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8. Compact calibrated
k-folds in special
holonomy m-folds

Let (M, J, g) be a Calabi—Yau

m-fold with complex volume

form €2. Then Re 2 is a cal-
ibration on M. Its calibrated
submanifolds are called
special Lagrangian m-folds,
or SL m-folds for short.

What can we say about

compact SL m-folds in M7
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Let (M, J,g,2) be a Calabi—
Yau m-fold and N a compact
SL m-fold in M. Let My be
the moduli space of SL defor-
mations of N. We asKk:

1. Is M a manifold, and of
what dimension?

2. Does N persist under de-
formations of (J,g,$2)7

3. Can we compactify My
by adding a ‘boundary’ of sin-
gular SL m-folds? If so, what
are the singularities like?



T hese questions concern the
deformations of SL m-folds,
obstructions to their existence,
and their singularities.
Questions 1 and 2 are fairly
well understood, and we shall
discuss them in this lecture.
Question 3 iIs an active area
of research, and will be dis-
cussed next lecture.



8.1 Deformations of
compact SL m-folds
Robert McLean proved the
following result.
Theorem. Let (M, J, g,2) be
a Calabi—Yau m-fold, and N
a compact SL m-fold in M.
Then the moduli space My
of SL deformations of N
Is a smooth manifold of
dimension b1 (N), the first
Betti number of N.



Here is a sketch of the proof.
Let v — N be the normal bun-
dle of N in M. Then J iden-
tifies v = TN and g identifies
TN =T*N. Sov=T*N. We
can identify a small tubular
neighbourhood 1T of N in M
with a neighbourhood of the
zero section in v, identifying
w on M with the symplectic
structure on T*N.

Let 7 :T'— N be the obvious
projection.



Then graphs of small 1-forms
a on N are identified with sub-
manifolds N/ in T C M close
to N. Which a correspond to
SL m-folds N'?

Well, N’ is special Lagrangian
T w\N/ =Im Q‘N’ = 0.

Now x| N7 : N' — N is a diffeo-
morphism, so this holds iff
W*(W‘N/> — W*(Im QlN’) = 0.
We regard m«(w|pr) and
m+(Im €| 5v) @s functions of a.
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Calculation shows that
w*(w\N/) — da and

m+(Im Q| pv) = F(e, Va),
where F' I1s nonlinear. Thus,
My is locally the set of small
1-forms o« on N with da=0
and F'(a,Va) = 0. Now
F(a,Va) ~ d(x«a) for small «.
So My is locally approximately
the set of 1-forms a with da=
d(xa) =0. But by Hodge the-
ory this is the de Rham group
HI(N,R), of dimension b1 (N).
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8.2 Natural coordinates
on My
Let N be a compact SL m-
fold in a Calabi—Yau m-fold
(M, J,g,2). Let My be the
moduli space of SL
deformations of N. Then
dim My = bl(N) =™ 1(NV).
T here are natural local iden-
tifications &, W between My
and H1(N,R), H"1(N,R).
Effectively these are natural
coordinate systems on Myy.
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Let U C M be connected
and simply-connected with
N € U. For each N' e U,
choose ~ : [0,1] — U with
v(0) = N and ~(1) = N’.

Lift to T : N x[0,1] — M
with T(N x {t}) = ~(t). As
wlyy = 0 for all t € [0,1] we
have M (w) = oy A dt, for a4 a
closed 1-form on N. Define
®(N') = [[5er dt] in HL(N,R).
It Is independent of choices.
We define W in the same way.
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8.3 Obstructions to
existence of SL m-folds
Let M be a C-Y m-fold. Then
an m-fold N in M is SL iff
CU|N =Im Q‘N — 0. This holds
only if [wly] = [ImMQ|y] = 0
in H*(N,R). So we have:
Lemma. Let M be a Calabi—
Yau m-fold, and N a com-
pact m-fold in M. Then N is
isotopic to an SL m-fold N’
in M only if [w|y] = 0 and
Im2|n] =0 in H*(N,R).
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The Lemma Is a necessary
condition for a C-Y m-fold to
have an SL m-fold in a given
deformation class. Locally, it
IS also sufficient.

Theorem. Let M; it € (—¢,e¢)
be a family of Calabi—Yau m-
folds, and Ng a compact SL
m-fold of Mg. If [wt‘NO] =
[Im Qt\NO] = 0 in H*(Ng,R)
for all t, then N extends to
a family Ny :t € (=6,0) of SL
m-~folds in M, for O < ¢ < e.
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8.4 Coassociative 4-folds
Let (M, g) have holonomy G5.
Then M has a constant 3-
form ¢ and 4-form xop.

