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Introduction

1. Introduction

These lectures concern new classes of geometric objects | call
d-manifolds and d-orbifolds — ‘derived’ smooth manifolds, in the
sense of Derived Algebraic Geometry. Some properties:

@ D-manifolds form a strict 2-category dMan. That is, we have
objects X, the d-manifolds, 1-morphisms f,g : X — Y, the
smooth maps, and also 2-morphisms n : f = g.

@ Smooth manifolds embed into d-manifolds as a full
(2)-subcategory. So, d-manifolds generalize manifolds.

@ There are also 2-categories dMan®, dMan°® of d-manifolds
with boundary and with corners, and orbifold versions
dOrb, dOrb®, dOrb® of these, d-orbifolds.

@ Much of differential geometry extends nicely to d-manifolds:
submersions, immersions, orientations, submanifolds,
transverse fibre products, cotangent bundles, . ...
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@ Almost any moduli space used in any enumerative invariant
problem over R or C has a d-manifold or d-orbifold structure,
natural up to equivalence. There are truncation functors to
d-manifolds and d-orbifolds from structures currently used —
Kuranishi spaces, polyfolds, C-schemes or Deligne-Mumford
C-stacks with obstruction theories.

Combining these truncation functors with known results gives
d-manifold /d-orbifold structures on many moduli spaces.

@ | will also outline an approach to prove existence of
d-manifold /d-orbifold structures on moduli spaces directly,
using ‘representable 2-functors'.

@ Virtual classes/cycles/chains can be constructed for compact
oriented d-manifolds and d-orbifolds.

So, d-manifolds and d-orbifolds provide a unified framework for
studying enumerative invariants and moduli spaces. They also have
other applications, and are interesting for their own sake.
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In the rest of this talk | want to discuss four different ‘big ideas’,
which are the subjects of Lectures 2-5:

2 D-manifolds and d-orbifolds: what are they, why are they a
2-category, how are they related to other classes of spaces
(e.g. Kuranishi spaces and polyfolds)?

3 A new approach to moduli problems using ‘representable
2-functors’ to define a d-orbifold structure on a moduli space.

4 ‘Stratified manifolds’, a new analytic tool for dealing with
‘bubbling’, ‘neck stretching’ and ‘nodes’ for J-holomorphic
curves, and compactification of moduli spaces in general.

5 ‘D-orbifold (co)homology’, new (co)homology theories
dH.(Y,R), dH*(Y,R) of a manifold or orbifold Y, isomorphic
to ordinary (co)homology, but in which the (co)chains are
1-morphisms f : X — Y for X a compact, oriented d-orbifold
with corners, plus extra data. Forming virtual classes for
moduli spaces in d-orbifold (co)homology is almost trivial.
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2. D-manifolds and d-orbifolds
2.1 Why do we need ‘derived geometry'?

In very general terms, we want to solve the following:

Problem

Find a (hopefully canonical) geometric structure G on moduli
spaces of J-holomorphic curves M, such that (compact, oriented)
spaces M with structure G can be ‘counted’ in Z,Q or some
(co)homology theory, so that we can do Gromov-Witten invariants,
Lagrangian Floer cohomology, Symplectic Field Theory, . ..

v

| claim that the structure G must be ‘derived’ in the sense of
Derived Algebraic Geometry of Lurie, Toén—Vezzosi, ..., and that
a basic understanding of derived geometry really helps here.
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Derived schemes, deformations, and obstructions

Consider a moduli space M of some objects ¥ (e.g. J-holomorphic
curves). Linearizing the deformation theory at ¥ € M, we have
vector spaces of deformations Z5 (typically the kernel of an
operator Ly) and obstructions Oy (typically the cokernel of Ly).
If we model M as a classical space (e.g. a scheme or stack), then
M remembers Y5 as the tangent space Ty M, but forgets Os.

If we model M as a derived space (e.g. a derived scheme or
stack), then M remembers both Z5, Os, as Z5 = H(Trs),
Os = HY(T |x) for Tpq the tangent complex of M.

Derived geometry was introduced exactly to give geometric
structures which remember all the deformation theory.

To ‘count’ moduli spaces M of J-holomorphic curves correctly, the
geometric structure G on M must encode the obstructions Oy as
well as the deformations Zs. So G must be ‘derived’.
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Why do we need higher categories?

Suppose we have a category C (e.g. a category of complexes), and
we want to invert (localize) some class of morphisms W in C called
‘weak equivalences’ (e.g. quasi-isomorphisms) which are not
isomorphisms, to form a new ‘derived’ category C. A fundamental
insight in derived geometry is that C should be a higher category
(usually an co-category), not an ordinary category.

