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8. Compact calibrated
k-folds in special
holonomy m-folds

Let (M, J, g) be a Calabi–Yau
m-fold with complex volume
form Ω. Then ReΩ is a cal-
ibration on M . Its calibrated
submanifolds are called
special Lagrangian m-folds,
or SL m-folds for short.
What can we say about
compact SL m-folds in M?
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Let (M, J, g,Ω) be a Calabi–
Yau m-fold and N a compact
SL m-fold in M . Let MN be
the moduli space of SL defor-
mations of N . We ask:
1. Is MN a manifold, and of
what dimension?
2. Does N persist under de-
formations of (J, g,Ω)?
3. Can we compactify MN

by adding a ‘boundary’ of sin-
gular SL m-folds? If so, what
are the singularities like?
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These questions concern the
deformations of SL m-folds,
obstructions to their existence,
and their singularities.
Questions 1 and 2 are fairly
well understood, and we shall
discuss them in this lecture.
Question 3 is an active area
of research, and will be dis-
cussed next lecture.
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8.1 Deformations of
compact SL m-folds

Robert McLean proved the
following result.
Theorem. Let (M, J, g,Ω) be
a Calabi–Yau m-fold, and N

a compact SL m-fold in M .
Then the moduli space MN

of SL deformations of N

is a smooth manifold of
dimension b1(N), the first
Betti number of N .
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Here is a sketch of the proof.
Let ν → N be the normal bun-
dle of N in M . Then J iden-
tifies ν ∼= TN and g identifies
TN ∼= T ∗N . So ν ∼= T ∗N . We
can identify a small tubular
neighbourhood T of N in M

with a neighbourhood of the
zero section in ν, identifying
ω on M with the symplectic
structure on T ∗N .
Let π : T → N be the obvious
projection.
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Then graphs of small 1-forms
α on N are identified with sub-
manifolds N ′ in T ⊂ M close
to N . Which α correspond to
SL m-folds N ′?
Well, N ′ is special Lagrangian
iff ω|N ′ ≡ ImΩ|N ′ ≡ 0.
Now π|N ′ : N ′→ N is a diffeo-
morphism, so this holds iff
π∗

(
ω|N ′

)
= π∗

(
ImΩ|N ′

)
= 0.

We regard π∗
(
ω|N ′

)
and

π∗
(
ImΩ|N ′

)
as functions of α.
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Calculation shows that
π∗

(
ω|N ′

)
= dα and

π∗
(
ImΩ|N ′

)
= F (α,∇α),

where F is nonlinear. Thus,
MN is locally the set of small
1-forms α on N with dα ≡ 0
and F (α,∇α) ≡ 0. Now
F (α,∇α) ≈ d(∗α) for small α.
SoMN is locally approximately
the set of 1-forms α with dα=
d(∗α)=0. But by Hodge the-
ory this is the de Rham group
H1(N,R), of dimension b1(N).
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8.2 Natural coordinates
on MN

Let N be a compact SL m-
fold in a Calabi–Yau m-fold
(M, J, g,Ω). Let MN be the
moduli space of SL
deformations of N . Then
dimMN = b1(N) = bm−1(N).
There are natural local iden-
tifications Φ,Ψ between MN

and H1(N,R), Hm−1(N,R).
Effectively these are natural
coordinate systems on MN.
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Let U ⊂ MN be connected
and simply-connected with
N ∈ U . For each N ′ ∈ U ,
choose γ : [0,1] → U with
γ(0) = N and γ(1) = N ′.
Lift to Γ : N × [0,1] → M

with Γ(N × {t}) = γ(t). As
ω|γ(t) ≡ 0 for all t ∈ [0,1] we
have Γ∗(ω) = αt ∧ dt, for αt a
closed 1-form on N . Define
Φ(N ′) =

[∫ 1
0αt dt

]
in H1(N,R).

