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7. Calibrated m-folds in Rn

7.1 Special Lagrangian
submanifolds

Let Cm have complex
coordinates (z1, . . . , zm),
metric g =

∑m
j=1|dzj|2, Kähler

form ω = i
2

∑m
j=1dzj ∧ dz̄j,

and complex volume form
Ω =

∧m
j=1dzj. An oriented

real m-submanifold L in Cm

is called special Lagrangian
if it is calibrated w.r.t. ReΩ.
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More generally, L is special
Lagrangian with phase eiθ if
it is calibrated with respect
to cos θ ReΩ + sin θ ImΩ.
The subgroup of GL(2m,R)
preserving g, ω and Ω is SU(m).
Define U = Rm in Cm. Then
U is calibrated w.r.t. ReΩ.
Any real vector subspace V in
Cm calibrated w.r.t. ReΩ is of
the form V = γ · U for some
γ ∈ SU(m). The stabilizer of
U in SU(m) is SO(m).

3



This proves:

Proposition. The family F
of oriented real m-dimensional
vector subspaces V in Cm with
ReΩ|V = volV is isomorphic
to SU(m)/SO(m), and has
dimension 1

2(m
2 + m− 2).

An m-submanifold L in Cm

is special Lagrangian iff
TxL ∈ F for all x ∈ L.
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Now ω|U = ImΩ|U = 0. As
SU(m) preserves ω and ImΩ
and acts transitively on F, we
have ω|V = ImΩ|V = 0 for
any V ∈ F. Conversely, if
V ∼=Rm and ω|V =ImΩ|V =0,
then V ∈ F. This proves:

Proposition. Let L be a real
m-submanifold of Cm. Then
L is special Lagrangian, with
some orientation, iff ω|L ≡ 0
and ImΩ|L ≡ 0.
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7.2 SL 2-folds and the
quaternions

Let C2 have its standard com-
plex structure I. A 2-fold L

in C2 is special Lagrangian iff
it is holomorphic with respect
to a second complex struc-
ture J on C2. Here I, J and
K = IJ are the complex struc-
tures on the quaternions H.
So SL 2-folds are well
understood.
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7.3 SL m-folds as graphs
Let f : Rm → R be smooth,
and define
Γf =

{
(x1+i ∂f

∂x1
, . . . , xm+i ∂f

∂xm
) :

x1, . . . , xm ∈ R }
.

Then Γf is a Lagrangian
m-fold in Cm, the graph of df .
It is special Lagrangian iff
ImΩ|Γf

≡ 0, which holds iff

ImdetC
(
I + iHess f

) ≡ 0
on Cm. This is a second-order
nonlinear elliptic p.d.e. on f .
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7.4 Local deformations of
SL m-folds

What do special Lagrangian
graphs Γf in Cm look like when
f ≈ 0? For small f ,

ImdetC
(
I+iHess f

) ≈ TrHess f

= ∆f,

where ∆ is the Laplacian. Thus,
SL m-folds near Γ0 = Rm in
Cm are roughly parametrized
by small harmonic functions
on Rm.

8



But Γf is the graph of df ,
and if f is harmonic then df

is a closed, coclosed 1-form
on Rm. This gives:

Principle. Small special La-
grangian deformations of a spe-
cial Lagrangian m-fold L are
approximately parametrized by
closed and coclosed 1-forms
α on L.

This is the idea behind McLean’s
Theorem (next lecture).

9



Written using graphs, deform-
ing SL m-folds gives ∆f =0,
one equation on one function.
But written using submanifolds,
it is 1

2(m−1)(m+2) equations
on m functions, and looks
overdetermined. As dω = 0,
these 1

2(m−1)(m+2) equa-
tions are dependent, and the
problem is not overdetermined.
So dω = 0 is an integrability
condition for the existence of
many SL m-folds.
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7.5 Associative 3-folds and
coassociative 4-folds

Define a 3-form ϕ on R7 by
ϕ = dx123 + dx145 + dx167+

dx246−dx257−dx347−dx356.
The subgroup of GL(7,R) pre-
serving ϕ is the holonomy group
G2. It also fixes the 4-form
∗ϕ, the Euclidean metric
g = dx2

1 + · · ·+ dx2
7, and the

orientation on R7. Both ϕ

and ∗ϕ are calibrations on R7.
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Define an associative 3-fold
to be a 3-fold in R7 calibrated
w.r.t. ϕ, and a coassociative
4-fold to be a 4-fold in R7 cal-
ibrated w.r.t. ∗ϕ.
Define an associative 3-plane
to be an oriented subspace
V ∼= R3 in R7 with ϕ|V =
volV , and a coassociative
4-plane to be an oriented
subspace V ∼= R4 in R7

with ∗ϕ|V = volV .
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Then we have:

Proposition. The families F3

of associative 3-planes in R7

and F4 of coassociative 4-planes
in R7 are both isomorphic to
G2/SO(4), with dimension 8.

Also, we can prove:

Proposition. Let L be a real
4-submanifold in R7. Then
L is coassociative, with some
orientation, iff ϕ|L ≡ 0.
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As F3 is codimension 4 in the
set of all 3-planes in R7, for
a 3-fold L to be associative
is 4 equations. But the free-
dom to vary L is 4 functions.
So, deforming associative 3-
folds involves 4 equations on
4 functions, and is determined.
The equation is elliptic, a Dirac
operator on L. So the defor-
mation theory of associative
3-folds is quite well-behaved.
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7.6 Cayley 4-folds in R8

The holonomy group Spin(7)
is the stabilizer of a 4-form
Ω on R8. It also preserves the
orientation and the Euclidean
metric g = dx2

1 + · · · + dx2
8

on R8. The 4-form Ω is a
calibration, and 4-folds in R8

calibrated w.r.t. Ω are called
Cayley 4-folds.
Oriented subspaces V ∼= R4

in R8 with Ω|V = volV are
called Cayley 4-planes.
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The family of Cayley 4-planes
has codimension 4 in the set
of all 4-planes in R8. Thus,
the deformation problem for
a Cayley 4-fold L may be writ-
ten as 4 real equations on 4
real functions, a determined
problem. In fact this is an
elliptic equation, essentially
the positive Dirac equation
upon L. So the deformation
theory of Cayley 4-folds is
quite well-behaved.
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