Derived objects (e.g. derived schemes) always form higher
categories. You can truncate to an ordinary category, but you lose
too much information (e.g. the universal property for fibre products
of derived objects only makes sense in the higher category).
D-manifolds and d-orbifolds form 2-categories, the simplest kind of
higher category.
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2.2. Other classes of spaces.
Kuranishi spaces versus d-orbifolds

A Kuranishi structure on a space M (Fukaya—Oh—Ohta—Ono)
involves Kuranishi neighbourhoods (V) Ep, sp) and (non-invertible)
coordinate changes (foq, foq) : (Vp, Ep, 5p) = (Va, Eq, Sq).

Think of the Kuranishi neighbourhoods ( V), Ep, sp) as the objects
in a category C, and the coordinate changes (fpq, lA‘pq) as the weak
equivalences VV we want to invert. Derived geometry says that to
do the job properly, we must use higher categories, but FOOO do
not. This is the source of some of the problems in the theory.

| regard d-orbifolds as the ‘correct’ definition of Kuranishi spaces,
what Kuranishi spaces should have been. It should be possible to
give a FOOO-style definition of Kuranishi spaces involving
2-categories, and get a 2-category equivalent to d-orbifolds dOrb.
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Polyfolds, and schemes with obstruction theory

Polyfolds (Hofer—Wysocki—Zehnder) do not use higher categories,
so far as | know. They get away with this because they never
localize. Therefore a polyfold comprises a huge amount of
information, the whole of the functional-analytic moduli problem,
as nothing is forgotten by localizing. This works, but | feel
polyfolds are unwieldy, and unsatisfying as geometric spaces.

Schemes M with obstruction theory ¢ : £* — Lo in algebraic
geometry (Behrend—Fantechi) work very nicely — much more so
than Kuranishi spaces or polyfolds in the (rather more difficult)
differential-geometric context. Note that they are ‘derived’ objects
(as | said M must be), since £° is an object in the derived
category DP coh(M), and should be understood as the cotangent
complex Laq of an underlying derived scheme M.
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2.3. D-manifolds — sketch of the definition

Algebraic geometry (based on algebra and polynomials) has
excellent tools for studying singular spaces — the theory of schemes.
In contrast, conventional differential geometry (based on smooth
real functions and calculus) deals well with nonsingular spaces —
manifolds — but poorly with singular spaces.
There is a little-known theory of schemes in differential geometry,
C°°-schemes, going back to Lawvere, Dubuc, Moerdijk and Reyes,
. in synthetic differential geometry in the 1960s-1980s.
C°°-schemes are essentially algebraic objects, on which smooth
real functions and calculus make sense.
Our d-manifolds are a special kind of derived C°°-scheme,
combining C*°-algebraic geometry and derived geometry.
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Let X be a manifold, and write C*°(X) for the smooth functions
c: X—R. Then C*°(X) is an R-algebra: we can add smooth
functions (¢, d) — ¢ + d, and multiply them (c, d) — cd, and
multiply by A € R.

But there are many more operations on C°°(X) than this, e.g. if

c : X = R is smooth then exp(c) : X — R is smooth, giving

exp : C®(X) — C>°(X), which is algebraically independent of
addition and multiplication.

Let £ : R” — R be smooth. Define ®¢: C*°(X)" — C*(X) by
®r(cry.. . en)(x) = fci(x), ..., cn(x)) for all x € X. Then
addition comes from f : R? - R, f: (x,y) — x + y, multiplication
from (x,y) — xy, etc. This huge collection of algebraic operations
®r make C°°(X) into an algebraic object called a C*°-ring.
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Definition

A C®°-ring is a set € together with n-fold operations & : €" — €
for all smooth maps f : R” — R, n > 0, satisfying:

let m,n>0,and ;,: R" - Rfori=1,....mand g :R" - R
be smooth functions. Define h: R" — R by

h(xi,...,xn) =g(fA(x1, s %n), s fm(x1. .., Xn)),

for (x1,...,xn) € R". Then for all ¢1,...,c, in € we have
Pp(ct, ... cn) = Pg(Pr(ct, ... cn)s.o o, g (C1y- -5 Cn)).

