Riemannian holonomy groups and calibrated geometry Dominic Joyce, Oxford Lectures 15 and 16. **Compact** calibrated k-folds and special Lagrangian *m*-folds

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

8. Compact calibrated k-folds in special holonomy m-folds

Let (M, J, g) be a Calabi–Yau *m*-fold with complex volume form Ω . Then Re Ω is a *calibration* on *M*. Its calibrated submanifolds are called *special Lagrangian m-folds*, or *SL m-folds* for short. What can we say about *compact* SL *m*-folds in *M*? Let (M, J, g, Ω) be a Calabi– Yau *m*-fold and *N* a compact SL *m*-fold in *M*. Let \mathcal{M}_N be the moduli space of *SL deformations* of *N*. We ask:

1. Is \mathcal{M}_N a manifold, and of what dimension?

2. Does N persist under deformations of (J, g, Ω) ?

3. Can we compactify \mathcal{M}_N by adding a 'boundary' of *sin-gular* SL *m*-folds? If so, what are the singularities like?

These questions concern the *deformations* of SL *m*-folds, *obstructions* to their existence, and their *singularities*.

Questions 1 and 2 are fairly well understood, and we shall discuss them in this lecture. Question 3 is an active area of research, and will be discussed next lecture.

8.1 Deformations of compact SL *m*-folds Robert McLean proved the following result.

Theorem. Let (M, J, g, Ω) be a Calabi–Yau m-fold, and N a compact SL m-fold in M. Then the moduli space \mathcal{M}_N of SL deformations of N is a smooth manifold of dimension $b^1(N)$, the first Betti number of N.

Here is a sketch of the proof. Let $\nu \to N$ be the *normal bun*dle of N in M. Then J identifies $\nu \cong TN$ and g identifies $TN \cong T^*N$. So $\nu \cong T^*N$. We can identify a small tubular neighbourhood T of N in Mwith a neighbourhood of the zero section in ν , identifying ω on M with the symplectic structure on T^*N .

Let $\pi : T \to N$ be the obvious projection.

Then graphs of small 1-forms α on N are identified with submanifolds N' in $T \subset M$ close to N. Which α correspond to SL m-folds N'? Well, N' is special Lagrangian iff $\omega|_{N'} \equiv \operatorname{Im} \Omega|_{N'} \equiv 0.$ Now $\pi|_{N'}: N' \to N$ is a diffeomorphism, so this holds iff $\pi_*(\omega|_{N'}) = \pi_*(\operatorname{Im} \Omega|_{N'}) = 0.$ We regard $\pi_*(\omega|_{N'})$ and $\pi_*(\operatorname{Im} \Omega|_{N'})$ as functions of α .

Calculation shows that $\pi_*(\omega|_{N'}) = d\alpha$ and $\pi_*(\operatorname{Im} \Omega|_{N'}) = F(\alpha, \nabla \alpha),$ where F is nonlinear. Thus, \mathcal{M}_N is locally the set of small 1-forms α on N with $d\alpha \equiv 0$ and $F(\alpha, \nabla \alpha) \equiv 0$. Now $F(\alpha, \nabla \alpha) \approx d(*\alpha)$ for small α . So \mathcal{M}_N is locally approximately the set of 1-forms α with d $\alpha =$ $d(*\alpha) = 0$. But by Hodge theory this is the de Rham group $H^1(N,\mathbb{R})$, of dimension $b^1(N)$.

8.2 Natural coordinates on \mathcal{M}_N Let N be a compact SL mfold in a Calabi-Yau m-fold (M, J, g, Ω) . Let \mathcal{M}_N be the moduli space of SL deformations of N. Then $\dim \mathcal{M}_N = b^1(N) = b^{m-1}(N).$ There are natural local identifications Φ, Ψ between \mathcal{M}_N and $H^1(N,\mathbb{R}), H^{m-1}(N,\mathbb{R}).$ Effectively these are *natural* coordinate systems on \mathcal{M}_N .

9

Let $U \subset \mathcal{M}_N$ be connected and simply-connected with $N \in U$. For each $N' \in U$, choose $\gamma : [0, 1] \to U$ with $\gamma(0) = N$ and $\gamma(1) = N'$. Lift to Γ : $N \times [0,1] \rightarrow M$ with $\Gamma(N \times \{t\}) = \gamma(t)$. As $\omega|_{\gamma(t)} \equiv 0$ for all $t \in [0, 1]$ we have $\Gamma^*(\omega) = \alpha_t \wedge dt$, for α_t a closed 1-form on N. Define $\Phi(N') = \left[\int_0^1 \alpha_t \, \mathrm{d}t \right] \text{ in } H^1(N, \mathbb{R}).$ It is independent of choices. We define Ψ in the same way.