They are calibrations, whose
calibrated submanifolds are
called associative 3-folds and
coassociative 4-folds. A 4-
fold N in M is coassociative
iff |y = 0. Also, if N is coas-
sociative then the normal bun-
dle v is isomorphic to A2 T*N,
the self-dual 2-forms.
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Using this, McLean proved:
Theorem. Let (M,qg) be a
7-manifold with holonomy
Go, and N a compact coasso-
ciative 4-fold in M. Then the
moduli space My of coasso-
ciative deformations of N s
a smooth manifold of dimen-
sion b3 2 (N).

Roughly, nearby coassociative
4-folds correspond to small
closed forms in /\—I— *N, which
are H_|_(N, R) by Hodge theory.
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8.5 Associative 3-folds and

Cayley 4-folds
Associative 3-folds in
7-manifolds with holonomy G,
and Cayley 4-folds in 8-manifolds
with holonomy Spin(7), can-
not be defined by the van-
iIshing of closed forms. This
gives their deformation the-
ory a different character. Here
IS how the theories work.
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Let NV be a compact asso-
ciative 3-fold or Cayley 4-fold
InN M. Then there are vector
bundles E, F — N and a first
order elliptic operator

The kernel Ker Dy Is the set
of infinitesimal deformations
of N. The cokernel Coker Dy
IS the obstruction space. The
index of Dy is ind(Dpy) =
dim Ker Dy — dim Coker Dyy;.
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In the associative case
ind(Dp) = 0, and in the
Cayley case ind(Dy) =

r(N) = 5x(N) = 5[N] - [N],
where 7 Is the signature and
x the Euler characteristic.
Generically Coker Dy = 0, and
then My is locally a manifold
with dimension ind(Dy). If
Coker Dy #= 0, then M may
be singular, or have a
different dimension.
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Note that the special
Lagrangian and coassociative
cases are unusual: there are
no obstructions, and the mod-
uli space is always a manifold
of given dimension, without
genericity assumptions.

This is a minor mathematical

miracle.
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9. Almost Calabi-Yau
m-folds
An almost Calabi-Yau m-fold
(M, J,g,2) is a compact
complex m-fold (M, J) with a
Kahler metric g with Kahler
form w, and a nonvanishing
holomorphic(m,0)-form €2, the
holomorphic volume form.
It is a Calabi-Yau m-fold if
QI = 2™. Then VQ = 0
and g is Ricci-flat.

19



9.1 Special Lagrangian
m-folds

Let (M, J,g,2) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M.
We call N special Lagrangian
(SL) if w|y =Im Q| = 0.

If (M, J,g,2) is a Calabi-Yau
m-fold then Re 2 is a calibra-
tion on (M,g), and N is an
SL m-fold iff it is calibrated
with respect to Re (2.
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9.2 Singular SL m-folds
General singularities of SL m-
folds may be very bad, and
difficult to study. Would like
a class of singular SL m-folds
with nice, well-behaved sin-
gularities to study Iin depth.
Would like these to occur of-
ten in real life, i.e. of finite
codimension in the space of
all SL m-folds. SL m-folds
with isolated conical singular-
ities (ICS) are such a class.
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Let NV be an SL m-fold in M
whose only singular points are
x1,...,Tn. Near x; we can iden-
tifty M with C™ = T, M, and
N near x; approximates an SL
m-~fold in C™ with singularity
at 0. We say N has isolated
conical singularities If near x;
it converges with order O(r#i)
for u; > 1 to an SL cone Cj in
C™ nonsingular except at O.
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SL m-folds with ICS have a
rich theory.

e Examples. Many examples
of SL cones C; in C" have
been constructed. Rudiments
of classification for m = 3.

e Regularity near zq1,...,xn.
Let + : N — M be the inclu-
sion. If V¥, converges to C,
near z; with order O(rti—k)
for Kk = 0,1 then it does so
for all £k > 0.
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e Deformation theory. The
moduli space M of defor-
mations of NV is locally home-
omorphic to ®~1(0), for
smooth ® : 7 — O and fin.
dim. vector spaces 7,0 with
7 the image of HL(N',R) in
HI(N' R), N=N\{z1,...,zn},
and dimO = X_;s-ind(C;).
Here s-ind(C;) € N is the sta-
bility index, the obstructions
from C;. If s-ind(C;) = 0O for
all = then M is smooth.
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e Desingularization. Let C
be an SL cone in C™, non-
singular except at 0. A non-
singular SL m-fold L in C" is
Asymptotically Conical (AC)
C' if L converges to C at infin-
ity with order O(r?) for A < 1.
Then tL converges to C as
t — O‘l—' ThUS, AC SL m-
folds model how families of
nonsingular SL m-folds develop
singularities modelled on C'.
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If N is an SL m-fold with ICS
at x1,...,xn and cones C}, and
Lq,..., Ly, are AC SL m-folds
in C'" with cones Cj;, then un-
der cohomological conditions
we can construct a family of
compact nonsingular SL m-
folds N; for small ¢ > O con-
verging to N ast — 0O, by glu-
ing tL; into N at x;, all s.
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e Generic codimension of
singularities. Given an SL
m~-fold N with ICS in M, we
have moduli spaces My of
deformations of N, and Mg
of desingularizations N of N
made by gluing in Lq,...,Ln.
Here My is part of the bound-
ary of Mg. If M is a generic
almost C-Y m-fold then My,
Mg are smooth with known

