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7. Calibrated m-folds in R"

7.1 Special Lagrangian
submanifolds
Let C" have complex
coordinates (z1,...,2m),
metric g = > ;|dz;|%, K&hler
form w = %Z;nzldzj A\ de,
and complex volume form
2 = ANj=,dz;. An oriented
real m-submanifold L in C™
IS called special Lagrangian
If i1t Is calibrated w.r.t. Re(2.
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More generally, L is special
Lagrangian with phase et if
It IS calibrated with respect
to cosf Re2 + sinf Im €.
The subgroup of GL(2m,R)
preserving g,w and 2 is SU(m).
Define U = R™ in C". Then
U is calibrated w.r.t. ReX2.
Any real vector subspace V in
C™ calibrated w.r.t. ReS2 is of
the form V = ~ - U for some
~ € SU(m). The stabilizer of
U in SU(m) is SO(m).



This proves:

Proposition. The family F
of oriented real m-dimensional
vector subspaces V in C"™ with
Re 2]y, = voly is isomorphic
to SU(m)/SO(m), and has
dimension (m? +m — 2).

An m-submanifold L in C™
IS special Lagrangian iff
T,L € F for all x € L.



Now w\U = Im Q|U — 0. AS
SU(m) preserves w and Im 2
and acts transitively on F, we
have w|lyy = ImQ|y, = 0 for
any V. e F. Conversely, if
V=R and W|V:Im Q‘V:O,
then V € F. This proves:

Proposition. Let L be a real
m-submanifold of C". Then
L Is special Lagrangian, with
some orientation, iff w|; =0
and Im Q|L = 0.



7.2 SL 2-folds and the
quaternions
Let C2 have its standard com-
plex structure I. A 2-fold L
in C2 is special Lagrangian iff
It IS holomorphic with respect
to a second complex struc-
ture J on C2. Here I,J and
K = IJ are the complex struc-
tures on the quaternions M.
So SL 2-folds are well
understood.



7.3 SL m-folds as graphs
Let f : R"™ — R be smooth,

and define

M= {(@1Figl, . .. omtigd):

X1,...,Tm E R}.

T hen I‘f IS @ Lagrangian
m-fold in C", the graph of df.
It is special Lagrangian iff
Im Q\,—f = 0, which holds iff

Imdete(f + iHess f) =0
on C™. Thisis a second-order
nonlinear elliptic p.d.e. on f.
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(.4 Local deformations of
SL m-folds

What do special Lagrangian

graphs T ¢in C™ look like when

f~ 07 For small f,

Imdetc(l+iHess f) =~ Tr Hess f
= Af,

where A is the Laplacian. Thus,
SL m-folds near g = R"™ in
C™ are roughly parametrized
by small harmonic functions
on R,



But ', Is the graph of df,
and if f is harmonic then df
IS a closed, coclosed 1-form
on R". This gives:

Principle. Small special La-
grangian deformations of a spe-
cial Lagrangian m-fold L are
approximately parametrized by
closed and coclosed 1-forms
o on L.

Thisis the idea behind MclLean’s
Theorem (next lecture).



Written using graphs, deform-
ing SL m-folds gives Af=0,
one equation on one function.
But written using submanifolds,
it is %(m—l)(m 2) equations
on m functions, and looks
overdetermined. As dw = 0O,
these %(m—l)(m—l—Q) equa-
tions are dependent, and the
problem is not overdetermined.
So dw = 0 is an integrability
condition for the existence of
many SL m-folds.
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7.5 Associative 3-folds and
coassociative 4-folds
Define a 3-form ¢ on R’ by

p = dX123 + dX145 + dX167

dX246—0dX257—dX347—0dX356.
The subgroup of GL(7,R) pre-

serving ¢ Is the holonomy group
G>. It also fixes the 4-form
xp, the Euclidean metric

g = dx% + --- 4+ dz2, and the
orientation on R’. Both ¢
and %o are calibrations on R’.
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Define an associative 3-fold
to be a 3-fold in R’ calibrated
w.r.t. ¢, and a coassociative
4-fold to be a 4-fold in R’ cal-
ibrated w.r.t. *p.

Define an associative 3-plane
to be an oriented subspace
V 2 R3 in RT with ¢|y =
voly,, and a coassociative
4-plane to be an oriented
subspace V = R%* in Rf

with *gp‘v — VO|V.
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T hen we have:

Proposition. The families F3
of associative 3-planes in R’
and F* of coassociative 4-planes
in R” are both isomorphic to
G»/S0(4), with dimension 8.

Also, we can prove:

Proposition. Let L be a real
4-submanifold in R’. Then
L is coassociative, with some
orientation, iff ¢|; = 0.
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As F3 is codimension 4 in the

set of
a 3-fo

IS 4 eC

all 3-planes in R’, for
d L to be associative
uations. But the free-

dom to vary L is 4 functions.
So, deforming associative 3-
folds involves 4 equations on
4 functions, and is determined.
The equation is elliptic, a Dirac
operator on L. So the defor-
mation theory of associative
3-folds is quite well-behaved.
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7.6 Cayley 4-folds in R®
The holonomy group Spin(7)
IS the stabilizer of a 4-form
2 on RS. It also preserves the
orientation and the Euclidean
metric ¢ = daf + --- + dz3
on R8. The 4-form  is a
calibration, and 4-folds in R®
calibrated w.r.t. €2 are called
Cayley 4-folds.

Oriented subspaces V = R%
in RS with Q| = voly, are
called Cayley 4-planes.
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The family of Cayley 4-planes
has codimension 4 in the set
of all 4-planes in RS. Thus,
the deformation problem for
a Cayley 4-fold L may be writ-
ten as 4 real equations on 4
real functions, a determined
problem. In fact this is an
elliptic equation, essentially
the positive Dirac equation
upon L. So the deformation
theory of Cayley 4-folds is
quite well-behaved.
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