It is independent of choices.
We define Ψ in the same way.
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8.3 Obstructions to
existence of SL m-folds

Let M be a C-Y m-fold. Then
an m-fold N in M is SL iff
ω|N ≡ ImΩ|N = 0. This holds
only if [ω|N] = [ImΩ|N] = 0
in H∗(N,R). So we have:
Lemma. Let M be a Calabi–
Yau m-fold, and N a com-
pact m-fold in M . Then N is
isotopic to an SL m-fold N ′
in M only if [ω|N] = 0 and
[ImΩ|N] = 0 in H∗(N,R).
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The Lemma is a necessary
condition for a C-Y m-fold to
have an SL m-fold in a given
deformation class. Locally, it
is also sufficient.
Theorem. Let Mt : t ∈ (−ε, ε)
be a family of Calabi–Yau m-
folds, and N0 a compact SL
m-fold of M0. If [ωt|N0

] =
[ImΩt|N0

] = 0 in H∗(N0,R)
for all t, then N0 extends to
a family Nt : t ∈ (−δ, δ) of SL
m-folds in Mt, for 0 < δ 6 ε.
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8.4 Coassociative 4-folds
Let (M, g) have holonomy G2.
Then M has a constant 3-
form ϕ and 4-form ∗ϕ.
They are calibrations, whose
calibrated submanifolds are
called associative 3-folds and
coassociative 4-folds. A 4-
fold N in M is coassociative
iff ϕ|N ≡ 0. Also, if N is coas-
sociative then the normal bun-
dle ν is isomorphic to Λ2

+T ∗N ,
the self-dual 2-forms.
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Using this, McLean proved:
Theorem. Let (M, g) be a
7-manifold with holonomy
G2, and N a compact coasso-
ciative 4-fold in M . Then the
moduli space MN of coasso-
ciative deformations of N is
a smooth manifold of dimen-
sion b2+(N).
Roughly, nearby coassociative
4-folds correspond to small
closed forms in Λ2

+T ∗N , which

are H2
+(N,R) by Hodge theory.
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8.5 Associative 3-folds and
Cayley 4-folds

Associative 3-folds in
7-manifolds with holonomy G2,
and Cayley 4-folds in 8-manifolds
with holonomy Spin(7), can-
not be defined by the van-
ishing of closed forms. This
gives their deformation the-
ory a different character. Here
is how the theories work.
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Let N be a compact asso-
ciative 3-fold or Cayley 4-fold
in M . Then there are vector
bundles E, F → N and a first
order elliptic operator
DN : C∞(E) → C∞(F ).
The kernel Ker DN is the set
of infinitesimal deformations
of N . The cokernel Coker DN

is the obstruction space. The
index of DN is ind(DN) =
dimKer DN − dimCoker DN.
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In the associative case
ind(DN) = 0, and in the
Cayley case ind(DN) =
τ(N)− 1

2χ(N)− 1
2[N ] · [N ],

where τ is the signature and
χ the Euler characteristic.
Generically Coker DN = 0, and
then MN is locally a manifold
with dimension ind(DN). If
Coker DN 6= 0, then MN may
be singular, or have a
different dimension.
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Note that the special
Lagrangian and coassociative
cases are unusual: there are
no obstructions, and the mod-
uli space is always a manifold
of given dimension, without
genericity assumptions.
This is a minor mathematical
miracle.
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9. Almost Calabi-Yau
m-folds

An almost Calabi-Yau m-fold
(M, J, g,Ω) is a compact
complex m-fold (M, J) with a
Kähler metric g with Kähler
form ω, and a nonvanishing
holomorphic(m,0)-form Ω, the
holomorphic volume form.
It is a Calabi-Yau m-fold if
|Ω|2 ≡ 2m. Then ∇Ω = 0
and g is Ricci-flat.
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9.1 Special Lagrangian
m-folds