8.3 Obstructions to existence of SL *m*-folds Let M be a C-Y m-fold. Then an *m*-fold N in M is SL iff $\omega|_N \equiv \operatorname{Im} \Omega|_N = 0$. This holds only if $[\omega|_N] = [\operatorname{Im} \Omega|_N] = 0$ in $H^*(N,\mathbb{R})$. So we have: **Lemma.** Let M be a Calabi-Yau m-fold, and N a compact m-fold in M. Then N is isotopic to an SL m-fold N' in M only if $[\omega|_N] = 0$ and $[\operatorname{Im} \Omega|_N] = 0$ in $H^*(N, \mathbb{R})$.

The Lemma is a *necessary* condition for a C-Y *m*-fold to have an SL *m*-fold in a given deformation class. Locally, it is also *sufficient*.

Theorem. Let $M_t : t \in (-\epsilon, \epsilon)$ be a family of Calabi–Yau *m*folds, and N_0 a compact SL *m*-fold of M_0 . If $[\omega_t|_{N_0}] =$ $[\operatorname{Im} \Omega_t|_{N_0}] = 0$ in $H^*(N_0, \mathbb{R})$ for all t, then N_0 extends to a family $N_t : t \in (-\delta, \delta)$ of SL *m*-folds in M_t , for $0 < \delta \leq \epsilon$. 8.4 Coassociative 4-folds Let (M,g) have holonomy G_2 . Then M has a constant 3form φ and 4-form $*\varphi$.

They are calibrations, whose calibrated submanifolds are called associative 3-folds and coassociative 4-folds. A 4fold N in M is coassociative iff $\varphi|_N \equiv 0$. Also, if N is coassociative then the normal bundle ν is isomorphic to $\Lambda^2_+ T^*N$, the self-dual 2-forms. Using this, McLean proved: **Theorem.** Let (M,g) be a 7-manifold with holonomy G_2 , and N a compact coassociative 4-fold in M. Then the moduli space \mathcal{M}_N of coassociative deformations of N is a smooth manifold of dimension $b^2_+(N)$.

Roughly, nearby coassociative 4-folds correspond to small closed forms in $\Lambda^2_+ T^*N$, which are $H^2_+(N,\mathbb{R})$ by Hodge theory.

8.5 Associative 3-folds and Cayley 4-folds

Associative 3-folds in 7-manifolds with holonomy G_2 , and Cayley 4-folds in 8-manifolds with holonomy Spin(7), cannot be defined by the vanishing of closed forms. This gives their deformation theory a different character. Here is how the theories work. Let N be a compact associative 3-fold or Cayley 4-fold in M. Then there are vector bundles $E, F \rightarrow N$ and a first order elliptic operator

 $D_N: C^{\infty}(E) \to C^{\infty}(F).$

The kernel Ker D_N is the set of infinitesimal deformations of N. The cokernel Coker D_N is the obstruction space. The index of D_N is $ind(D_N) =$ dim Ker $D_N - dim Coker D_N$.

In the associative case $ind(D_N) = 0$, and in the Cayley case $ind(D_N) =$ $\tau(N) - \frac{1}{2}\chi(N) - \frac{1}{2}[N] \cdot [N],$ where τ is the signature and χ the Euler characteristic. Generically Coker $D_N = 0$, and then \mathcal{M}_N is locally a manifold with dimension $ind(D_N)$. If Coker $D_N \neq 0$, then \mathcal{M}_N may be singular, or have a different dimension.

Note that the special Lagrangian and coassociative cases are unusual: there are *no* obstructions, and the moduli space is *always* a manifold of given dimension, without genericity assumptions. This is a minor mathematical miracle.

9. Almost Calabi-Yau *m*-folds

An almost Calabi-Yau m-fold (M, J, q, Ω) is a compact complex *m*-fold (M, J) with a Kähler metric g with Kähler form ω , and a nonvanishing holomorphic (m, 0)-form Ω , the holomorphic volume form. It is a *Calabi-Yau m-fold* if $|\Omega|^2 \equiv 2^m$. Then $\nabla \Omega = 0$ and q is Ricci-flat.