Also defining 7 : (x1,...,Xxn) — xj for j =1,..., n we have

b i (c,--56n) = g

A morphism of C°°-ringsis ¢ : € — 2 with
Gro" = ¢po®s: " = D for all smooth f: R” — R. Write
C°°Rings for the category of C°°-rings.
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C*°-algebraic geometry

We can now develop the whole machinery of scheme theory and
stack theory in algebraic geometry, replacing rings or algebras by
C°-rings throughout — see my arXiv:1104.4951, arXiv:1001.0023.
This gives a category of C*°-schemes C*Sch and a 2-category of
C>°-stacks C°°Sta, which contain manifolds Man C C>Sch and
orbifolds Orb C C°°Sta as full (2-)subcategories.

We also define (quasi)coherent sheaves on C*-schemes and
C°°-stacks, generalizing vector bundles on manifolds and orbifolds.
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Derived C*°-algebraic geometry

Derived smooth manifolds (or orbifolds) should be defined as
special examples of suitable higher categories of derived
C°°-schemes or derived C°°-stacks. This was the approach taken
by David Spivak (arXiv:0810.5175, Duke Math. J.), a student of
Jacob Lurie, who defined an oco-category of simplicial-C*°-ringed
spaces, with an oo-subcategory of ‘derived manifolds’.

My approach is roughly a simplified 2-category truncation of
Spivak’s (for the precise relation, see Borisov arXiv:1212.1153).

| define 2-categories of d-spaces dSpa and d-stacks dSta
containing d-manifolds dMan C dSpa and d-orbifolds

dOrb C dSta as full 2-subcategories.
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What is a d-space?

A derived scheme (dg-scheme) X is roughly a topological space X
equipped with a sheaf (or homotopy sheaf) Ox of dg-rings, with
points of X corresponding to prime ideals of the dg-rings.
Similarly, a derived C®°-scheme X should roughly be a topological
space X equipped with a (homotopy?) sheaf Ox of dg C*°-rings
(or possibly simplicial C®-rings), with points of X corresponding
to ideals of the dg-rings with residue field R.

A d-space X is a topological space X with a sheaf (not a homotopy
sheaf) Ox of dg-C>°-rings €°* of a special kind: they are two-step
dg-C>-rings €1 -%; €0 such that €1 - d[¢ 1] = 0, which implies
that d[¢€ 1] is a square zero ideal in the (ordinary) C*-ring ¢°, and
¢! is a module over the ‘classical’ C*®-ring H°(¢*) = ¢%/d[¢™1].
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What i1s a d-manifold?

We have inclusions of (2-)categories Man C C>~Sch C dSpa, so
manifolds are examples of d-spaces. A d-manifold X of virtual
dimension n € 7 is a d-space X whose topological space X is
Hausdorff and second countable, and such that X is covered by
open d-subspaces Y C X with equivalences Y ~ U x4 w , V,
where U, V', W are manifolds with dim U 4+ dim V — dim W = n,
and g:U— W, h: V — W are smooth maps, and U xgw  V is
the fibre product in the 2-category dSpa. (The 2-category
structure is essential to define the fibre product here.)
Alternatively, we can write the local models as Y ~ V' xo g V,
where V is a manifold, E — V a vector bundle, s : V — E a
smooth section, and n = dim V —rank E. Then (V,E,s) is a
Kuranishi neighbourhood on X (compare with Kuranishi spaces).
We call such V' xq g s V affine d-manifolds.
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3. D-orbifolds as representable 2-functors, moduli spaces

Recall the Grothendieck approach to moduli spaces in algebraic
geometry, using moduli functors. Write Sch¢ for the category of
C-schemes, and Sch‘?‘cff for the subcategory of affine C-schemes.
Any C-scheme X defines a functor Hom(—, X) : Schg® — Sets
mapping each C-scheme S to the set Hom(S, X). By the Yoneda
Lemma, the C-scheme X is determined up to isomorphism by the
functor Hom(—, X) up to natural isomorphism. This still holds if
we restrict to Sch%ﬁ. Thus, given a functor F : (Sch‘ﬁ'cff)°p — Sets,
we can ask if there exists a C-scheme X (necessarily unique up to
canonical isomorphism) with F = Hom(—, X). If so, we call F a
representable functor. More generally, Artin C-stacks are defined
as a class of functors F : (Sch2)°P — Groupoids.
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Grothendieck’'s moduli schemes

Suppose we have an algebro-geometric moduli problem (e.g.
vector bundles on a smooth projective C-scheme Y') for which we
want to form a moduli scheme. Grothendieck tells us that we
should define a moduli functor F : (Scha®)°P _; Sets, such that
for each affine C-scheme S, F(S) is the set of isomorphism classes
of families of the relevant objects over S (e.g. vector bundles over
Y x S). Then we should try to prove F is a representable functor,
using some criteria for representability. If it is, F = Hom(—, M),
where M is the (fine) moduli scheme.