Let (M, J, g,Ω) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M .
We call N special Lagrangian
(SL) if ω|N ≡ ImΩ|N ≡ 0.
If (M, J, g,Ω) is a Calabi-Yau
m-fold then ReΩ is a calibra-
tion on (M, g), and N is an
SL m-fold iff it is calibrated
with respect to ReΩ.
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9.2 Singular SL m-folds
General singularities of SL m-
folds may be very bad, and
difficult to study. Would like
a class of singular SL m-folds
with nice, well-behaved sin-
gularities to study in depth.
Would like these to occur of-
ten in real life, i.e. of finite
codimension in the space of
all SL m-folds. SL m-folds
with isolated conical singular-
ities (ICS) are such a class.
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Let N be an SL m-fold in M

whose only singular points are
x1, . . . , xn. Near xi we can iden-
tify M with Cm ∼= TxiM , and
N near xi approximates an SL
m-fold in Cm with singularity
at 0. We say N has isolated
conical singularities if near xi

it converges with order O(rµi)
for µi > 1 to an SL cone Ci in
Cm nonsingular except at 0.
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SL m-folds with ICS have a
rich theory.
• Examples. Many examples
of SL cones Ci in Cm have
been constructed. Rudiments
of classification for m = 3.
• Regularity near x1, . . . , xn.
Let ι : N → M be the inclu-
sion. If ∇kι converges to Ci

near xi with order O(rµi−k)
for k = 0,1 then it does so
for all k > 0.
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• Deformation theory. The
moduli space MN of defor-
mations of N is locally home-
omorphic to Φ−1(0), for
smooth Φ : I → O and fin.
dim. vector spaces I,O with
I the image of H1

cs(N
′,R) in

H1(N ′,R), N ′=N\{x1, . . . , xn},
and dimO = Σn

i=1s-ind(Ci).
Here s-ind(Ci) ∈ N is the sta-
bility index, the obstructions
from Ci. If s-ind(Ci) = 0 for
all i then MN is smooth.

24



• Desingularization. Let C

be an SL cone in Cm, non-
singular except at 0. A non-
singular SL m-fold L in Cm is
Asymptotically Conical (AC)
C if L converges to C at infin-
ity with order O(rλ) for λ < 1.
Then tL converges to C as
t → 0+. Thus, AC SL m-
folds model how families of
nonsingular SL m-folds develop
singularities modelled on C.
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If N is an SL m-fold with ICS
at x1, . . . , xn and cones Ci, and
L1, . . . , Ln are AC SL m-folds
in Cm with cones Ci, then un-
der cohomological conditions
we can construct a family of
compact nonsingular SL m-
folds Ñt for small t > 0 con-
verging to N as t → 0, by glu-
ing tLi into N at xi, all i.
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• Generic codimension of
singularities. Given an SL
m-fold N with ICS in M , we
have moduli spaces MN of
deformations of N , and MÑ
of desingularizations Ñ of N

made by gluing in L1, . . . , Ln.
HereMN is part of the bound-
ary of MÑ. If M is a generic
almost C-Y m-fold then MN,
MÑ are smooth with known
dimension.
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Call dimMÑ−dimMN the in-
dex of the singularities of N .
It is the sum over i of s-ind(Ci)
and topological terms from Li.
In a dim k family B of SL m-
folds in a generic almost C-
Y m-fold M , only singulari-
ties with index 6 k occur. For
SYZ in generic M we need to
know about singularities with
index 1,2,3 (and 4).
Problem: classify singulari-
ties with small index.
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10. The SYZ Conjecture
and SL singularities