9.1 Special Lagrangian *m*-folds

Let (M, J, g, Ω) be an almost Calabi-Yau m-fold. Let N be a real *m*-submanifold of M. We call N special Lagrangian (SL) if $\omega|_N \equiv \text{Im } \Omega|_N \equiv 0$. If (M, J, g, Ω) is a Calabi-Yau *m*-fold then $\operatorname{Re}\Omega$ is a *calibra*tion on (M, g), and N is an SL m-fold iff it is calibrated with respect to $\operatorname{Re}\Omega$.

9.2 Singular SL *m*-folds General singularities of SL mfolds may be very bad, and difficult to study. Would like a class of singular SL *m*-folds with nice, well-behaved singularities to study in depth. Would like these to occur often in real life, i.e. of finite codimension in the space of all SL *m*-folds. SL *m*-folds with isolated conical singular*ities (ICS)* are such a class.

Let N be an SL m-fold in Mwhose only singular points are x_1, \ldots, x_n . Near x_i we can identify M with $\mathbb{C}^m \cong T_{x_i}M$, and N near x_i approximates an SL *m*-fold in \mathbb{C}^m with singularity at 0. We say N has *isolated* conical singularities if near x_i it converges with order $O(r^{\mu_i})$ for $\mu_i > 1$ to an SL cone C_i in \mathbb{C}^m nonsingular except at 0.

SL m-folds with ICS have a rich theory.

• Examples. Many examples of SL cones C_i in \mathbb{C}^m have been constructed. Rudiments of classification for m = 3.

• Regularity near x_1, \ldots, x_n . Let $\iota : N \to M$ be the inclusion. If $\nabla^k \iota$ converges to C_i near x_i with order $O(r^{\mu_i - k})$ for k = 0, 1 then it does so for all $k \ge 0$.

• **Deformation theory.** The moduli space \mathcal{M}_N of deformations of N is locally homeomorphic to $\Phi^{-1}(0)$, for smooth $\Phi : \mathcal{I} \to \mathcal{O}$ and fin. dim. vector spaces \mathcal{I}, \mathcal{O} with \mathcal{I} the image of $H^1_{CS}(N',\mathbb{R})$ in $H^1(N',\mathbb{R}), N'=N\setminus\{x_1,\ldots,x_n\},\$ and dim $\mathcal{O} = \sum_{i=1}^{n} \text{s-ind}(C_i)$. Here s-ind $(C_i) \in \mathbb{N}$ is the *stability index*, the obstructions from C_i . If s-ind $(C_i) = 0$ for all i then \mathcal{M}_N is smooth.

Desingularization. Let C be an SL cone in \mathbb{C}^m , nonsingular except at 0. A nonsingular SL *m*-fold L in \mathbb{C}^m is Asymptotically Conical (AC) C if L converges to C at infinity with order $O(r^{\lambda})$ for $\lambda < 1$. Then tL converges to C as $t \rightarrow 0_+$. Thus, AC SL *m*folds model how families of nonsingular SL m-folds develop singularities modelled on C.

If N is an SL m-fold with ICS at x_1, \ldots, x_n and cones C_i , and L_1, \ldots, L_n are AC SL *m*-folds in \mathbb{C}^m with cones C_i , then under cohomological conditions we can construct a family of compact nonsingular SL mfolds N_t for small t > 0 converging to N as $t \rightarrow 0$, by gluing tL_i into N at x_i , all i.

 Generic codimension of singularities. Given an SL m-fold N with ICS in M, we have moduli spaces \mathcal{M}_N of deformations of N, and $\mathcal{M}_{\widetilde{N}}$ of desingularizations \tilde{N} of N made by gluing in L_1, \ldots, L_n . Here \mathcal{M}_N is part of the *bound*ary of $\mathcal{M}_{\tilde{N}}$. If M is a generic almost C-Y m-fold then \mathcal{M}_N , $\mathcal{M}_{\tilde{N}}$ are smooth with known dimension.

Call dim $\mathcal{M}_{\widetilde{N}}$ -dim \mathcal{M}_N the *in*dex of the singularities of N. It is the sum over i of s-ind(C_i) and topological terms from L_i . In a dim k family \mathcal{B} of SL mfolds in a generic almost C-Y *m*-fold M, only singularities with index $\leq k$ occur. For SYZ in generic M we need to know about singularities with index 1,2,3 (and 4). **Problem:** classify singularities with small index.

10. The SYZ Conjecture and SL singularities 10.1 String Theory and Mirror Symmetry

String Theory is a branch of physics which models particles as 1-dimensional objects – 'strings' – propagating in a space-time *M*. String theorists aim to *quantize* the string's motion. This string quantum theory is very complicated, and poorly understood. For it to work, the universe must (supposedly) be 10-dimensional.

