Riemannian holonomy groups and calibrated geometry Dominic Joyce, Oxford Lecture 14. Calibrated m-folds in \mathbb{R}^n

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

7. Calibrated *m*-folds in \mathbb{R}^n

7.1 Special Lagrangian submanifolds

Let \mathbb{C}^m have complex coordinates (z_1, \ldots, z_m) , metric $g = \sum_{j=1}^m |dz_j|^2$, Kähler form $\omega = \frac{i}{2} \sum_{j=1}^m dz_j \wedge d\overline{z}_j$, and complex volume form $\Omega = \wedge_{j=1}^m dz_j$. An oriented real *m*-submanifold *L* in \mathbb{C}^m is called *special Lagrangian* if it is calibrated w.r.t. Re Ω .

More generally, L is special Lagrangian with phase $e^{i\theta}$ if it is calibrated with respect to $\cos\theta \operatorname{Re}\Omega + \sin\theta \operatorname{Im}\Omega$. The subgroup of $GL(2m, \mathbb{R})$ preserving g, ω and Ω is SU(m). Define $U = \mathbb{R}^m$ in \mathbb{C}^m . Then U is calibrated w.r.t. $\operatorname{Re}\Omega$. Any real vector subspace V in \mathbb{C}^m calibrated w.r.t. Re Ω is of the form $V = \gamma \cdot U$ for some $\gamma \in SU(m)$. The stabilizer of U in SU(m) is SO(m).

This proves:

Proposition. The family \mathcal{F} of oriented real *m*-dimensional vector subspaces *V* in \mathbb{C}^m with $\operatorname{Re} \Omega|_V = \operatorname{vol}_V$ is isomorphic to $\operatorname{SU}(m)/\operatorname{SO}(m)$, and has dimension $\frac{1}{2}(m^2 + m - 2)$. An *m*-submanifold *L* in \mathbb{C}^m is special Lagrangian iff

 $T_x L \in \mathcal{F}$ for all $x \in L$.

Now $\omega|_U = \operatorname{Im} \Omega|_U = 0$. As SU(m) preserves ω and $\operatorname{Im} \Omega$ and acts transitively on \mathcal{F} , we have $\omega|_V = \operatorname{Im} \Omega|_V = 0$ for any $V \in \mathcal{F}$. Conversely, if $V \cong \mathbb{R}^m$ and $\omega|_V = \operatorname{Im} \Omega|_V = 0$, then $V \in \mathcal{F}$. This proves:

Proposition. Let *L* be a real *m*-submanifold of \mathbb{C}^m . Then *L* is special Lagrangian, with some orientation, iff $\omega|_L \equiv 0$ and $\operatorname{Im} \Omega|_L \equiv 0$.

7.2 SL 2-folds and the quaternions

Let \mathbb{C}^2 have its standard complex structure I. A 2-fold Lin \mathbb{C}^2 is special Lagrangian iff it is *holomorphic* with respect to a second complex structure J on \mathbb{C}^2 . Here I, J and K = IJ are the complex structures on the *quaternions* \mathbb{H} . So SL 2-folds are well understood.

7.3 SL *m*-folds as graphs Let $f : \mathbb{R}^m \to \mathbb{R}$ be smooth, and define

$$\begin{split} & \Gamma_f = \{(x_1 + i \frac{\partial f}{\partial x_1}, \dots, x_m + i \frac{\partial f}{\partial x_m}) : \\ & x_1, \dots, x_m \in \mathbb{R} \}. \\ & \text{Then } \Gamma_f \text{ is a Lagrangian} \\ & m\text{-fold in } \mathbb{C}^m, \text{ the graph of } df. \\ & \text{It is special Lagrangian iff} \\ & \text{Im } \Omega|_{\Gamma_f} \equiv 0, \text{ which holds iff} \\ & \text{Im } \det_{\mathbb{C}} (I + i \text{ Hess } f) \equiv 0 \\ & \text{on } \mathbb{C}^m. \text{ This is a second-order} \\ & nonlinear \ elliptic \ p.d.e. \ on \ f. \\ \end{split}$$

7

7.4 Local deformations of SL *m*-folds

What do special Lagrangian graphs Γ_f in \mathbb{C}^m look like when $f \approx 0$? For small f,

 $\operatorname{Im} \operatorname{det}_{\mathbb{C}}(I + i \operatorname{Hess} f) \approx \operatorname{Tr} \operatorname{Hess} f \\ = \Delta f,$

where Δ is the Laplacian. Thus, SL *m*-folds near $\Gamma_0 = \mathbb{R}^m$ in \mathbb{C}^m are roughly parametrized by small harmonic functions on \mathbb{R}^m . But Γ_f is the graph of df, and if f is harmonic then dfis a closed, coclosed 1-form on \mathbb{R}^m . This gives:

Principle. Small special Lagrangian deformations of a special Lagrangian m-fold L are approximately parametrized by closed and coclosed 1-forms α on L.