10.1 String Theory and
Mirror Symmetry

String Theory is a branch
of physics which models
particles as 1-dimensional
objects – ‘strings’ –
propagating in a space-time
M . String theorists aim to
quantize the string’s motion.
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This string quantum theory is
very complicated, and poorly
understood. For it to work,
the universe must (supposedly)
be 10-dimensional.
String Theorists say that our
universe looks locally like M =
R4×X, where R4 is Minkowski
space, and X is a compact
Riemannian 6-manifold with
radius of order 10−33cm, the
Planck length.
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By supersymmetry, X has to
be a Calabi–Yau 3-fold. String
Theorists believe that each
Calabi–Yau 3-fold X has a
quantization, a Super Confor-
mal Field Theory (SCFT).
Invariants of X such as the
Dolbeault groups Hp,q(X) and
the number of holomorphic
curves in X translate to
properties of the SCFT.
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Two different Calabi–Yau 3-
folds X, X̂ may have the same
SCFT. Then the invariants of
X and X̂ are related via prop-
erties of the SCFT. There is
an automorphism of SCFT’s
which does not correspond to
a classical automorphism of
Calabi–Yau 3-folds. We say
that X, X̂ are mirror Calabi–
Yau 3-folds if their SCFT’s
are related by this
automorphism.
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One can argue using String
Theory that H1,1(X) ∼= H2,1(X̂)
and H2,1(X) ∼= H1,1(X̂). The
mirror transform exchanges
even- and odd-dimensional
cohomology. This is surpris-
ing! The Mirror Transform
exchanges things to do with
the complex structure of X,
such as numbers of holomor-
phic ‘CP1’s in X, with things
to do with the symplectic struc-
ture of X̂, and vice versa.
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Because the quantization pro-
cess is poorly understood and
not at all rigorous
— it involves non-convergent
path-integrals over horrible
infinite-dimensional spaces —
String Theory generates only
conjectures about Mirror Sym-
metry, not proofs. However,
many of these conjectures have
been verified in particular cases.
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10.2 Interpretations:
Kontsevich and SYZ

There are two conjectural the-
ories which explain Mirror Sym-
metry fairly mathematically.
The first was due to Kontse-
vich in 1994. It says that for
mirror Calabi–Yau 3-folds X

and X̂, the derived category
of coherent sheaves on X is
equivalent to the derived cat-
egory of the Fukaya category
of X̂, and vice versa.

35



The second was due to Stro-
minger, Yau and Zaslow in 1996.
The SYZ Conjecture. Let
X, X̂ be mirror Calabi–Yau
3-folds. There is a compact
3-manifold B and continuous,
surjective f : X → B and
f̂ : X̂ → B, such that
(i) For b in a dense B0 ⊂ B,
the fibres f−1(b), f̂−1(b) are
dual SL 3-tori T3 in X, X̂.
(ii) For b /∈B0, f−1(b) and f̂−1(b)
are singular SL 3-folds in X, X̂.
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We call f, f̂ special Lagrangian
fibrations, and ∆ = B\B0 the
discriminant.
In (i), the nonsingular fibres
T, T̂ of f, f̂ are supposed to
be dual tori. Topologically,
this means an isomorphism
H1(T,Z) ∼= H1(T̂ ,Z). But the
metrics on T, T̂ should really
be dual as well. This only
makes sense in the ‘large com-
plex structure limit’, when the
fibres are small and nearly flat.
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10.3 U(1)-invariant
SL 3-folds

Let U(1) act on C3 by
(z1, z2, z3) 7→ (eiθz1, e−iθz2, z3).
Let N be a U(1)-invariant SL
3-fold. Then locally we can
write N in the form
{
(z1, z2, z3) : |z1|2−|z2|2=2a,

z1z2=v(x, y)+iy,
z3=x + iu(x, y), x, y ∈ R }

,
where u, v : R2 → R satisfy

ux = vy and

vx=−2(v2+y2+a2)1/2uy.
(∗)
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Since ux = vy, there exists
a potential function f with
u = fy and v = fx. The
2nd equation of (∗) becomes

fxx+2(f2
x+y2+a2)1/2fyy = 0.