String Theorists say that our universe looks locally like $M = \mathbb{R}^4 \times X$, where \mathbb{R}^4 is Minkowski space, and X is a compact Riemannian 6-manifold with radius of order 10^{-33} cm, the Planck length.

By supersymmetry, X has to be a Calabi-Yau 3-fold. String Theorists believe that each Calabi–Yau 3-fold X has a quantization, a Super Conformal Field Theory (SCFT). Invariants of X such as the Dolbeault groups $H^{p,q}(X)$ and the number of holomorphic curves in X translate to properties of the SCFT.

Two different Calabi–Yau 3folds X, \hat{X} may have the same SCFT. Then the invariants of X and \hat{X} are related via properties of the SCFT. There is an automorphism of SCFT's which does *not* correspond to a classical automorphism of Calabi-Yau 3-folds. We say that X, \hat{X} are *mirror* Calabi– Yau 3-folds if their SCFT's are related by this automorphism.

One can argue using String Theory that $H^{1,1}(X) \cong H^{2,1}(\widehat{X})$ and $H^{2,1}(X) \cong H^{1,1}(\widehat{X})$. The mirror transform exchanges even- and odd-dimensional cohomology. This is surprising! The Mirror Transform exchanges things to do with the complex structure of X, such as numbers of holomorphic ' \mathbb{CP}^1 's in X, with things to do with the symplectic structure of \hat{X} , and vice versa.

Because the quantization process is poorly understood and not at all rigorous

— it involves non-convergent path-integrals over horrible infinite-dimensional spaces — String Theory generates only conjectures about Mirror Symmetry, not proofs. However, many of these conjectures have been verified in particular cases.

10.2 Interpretations: Kontsevich and SYZ There are two conjectural theories which explain Mirror Symmetry fairly mathematically. The first was due to Kontsevich in 1994. It says that for mirror Calabi–Yau 3-folds Xand \dot{X} , the derived category of coherent sheaves on X is equivalent to the derived category of the Fukaya category of \hat{X} , and vice versa.

The second was due to Strominger, Yau and Zaslow in 1996. The SYZ Conjecture. Let X, X be mirror Calabi–Yau 3-folds. There is a compact 3-manifold B and continuous, surjective $f: X \to B$ and $\widehat{f}:\widehat{X}\to B$, such that (i) For b in a dense $B_0 \subset B$, the fibres $f^{-1}(b), \hat{f}^{-1}(b)$ are dual SL 3-tori T^3 in X, \hat{X} . (ii) For $b \notin B_0$, $f^{-1}(b)$ and $\hat{f}^{-1}(b)$ are singular SL 3-folds in X, \hat{X} .

We call f, \hat{f} special Lagrangian fibrations, and $\Delta = B \setminus B_0$ the discriminant.

In (i), the nonsingular fibres T, \widehat{T} of f, \widehat{f} are supposed to be dual tori. Topologically, this means an isomorphism $H^1(T,\mathbb{Z}) \cong H_1(\widehat{T},\mathbb{Z})$. But the metrics on T, \hat{T} should really be dual as well. This only makes sense in the 'large complex structure limit', when the fibres are small and nearly flat.

10.3 U(1)-invariant **SL 3-folds**

Let U(1) act on \mathbb{C}^3 by $(z_1, z_2, z_3) \mapsto (e^{i\theta}z_1, e^{-i\theta}z_2, z_3).$ Let N be a U(1)-invariant SL 3-fold. Then locally we can write N in the form $\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a, z_1z_2 = v(x, y) + iy, z_3 = x + iu(x, y), x, y \in \mathbb{R}\},$ where $u, v : \mathbb{R}^2 \to \mathbb{R}$ satisfy

 $u_x = v_y$ and $v_x = -2(v^2 + y^2 + a^2)^{1/2}u_y.$ (*) 38

Since $u_x = v_y$, there exists a potential function f with $u = f_y$ and $v = f_x$. The 2nd equation of (*) becomes $f_{xx} + 2(f_x^2 + y^2 + a^2)^{1/2} f_{yy} = 0.$ (+)This is a second-order quasilinear equation. When $a \neq 0$ it is locally uniformly elliptic. When a = 0 it is non-uniformly elliptic, except at singular points $f_x = y = 0$.

Theorem A. Let S be a compact domain in \mathbb{R}^2 satisfying some convexity conditions. Let $\phi \in C^{3,\alpha}(\partial S)$.