To form a moduli stack, we define F : (Sch?‘cff)OID — Groupoids, so
that for each affine C-scheme S, F(S) is the category of families
of objects over S, with morphisms isomorphisms of families, and
try to show F satisfies the criteria to be an Artin stack.
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D-orbifolds as representable 2-functors

D-orbifolds dOrb are a 2-category with all 2-morphisms invertible.
Thus, if S, X € dOrb then Hom(S, X) is a groupoid, and

Hom(—, X) : dOrb°? — Groupoids is a 2-functor, which
determines X up to equivalence in dOrb. This is still true if we
restrict to affine d-manifolds dMan?f c dOrb. Thus, we can
consider 2-functors F : (dMan?T)°P — Groupoids, and ask
whether there exists a d-orbifold X (unique up to equivalence) with
F ~ Hom(—, X). If so, we call F a representable 2-functor.

| expect there are nice criteria for when F is representable:

(A) F satisfies a sheaf-type condition;

(B) the ‘coarse topological space’ M = F(point)/isos is Hausdorff
and second countable;

(C) F admits a ‘Kuranishi neighbourhood’ of dimension n € Z
near each x € M, a local model with a universal property.
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Moduli 2-functors in differential geometry

Suppose we are given a moduli problem in differential geometry
(e.g. J-holomorphic curves in a symplectic manifold) and we want
to form a moduli space M as a d-orbifold. | propose that we
should define a moduli 2-functor F : (dMan?®%)°P — Groupoids,
such that for each affine d-manifold S, F(S) is the category of
families of the relevant objects over S. Then we should try to
prove F satisfies (A)—(C), and so is represented by a d-orbifold M;
here (A),(B) will usually be easy, and (C) the difficult part.

To define F, we need a good notion of ‘families of J-holomorphic
curves over a base S, an affine d-manifold’. | will explain a short,
natural definition for F for J-holomorphic curves in Lecture 3.
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Some remarks:

@ Current definitions of differential-geometric moduli spaces
(e.g. Kuranishi spaces, polyfolds) are generally long,
complicated ad hoc constructions, with no obvious naturality.
In contrast, if we allow differential geometry over d-manifolds,
my approach gives you a short, natural definition of the moduli
functor F, followed by a long proof that F is representable.
The effort moves from a construction to a theorem.

@ The definition of F involves only finite-dimensional families of
smooth objects, with no analysis, Banach spaces, etc. (But
the proof of (C) will involve analysis and Banach spaces.)
This enables us to sidestep some analytic problems, e.g.
non-smoothness of action of diffeomorphisms on Banach
spaces of maps (cf. sc-smoothness in polyfold theory).
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4. ‘Stratified manifolds’, and curves with nodes

In symplectic geometry, one considers moduli spaces M of
J-holomorphic curves u: X — S, for (S,w) a symplectic manifold
with almost complex structure J. For counting problems
(Gromov—Witten, etc.) it is essential that M be compact. But if
we consider only nonsingular Riemann surfaces 2., we generally get
noncompact M. To get compactified moduli spaces M, we must
include Riemann surfaces ¥ with singularities (nodes).

Two closely related problems are moduli spaces of J-holomorphic

curves with ends in Symplectic Field Theory including curves which
'stretch’ along an infinite cylinder, and (simpler) moduli spaces of
gradient flow lines in Morse homology, including ‘broken flow lines’'.
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Modelling such moduli spaces M analytically near ¥ € M with
nodes is rather messy, and apparently not smooth: the obvious
constructions yield Kuranishi neighbourhoods (V, E,s) on M in
which the section s : V — E is not smooth normal to the nodal
stratum V04 C V/, but only continuous. (Curiously, the algebraic
geometry version does not suffer from this problem.) Non-smooth
sections s : V — E would be bad in our C*°-geometry approach.

In the polyfold picture, one deals with this using a gluing profile :
basically, one changes the smooth structure on V along V| 4e in
the normal directions, to get a new manifold V/ with the same
topological space as V/, such that s is smooth w.r.t. the smooth
structure on V. Roughly, V = V X r2,[0,00),¢0 [0, 00), Where

r:V — [0,00) is the distance from Vj 4, and

¢ 1 [0,00) = [0,00) is p(0) =0, p(x) = e~/* x> 0.
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In the ‘representable 2-functor’ approach of §3, | expect this
problem comes up as follows: one can define a moduli functor

F : dMan?® — Groupoids for M, including curves with nodes, in
a straightforward way. But F may not be representable near
singular curves ¥ in M. To deal with this, one should modify F
using a gluing profile ¢ to get a new, representable functor F.