(+)
This is a second-order quasi-
linear equation. When a 6= 0
it is locally uniformly elliptic.
When a=0 it is non-uniformly
elliptic, except at singular
points fx = y = 0.
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Theorem A. Let S be a com-
pact domain in R2 satisfying
some convexity conditions.
Let φ ∈ C3,α(∂S).
If a 6= 0 there exists a unique
f ∈ C3,α(S) satisfying (+) with
f |∂S = φ. If a = 0 there ex-
ists a unique f ∈ C1(S) sat-
isfying (+) with weak second
derivatives, with f |∂S = φ.
Also f depends continuously
in C1(S) on a, φ.
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Theorem A shows that the
Dirichlet problem for (+) is
uniquely solvable in certain con-
vex domains. The induced
solutions u, v ∈ C0(S) of (∗)
yield U(1)-invariant SL 3-folds
in C3 satisfying certain bound-
ary conditions over ∂S. When
a 6= 0 these SL 3-folds are
nonsingular, when a = 0 they
are singular when v = y = 0.
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Theorem B.
Let φ, φ′∈C3,α(∂S), let a∈R
and let f, f ′ ∈ C3,α(S) or C1(S)
be the solutions of (+) from
Theorem A with
f |∂S = φ, f ′|∂S = φ′. Let
u=fy, v=fx, u′=f ′y, v′=f ′x.
Suppose φ− φ′ has k+1 local
maxima and k+1 local minima
on ∂S. Then (u, v) − (u′, v′)
has no more than k zeroes in
S◦, counted with multiplicity.
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Theorem C.
Let u, v ∈ C0(S) be a singular
solution of (∗) with a = 0,
e.g. from Theorem A. Then
either u(x, y) ≡ u(x,−y) and
v(x, y) ≡ −v(x,−y), so that
u, v is singular on the x-axis,
or the singularities (x,0) of
u, v in S◦ are isolated, with a
multiplicity n>0. Multiplicity
n singularities occur in codi-
mension n of boundary data.
All multiplicities occur.
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Theorem D.
Let U ⊂ R3 be open, S as
above, and Φ : U → C3,α(∂S)
continuous such that if
(a, b, c) 6= (a, b′, c′) ∈ U

then Φ(a, b, c)−Φ(a, b′, c′)
has 1 local maximum
and 1 local minimum.
For α = (a, b, c) ∈ U , let
fα ∈ C1(S) be the solution
of (+) from Theorem A
with fα|∂S = Φ(α).
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Set uα = (fα)y and vα = (fα)x.
Let Nα be the SL 3-fold
{
(z1, z2, z3) : |z1|2−|z2|2=2a,
z1z2=vα(x, y)+iy,
z3=x+iuα(x, y), (x, y)∈S◦

}
.

Then there exists an open
V ⊂ C3 and a continuous map
F : V →U with F−1(α)=Nα.
This is a U(1)-invariant
special Lagrangian fibration.
It can include singular fibres,
of every multiplicity n > 0.
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Example. Define f : C3 →
R× C by f(z1, z2, z3) = (a, b),
where 2a = |z1|2 − |z2|2 and

b=





z3, z1 = z2 = 0,

z3+z̄1z̄2/|z1|, a>0, z1 6=0,

z3+z̄1z̄2/|z2|, a < 0.

Then f is a piecewise-smooth
SL fibration of C3. It is not
smooth on |z1| = |z2|.
The fibres f−1(a, b) are T2-
cones when a = 0, and non-
singular S1 × R2 when a 6= 0.
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10.4 Conclusions
Using these SL fibrations as
local models, if X is a generic
ACY 3-fold and f : X → B an
SL fibration, I predict:
• f is only piecewise smooth.
• All fibres have finitely many
singular points.
• ∆ is codim 1 in B. Generic
singularities are modelled on
the example above.
• Some codim 2 singularities
are also locally U(1)-invariant.
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• Codim 3 singularities are not
locally U(1)-invariant.
• If f : X→B, f̂ : X̂→B are
dual SL fibrations of mirror
C-Y 3-folds, the discriminants
∆, ∆̂ have different topology
near codim 3 singular fibres,
so ∆ 6= ∆̂.
This contradicts some state-
ments of the SYZ Conjecture.
I regard SYZ as primarily a
limiting statement about the
‘large complex structure limit’.
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