If $a \neq 0$ there exists a unique $f \in C^{3,\alpha}(S)$ satisfying (+) with $f|_{\partial S} = \phi$. If a = 0 there exists a unique $f \in C^1(S)$ satisfying (+) with weak second derivatives, with $f|_{\partial S} = \phi$. Also f depends continuously in $C^1(S)$ on a, ϕ .

Theorem A shows that the Dirichlet problem for (+) is uniquely solvable in certain convex domains. The induced solutions $u, v \in C^0(S)$ of (*) yield U(1)-invariant SL 3-folds in \mathbb{C}^3 satisfying certain boundary conditions over ∂S . When $a \neq 0$ these SL 3-folds are nonsingular, when a = 0 they are singular when v = y = 0.

Theorem B.

Let $\phi, \phi' \in C^{3,\alpha}(\partial S)$, let $a \in \mathbb{R}$ and let $f, f' \in C^{3,\alpha}(S)$ or $C^1(S)$ be the solutions of (+) from Theorem A with

 $f|_{\partial S} = \phi, f'|_{\partial S} = \phi'$. Let $u = f_y, v = f_x, u' = f'_y, v' = f'_x$. Suppose $\phi - \phi'$ has k+1 local maxima and k+1 local minima on ∂S . Then (u, v) - (u', v')has no more than k zeroes in S° , counted with multiplicity.

Theorem C.

Let $u, v \in C^0(S)$ be a singular solution of (*) with a = 0, e.g. from Theorem A. Then either $u(x,y) \equiv u(x,-y)$ and $v(x,y) \equiv -v(x,-y)$, so that u, v is singular on the x-axis, **or** the singularities (x,0) of u, v in S° are *isolated*, with a *multiplicity* n > 0. Multiplicity n singularities occur in codimension n of boundary data. All multiplicities occur.

Theorem D.

Let $U \subset \mathbb{R}^3$ be open, S as above, and $\Phi: U \to C^{3,\alpha}(\partial S)$ continuous such that if $(a, b, c) \neq (a, b', c') \in U$ then $\Phi(a, b, c) - \Phi(a, b', c')$ has 1 local maximum and 1 local minimum. For $\alpha = (a, b, c) \in U$, let $f_{\alpha} \in C^{1}(S)$ be the solution of (+) from Theorem A with $f_{\alpha}|_{\partial S} = \Phi(\alpha)$.

Set $u_{\alpha} = (f_{\alpha})_y$ and $v_{\alpha} = (f_{\alpha})_x$. Let N_{α} be the SL 3-fold $\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a,$ $z_1 z_2 = v_\alpha(x, y) + i y,$ $z_3 = x + iu_\alpha(x, y), \ (x, y) \in S^\circ \}.$ Then there exists an open $V \subset \mathbb{C}^3$ and a continuous map $F: V \rightarrow U$ with $F^{-1}(\alpha) = N_{\alpha}$. This is a U(1)-invariant special Lagrangian fibration. It can include *singular fibres*, of every multiplicity n > 0.

Example. Define $f : \mathbb{C}^3 \to \mathbb{R} \times \mathbb{C}$ by $f(z_1, z_2, z_3) = (a, b)$, where $2a = |z_1|^2 - |z_2|^2$ and

$$b = \begin{cases} z_3, & z_1 = z_2 = 0, \\ z_3 + \bar{z}_1 \bar{z}_2 / |z_1|, a \ge 0, \ z_1 \neq 0, \\ z_3 + \bar{z}_1 \bar{z}_2 / |z_2|, a < 0. \end{cases}$$

Then f is a piecewise-smooth SL fibration of \mathbb{C}^3 . It is not smooth on $|z_1| = |z_2|$. The fibres $f^{-1}(a,b)$ are T^2 cones when a = 0, and nonsingular $S^1 \times \mathbb{R}^2$ when $a \neq 0$.

10.4 Conclusions

Using these SL fibrations as local models, if X is a *generic* ACY 3-fold and $f: X \rightarrow B$ an SL fibration, I predict:

• f is only piecewise smooth.

All fibres have finitely many singular points.

• Δ is codim 1 in *B*. Generic singularities are modelled on the example above.

 Some codim 2 singularities are also locally U(1)-invariant. Codim 3 singularities are not locally U(1)-invariant.

• If $f: X \to B$, $\hat{f}: \hat{X} \to B$ are dual SL fibrations of mirror C-Y 3-folds, the discriminants $\Delta, \hat{\Delta}$ have different topology near codim 3 singular fibres, so $\Delta \neq \hat{\Delta}$.

This contradicts some statements of the SYZ Conjecture. I regard SYZ as primarily a limiting statement about the 'large complex structure limit'.