However, | wish to propose an alternative approach | believe is
analytically more natural; my ideas here are still at an early stage.

| want to define a new category ManSt of ‘stratified manifolds’,
which are roughly manifolds V' with designated ‘strata’ V, 4 C V
(e.g. the boundary of V) such that the smooth structure on V
along Viode In the normal directions is exotic, nonstandard; so V' is
not actually a conventional smooth manifold near V, ge.
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These stratified manifolds should be included in d-manifolds and
d-orbifolds to give 2-categories dMan®t, dOrbst. A choice of gluing
profile ¢ should induce ‘smoothing functors’ from Man®t, dMan*t,
dOrbst to Man¢, dMan®, dOrb°.

| hope that this class of analytic moduli problems can be more
naturally modelled using stratified manifolds, yielding Kuranishi
neighbourhoods (V/, E, s) for M in which V is a stratified
manifold, with strata at the points representing nodal curves, and
canonical moduli functors which are representable in dOrbSt,
though not necessarily in dOrb®.

There appear to be connections with the work of Richard Melrose
on analysis on manifolds with boundary and corners.

For more details, see Lecture 4.
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5. D-orbifold (co)homology, and virtual cycles

Note: you can find a previous version of this project using
Kuranishi spaces instead of d-orbifolds at arXiv:0710.5634
(survey), and arXiv:0707.3572. These papers should not be
trusted, as the Kuranishi spaces material is dodgy, but they do
show the basic ideas.

Once we have given moduli spaces of J-holomorphic curves M the
structure of d-orbifolds (or whatever), to do Gromov-Witten
invariants, Lagrangian Floer cohomology, Symplectic Field Theory,
..., we need to associate a virtual class (or virtual cycle, or virtual
chain) to M, in some (co)homology theory. That is, we need a
bridge between moduli spaces and homological algebra.
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In [FOOO], this is done by perturbing the Kuranishi spaces using
multisections to get a (Q-weighted, non-Hausdorff) manifold,
triangulating this by simplices to get a chain in singular homology.
This process is acutely painful, because singular homology does not
play at all nicely with Kuranishi spaces, and much of the algebraic
complexity of [FOOOQ] is due to the problems this causes —
especially, perturbing Kuranishi spaces to transverse.

| propose to define new (co)homology theories dH.(Y, R),
dH*(Y, R) of a manifold or orbifold Y, isomorphic to ordinary
(co)homology, but in which the (co)chains are 1-morphisms

f: X —= Y for X a compact, oriented d-orbifold with corners, plus
extra data. Forming virtual classes for moduli spaces in d-orbifold
(co)homology is almost trivial, there is no need to perturb; the
homological algebra in [FOOO] can be drastically simplified.
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D-orbifold homology

Let Y be a manifold or orbifold, and R a Q-algebra. We define a
complex of R-modules (dC*(Y, R);a), whose homology groups
dH.(Y, R) are the d-orbifold homology of Y. Chains in dCi(Y; R)
for k € 7 are R-linear combinations of equivalence classes [X, f, G],
where X is a compact, oriented d-orbifold with corners of dimension
k, f: X — Y is a 1-morphism in dMan€, and G is some extra
‘gauge-fixing data’ associated to X, for which there will be many
possible choices. If we did not include G then chains (X, f) might

have infinite automorphism groups, leading to bad behaviour.
The boundary operator 0 : dCi(Y; R) — dCx_1(Y; R) maps

0 : [X,f,G] — [8X,f0ix,G|ax}.

Note that 92X has an orientation-reversing involution
o : 0°X — 9%X. Using this we show that 9% = 0.
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Singular homology Hiing(Y; R) may be defined using

(CG™8(Y; R); 0), where C™8(Y; R) is spanned by smooth maps
f: Ay — Y, for Ay the standard k-simplex, thought of as a
manifold with corners.

We define an R-linear map F : C3™8(Y; R) — dCi(Y; R) by

sing

FIB o f s [Ax, F,Ga,],

sing
with G,, some standard choice of gauge-fixing data for Ay.
Then FI® 09 = 0o F | so that FI induces morphisms

sing sing’! sing

Fil o H"5(Y; R) — dHk(Y; R). | hope to show these are
isomorphisms. Proving this will involve perturbing d-orbifolds to

orbifolds or manifolds and triangulating by simplices — the messy
bits of [FOOO]. But we only have to do this once, not every time

we use the theory.
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