group

Define $\mathfrak{sl}(n, \mathbb{C}) = \{x \in \mathfrak{gl}(n, \mathbb{C}) : \operatorname{Tr}(x) = 0\}$ and $SL(n, \mathbb{C}) = \{A \in GL(n, \mathbb{C}) : \det(A) = 1\}$. Then $SL(n, \mathbb{C})$ is a connected, simply-connected, simple Lie group, of dimension $n^2 - 1$ and rank n - 1. A Cartan subalgebra for $\mathfrak{sl}(n, \mathbb{C})$ is the subspace of diagonal matrices.

2. The orthogonal and special orthogonal groups

Define $\mathfrak{o}(n, \mathbb{C}) = \mathfrak{so}(n, \mathbb{C}) = \{x \in \mathfrak{gl}(n, \mathbb{C}) : x + x^t = 0\},\ O(n, \mathbb{C}) = \{A \in GL(n, \mathbb{C}) : AA^t = I\}, \text{ and } SO(n, \mathbb{C}) = \{A \in O(n, \mathbb{C}) : \det(A) = 1\}.$

The orthogonal group $O(n, \mathbb{C})$ has 2 connected components, and the connected component of the identity is the special orthogonal group $SO(n, \mathbb{C})$. For n > 2, $SO(n, \mathbb{C})$ is a connected, semisimple Lie group with fundamental group \mathbb{Z}_2 , which is simple when $n \neq 4$. The double cover of $SO(n, \mathbb{C})$ is $Spin(n, \mathbb{C})$, and it is a connected, simply-connected, semisimple Lie group. The dimension of $SO(n, \mathbb{C})$ is n(n-1)/2, and the rank is n/2 for n even, and (n-1)/2 for n odd.

3. The symplectic groups

Define a matrix $L_n \in \mathfrak{gl}(2n, \mathbb{C})$ by $L_n = \sum_{j=1}^n (e_{j(j+n)} - e_{(j+n)j})$. Define $\mathfrak{sp}(n, \mathbb{C}) = \{x \in \mathfrak{gl}(2n, \mathbb{C}) : xL_n + L_n x^t = 0\}$ and $Sp(n, \mathbb{C}) = \{A \in GL(n, \mathbb{C}) : ALA^t = L\}$.

The symplectic group $Sp(n, \mathbb{C})$ is a connected, simply-connected, simple Lie group of dimension n(2n+1) and rank n, with $Sp(n, \mathbb{C}) \subset SL(2n, \mathbb{C})$.

Warning: Some authors write $Sp(2n, \mathbb{C})$ or $Sp_{2n}(\mathbb{C})$ instead of $Sp(n, \mathbb{C})$.

3. Dynkin diagrams of classical groups

The classical Lie algebras are related to the Lie algebras A_l, B_l, C_l and D_l by:

 $A_l = \mathfrak{sl}(l+1,\mathbb{C}), \qquad B_l = \mathfrak{so}(2l+1,\mathbb{C}), \qquad C_l = \mathfrak{sp}(l,\mathbb{C}), \qquad \text{and} \qquad D_l = \mathfrak{so}(2l,\mathbb{C}).$

Note the low-dimensional coincidences

 $A_1 = B_1 = C_1,$ $D_2 = A_1 \oplus A_1,$ $B_2 = C_2$ and $A_3 = D_3,$ which give the isomorphisms $\mathfrak{sl}(2, \mathbb{C}) \cong \mathfrak{so}(3, \mathbb{C}) \cong \mathfrak{sp}(1, \mathbb{C}),$

 $\mathfrak{so}(4,\mathbb{C})\cong\mathfrak{sl}(2,\mathbb{C})\oplus\mathfrak{sl}(2,\mathbb{C}),$ $\mathfrak{so}(5,\mathbb{C})\cong\mathfrak{sp}(2,\mathbb{C}),$ and $\mathfrak{sl}(4,\mathbb{C})\cong\mathfrak{so}(6,\mathbb{C}).$

Dominic Joyce

Real forms of the complex classical Lie groups

We use the notation overleaf, and in addition, \mathbb{H} will represent the *quaternions*, a noncommutative division algebra with $\mathbb{H} \cong \mathbb{R}^4$ as a vector space.