dimension.
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Call dim M g—dim My the in-
dex of the singularities of V.
It is the sum over ¢ of s-ind(C;)
and topological terms from L.
In a dim k family B of SL m-
folds in a generic almost C-
Y m-fold M, only singulari-
ties with index < k£ occur. For
SYZ in generic M we need to
know about singularities with
index 1,2,3 (and 4).
Problem: classify singulari-
ties with small index.
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10. The SYZ Conjecture
and SL singularities
10.1 String Theory and
Mirror Symmetry
String Theory is a branch
of physics which models
particles as 1-dimensional
objects — ‘strings’ —
propagating In a space-time
M. String theorists aim to
quantize the string’'s motion.
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T his string qguantum theory is
very complicated, and poorly
understood. For it to work,
the universe must (supposedly)
be 10-dimensional.

String T heorists say that our
universe looks locally like M =
R%x X, where R% is MinkowskKi
space, and X is a compact
Riemannian 6-manifold with
radius of order 10—33cm, the
Planck length.
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By supersymmetry, X has to
be a Calabi—Yau 3-fold. String
T heorists believe that each
Calabi—Yau 3-fold X has a
quantization, a Super Confor-
mal Field Theory (SCFT).
Invariants of X such as the
Dolbeault groups HP9(X) and
the number of holomorphic
curves in X translate to
properties of the SCFT.
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Two different Calabi—Yau 3-
folds X, X may have the same
SCFT. Then the invariants of
X and X are related via prop-
erties of the SCFT. There is
an automorphism of SCFT's
which does not correspond to
a classical automorphism of
Calabi—Yau 3-folds. We say
that X, X are mirror Calabi—
Yau 3-folds if their SCFT's
are related by this
automorphism.
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One can argue using String
Theory that H11(X) 2 H%1(X)
and H21(X) =2 HL1(X). The
mirror transform exchanges
even- and odd-dimensional
cohomology. This is surpris-
iIng! The Mirror Transform
exchanges things to do with
the complex structure of X,
such as numbers of holomor-
phic ‘CPl's in X, with things
to do with the symplectic struc-
ture of X, and vice versa.
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Because the quantization pro-
cess is poorly understood and
not at all rigorous

— It involves non-convergent
path-integrals over horrible
Infinite-dimensional spaces —
String T heory generates only
conjectures about Mirror Sym-
metry, not proofs. However,
many of these conjectures have
been verified in particular cases.
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10.2 Interpretations:

Kontsevich and SYZ
T here are two conjectural the-
ories which explain Mirror Sym-
metry fairly mathematically.
The first was due to Kontse-
vich in 1994. It says that for
mirror Calabi—Yau 3-folds X
and X, the derived category
of coherent sheaves on X is
equivalent to the derived cat-
egory of the Fukaya category
of X, and vice versa.
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T he second was due to Stro-
minger, Yau and Zaslow in 1996.
The SYZ Conjecture. Let
X, X be mirror Calabi—Yau
3-folds. There is a compact
3-manifold B and continuous,
surjective f . X — B and

f: X — B, such that

(i) For b in a dense By C B,
the fibres f—1(b), F~1(b) are
dual SL 3-tori T3 in X, X.

(ii) Forb¢ By, f~4(b) and f—1(b)
are singular SL 3-folds in X, X.
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We call f, f special Lagrangian
fibrations, and A = B\ Bg the
discriminant.