This is the idea behind McLean's Theorem (next lecture).

Written using graphs, deforming SL *m*-folds gives $\Delta f = 0$, one equation on one function. But written using submanifolds, it is $\frac{1}{2}(m-1)(m+2)$ equations on m functions, and looks overdetermined. As $d\omega = 0$, these $\frac{1}{2}(m-1)(m+2)$ equations are dependent, and the problem is not overdetermined. So $d\omega = 0$ is an *integrability condition* for the existence of many SL *m*-folds.

7.5 Associative 3-folds and coassociative 4-folds

Define a 3-form φ on \mathbb{R}^7 by

 $\varphi = d\mathbf{x}_{123} + d\mathbf{x}_{145} + d\mathbf{x}_{167} +$

 $d\mathbf{x}_{246}-d\mathbf{x}_{257}-d\mathbf{x}_{347}-d\mathbf{x}_{356}$. The subgroup of $GL(7,\mathbb{R})$ preserving φ is the *holonomy group* G_2 . It also fixes the 4-form $*\varphi$, the Euclidean metric $g = dx_1^2 + \cdots + dx_7^2$, and the orientation on \mathbb{R}^7 . Both φ and $*\varphi$ are calibrations on \mathbb{R}^7 . Define an associative 3-fold to be a 3-fold in \mathbb{R}^7 calibrated w.r.t. φ , and a coassociative 4-fold to be a 4-fold in \mathbb{R}^7 calibrated w.r.t. $*\varphi$.

Define an associative 3-plane to be an oriented subspace $V \cong \mathbb{R}^3$ in \mathbb{R}^7 with $\varphi|_V =$ vol_V, and a coassociative 4-plane to be an oriented subspace $V \cong \mathbb{R}^4$ in \mathbb{R}^7 with $*\varphi|_V = \operatorname{vol}_V$. Then we have:

Proposition. The families \mathcal{F}^{3} of associative 3-planes in \mathbb{R}^{7} and \mathcal{F}^{4} of coassociative 4-planes in \mathbb{R}^{7} are both isomorphic to $G_{2}/SO(4)$, with dimension 8.

Also, we can prove: **Proposition.** Let L be a real 4-submanifold in \mathbb{R}^7 . Then L is coassociative, with some orientation, iff $\varphi|_L \equiv 0$.

As \mathcal{F}^3 is codimension 4 in the set of all 3-planes in \mathbb{R}^{\prime} , for a 3-fold L to be associative is 4 equations. But the freedom to vary L is 4 functions. So, deforming associative 3folds involves 4 equations on 4 functions, and is *determined*. The equation is *elliptic*, a Dirac operator on L. So the deformation theory of associative 3-folds is quite well-behaved.

7.6 Cayley 4-folds in \mathbb{R}^8 The holonomy group Spin(7) is the stabilizer of a 4-form Ω on \mathbb{R}^8 . It also preserves the orientation and the Euclidean metric $g = dx_1^2 + \cdots + dx_8^2$ on \mathbb{R}^8 . The 4-form Ω is a calibration, and 4-folds in \mathbb{R}^8 calibrated w.r.t. Ω are called Cayley 4-folds.

Oriented subspaces $V \cong \mathbb{R}^4$ in \mathbb{R}^8 with $\Omega|_V = \operatorname{vol}_V$ are called *Cayley* 4-*planes*.

The family of Cayley 4-planes has codimension 4 in the set of all 4-planes in \mathbb{R}^8 . Thus, the deformation problem for a Cayley 4-fold L may be written as 4 real equations on 4 real functions, a determined problem. In fact this is an elliptic equation, essentially the positive Dirac equation upon L. So the deformation theory of Cayley 4-folds is quite well-behaved.