1. The linear groups over ${\mathbb R}$ and ${\mathbb H}$

Define $GL(n, \mathbb{R})$ and $GL(n, \mathbb{H})$ to be the Lie groups of $n \times n$ invertible matrices over \mathbb{R} and \mathbb{H} respectively. Define $SL(n, \mathbb{R})$ to be the subgroup of $GL(n, \mathbb{R})$ of matrices with determinant 1. Then $SL(n, \mathbb{R})$ is a real, simple Lie group with rank n - 1 and dimension $n^2 - 1$, a real form of $SL(n, \mathbb{C})$.

Now $GL(n, \mathbb{H})$ has dimension $4n^2$ and rank 2n, and it can be regarded as a subgroup of $GL(4n, \mathbb{R})$. Define $SL(n, \mathbb{H})$ to be $GL(n, \mathbb{H}) \cap SL(4n, \mathbb{R})$. Then $SL(n, \mathbb{H})$ is a real, simple Lie group of rank 2n - 1 and dimension $4n^2 - 1$, a real form of $SL(2n, \mathbb{C})$.

2. The unitary groups

Let (z_1, \ldots, z_n) be coordinates on \mathbb{C}^n . Define U(n) to be the subgroup of $GL(n, \mathbb{C})$ preserving the hermitian metric $|dz_1|^2 + \cdots + |dz_n|^2$ on \mathbb{C}^n . Then U(n) is a compact, connected Lie group of rank n and dimension n^2 , which is not semisimple. It is a real form of $GL(n, \mathbb{C})$. Define SU(n) to be the subgroup of $SL(n, \mathbb{C})$ preserving the same hermitian metric. Then SU(n) is a compact, connected, simply-connected, simple Lie group of rank n - 1 and dimension $n^2 - 1$, a real form of $SL(n, \mathbb{C})$.

3. The orthogonal groups

Let (x_1, \ldots, x_n) be coordinates on \mathbb{R}^n . Define O(n) and SO(n) to be the subgroups of $GL(n, \mathbb{R})$ and $SL(n, \mathbb{R})$ preserving the metric $dx_1^2 + \cdots + dx_n^2$ on \mathbb{R}^n . These groups are compact, with dimension n(n-1)/2 and rank n/2 (*n* even) or (n-1)/2 (*n* odd). Note O(n) has 2 connected components, and SO(n) is the identity component of O(n). For n > 2, SO(n) has fundamental group \mathbb{Z}_2 , and Spin(n) is the simply-connected double cover. For n = 3 and n > 4 SO(n) and Spin(n) are simple, and $Spin(4) \cong Spin(3) \times Spin(3)$. The groups O(n), SO(n) and Spin(n) are real forms of $O(n, \mathbb{C})$, $SO(n, \mathbb{C})$ and $Spin(n, \mathbb{C})$ respectively.

4. The symplectic groups

Define Sp(n) to be the intersection of $GL(n, \mathbb{H})$ and SO(4n). Then Sp(n) acts on \mathbb{R}^{4n} preserving a metric and an action of \mathbb{H} . It has dimension n(2n + 1) and rank n, and is a compact, connected, simply-connected, simple Lie group, a real form of $Sp(n, \mathbb{C})$.

5. Groups with mixed signature

For p, q > 1, let U(p, q), SU(p, q) be the subgroups of $GL(p+q, \mathbb{C})$, $SL(p+q, \mathbb{C})$ respectively preserving the pseudo-hermitian metric $|dz_1|^2 + \cdots + |dz_p|^2 - |dz_{p+1}|^2 + \cdots + |dz_{p+q}|^2$. These are noncompact real forms of $GL(n, \mathbb{C})$ and $SL(n, \mathbb{C})$. In the same way, we may define groups O(p, q), SO(p, q) and Sp(p, q). Note O(p, q) has 4 connected components and SO(p, q) has 2.