In (i), the nonsingular fibres
T, T of f,f are supposed to
be dual tori. Topologically,
this means an isomorphism
HYT,7) =2 H{(T,Z). But the
metrics on T,7T should really
be dual as well. This only
makes sense in the ‘large com-
plex structure limit’, when the
fibres are small and nearly flat.
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10.3 U(1)-invariant
SL 3-folds

Let U(1) act on C3 by
(21,22, 23) — (€W21,e7W2p, 23).
Let N be a U(1)-invariant SL
3-fold. Then locally we can
write N in the form
{(21, 22, 23) 1 |71]%—|22|* =24,

z1z2=v(z,y)+1y,

zz=z + iu(z,y), z,y € R,
where u,v : R?2 — R satisfy

2 2 2\1/2
vy =2 +y“+a°) / Uy

(%)
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Since uy = vy, there exists

a potential function f with
u= fy and v = fz. The

2nd equation of (x) becomes

fxx+2(f§‘|‘y2‘|‘a2)1/2fyy = 0.

(+)
This Is a second-order quasi-
linear equation. When a = 0O
It I1s locally uniformly elliptic.
When a=0 it is non-uniformly
elliptic, except at singular
points fr =y = 0.
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Theorem A. Let S beacom-
pact domain in R? satisfying
some convexity conditions.
Let ¢ € C39(DS).

If a = 0 there exists a unique
f e C39%(9) satisfying (4) with
flag = ¢. If a = 0 there ex-
ists a unique f € C1(S) sat-
isfying (4+) with weak second
derivatives, with flgg = ¢.
Also f depends continuously
in C1(S) on a, ¢.

40



Theorem A shows that the
Dirichlet problem for (4) is
uniquely solvable in certain con-
vex domains. The induced
solutions w,v € CO(S) of (x)
yvield U(1)-invariant SL 3-folds
in C3 satisfying certain bound-
ary conditions over 05. When
a #= 0 these SL 3-folds are
nonsingular, when a = 0 they
are singular when v =y = 0.
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Theorem B.

Let &, &' € C32(HS), let aeR
and let f, f/ € C32(S) or C1(S)
be the solutions of (4) from
Theorem A with

flos = &, flas = ¢'. Let

u=fy, v=fz, fu,’:fé, v'=f].
Suppose ¢ — ¢’ has k+1 local
maxima and k+1 local minima
on 0S. Then (u,v) — (¢, ")
has Nno more than k zeroes in
S°, counted with multiplicity.
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Theorem C.

Let u,v € CY(S) be a singular
solution of () with a = 0,
e.g. from Theorem A. Then
either u(z,y) = u(x, —y) and
v(xz,y) = —v(x,—y), SO that
u, v IS singular on the x-axis,
or the singularities (z,0) of
w,v in S° are jsolated, with a
multiplicity n>0. Multiplicity
n singularities occur in codi-
mension n of boundary data.
All multiplicities occur.
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T heorem D.

Let U C R3 be open, S as
above, and & : U — C3%(959)
continuous such that if
(a,b,c) # (a,b',c) e U

then ®(a,b,c) — ®(a, b, )
has 1 local maximum

and 1 local minimum.

For a = (a,b,c) € U, let

fo € C1(S) be the solution
of (4) from Theorem A
with falps = P(a).
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Set uq = (fa)y and va = (fa)z-
Let No be the SL 3-fold
{(21, 22, 23) 1 |71]%—|22|* =24,
2120 =va(x,y)+1y,
zz=z+iua(z,y), (z,y)€S°}.
Then there exists an open
V c €3 and a continuous map
F:V—U with F~1(a)=N,.
This is a U(1)-invariant
special Lagrangian fibration.
It can include singular fibres,
of every multiplicity n > 0.
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Example. Define f : C3 —

R x C by f(z1,22,23) = (a,b),
where 2a = |z1|2 — |25]2 and

23, 21 =22=0,
b=1{234+2122/|21|,a>0, z1 #0,
\Z3——5152/ zol,a < 0.

Then f is a piecewise-smooth
SL fibration of C3. It is not
smooth on |z1| = |z2].

The fibres f~1(a,b) are T=-
cones when a = 0, and non-
singular S x R? when a # 0.

46



10.4 Conclusions

Using these SL fibrations as
local models, if X Is a generic
ACY 3-fold and f : X — B an
SL fibration, I predict:

e f Is only piecewise smooth.
e All fibres have finitely many
singular points.

o N\ iscodim 1 in B. Generic
singularities are modelled on
the example above.

e Some codim 2 singularities
are also locally U(1)-invariant.
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e Codim 3 singularities are not
locally U(1)-invariant.

o If f: X—B, f: X—B are
dual SL fibrations of mirror
C-Y 3-folds, the discriminants
A, A have different topology
near codim 3 singular fibres,
so A #= A.

T his contradicts some state-
ments of the SY~Z Conjecture.
I regard SYZ as primarily a
limiting statement about the
‘large complex structure limit’.
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