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Shifted symplectic geometry

1. Shifted symplectic geometry

Let K be an algebraically closed field of characteristic zero, e.g.

K = C. Work in the context of Toén and Vezzosi's theory of
Derived Algebraic Geometry. This gives co-categories of derived
K-schemes dSchyg and derived K-stacks dStg, including derived
Artin K-stacks.

Think of a derived K-scheme X as a geometric space which can be
covered by Zariski open sets Y C X with Y ~ Spec A® for

A® = (A*,d) a commutative differential graded algebra (cdga) over
K, in degrees < 0.

We require X to be locally finitely presented, that is, we can take
the A® to be finitely presented, a strong condition.

A derived K-scheme or K-stack X has a tangent complex Tx and
a dual cotangent complex ILLx, which are perfect complexes of
coherent sheaves on X, of rank the virtual dimension vdim X € Z.
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Shifted symplectic geometry

PTVV's shifted symplectic geometry

Pantev, Toén, Vaquié and Vezzosi (arXiv:1111.3209) defined a
version of symplectic geometry in the derived world.

Let X be a derived K-scheme or K-stack. The cotangent complex
ILx has exterior powers APILx. The de Rham differential

dgr : A\PLx — APT1Lyx is a morphism of complexes. Each APLy is
a complex, so has an internal differential

d : (APLx)* — (APLx)*t1. We have

d> =d?; =dodyg +dggrod = 0.

A p-form of degree k on X for k € Z is an element [w°] of
H*(APLx,d). A closed p-form of degree k on X is an element

[(wo,wl, .. )] c Hk (@io /\p+iLx[i], d+ ddR)-

There is a projection 7 : [(w%, w?,...)] — [w°] from closed p-forms
[(w®, w?,...)] of degree k to p-forms [wO] of degree k.
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Shifted symplectic geometry

Nondegenerate 2-forms and symplectic structures

Let [w?] be a 2-form of degree k on X. Then [w°] induces a
morphism w? : Tx — Lx[k], where Tx = LLy is the tangent
complex of X. We call [w°] nondegenerate if W0 : Tx — Lx[k] is a
quasi-isomorphism.

If X is a derived scheme then the complex LLx lives in degrees
(—00,0] and Tx in degrees [0,00). So w : Tx — Lx[k] can be a
quasi-isomorphism only if k < 0, and then Lx lives in degrees [k, 0]
and Tx in degrees [0, —k]. If k =0 then X is a smooth classical
K-scheme, and if k = —1 then X is quasi-smooth.

A closed 2-form w = [(w?,w!,...)] of degree k on X is called a
k-shifted symplectic structure if [w°] = m(w) is nondegenerate.
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Shifted symplectic geometry

Calabi—Yau moduli schemes and moduli stacks

PTVV prove that if Y is a Calabi—Yau m-fold over K and M is a
derived moduli scheme or stack of (complexes of) coherent sheaves
on Y, then M has a (2 — m)-shifted symplectic structure w.

This suggests applications — lots of interesting geometry concerns
Calabi—Yau moduli schemes, e.g. Donaldson—Thomas theory.

We can understand the associated nondegenerate 2-form [w?] in
terms of Serre duality. At a point [E] € M, we have

h(Taq)lig) = Ext'"H(E, E) and h'(Laq)|ig) = Ext'~/(E, E)*.
The Calabi-Yau condition gives Ext/(E, E) = Ext™/(E, E)*,
which corresponds to h"*H(Taq) (g = A1 (L2 — m]) g This
is the cohomology at [E] of the quasi-isomorphism

w0 TM — LM[Z — m]
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Shifted symplectic geometry

Lagrangians and Lagrangian intersections

Let (X,w) be a k-shifted symplectic derived scheme or stack.
Then Pantev et al. define a notion of Lagrangian L in (X,w),
which is a morphism i : L — X of derived schemes or stacks
together with a homotopy i*(w) ~ 0 satisfying a nondegeneracy
condition, implying that Ty ~ Iy /x[k — 1].

If L, M are Lagrangians in (X,w), then the fibre product L xx M
has a natural (k — 1)-shifted symplectic structure.

If (S,w) is a classical smooth symplectic scheme, then it is a
0-shifted symplectic derived scheme in the sense of PTVV, and if
L,M C S are classical smooth Lagrangian subschemes, then they
are Lagrangians in the sense of PTVV. Therefore the (derived)
Lagrangian intersection LN M = L xg M is a —1-shifted
symplectic derived scheme.
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A Darboux theorem for shifted symplectic schemes

2. A Darboux theorem for shifted symplectic schemes

Theorem 1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (X,w) be a k-shifted symplectic derived K-scheme for k < 0.
If k%2 mod 4, then each x € X admits a Zariski open
neighbourhood Y C X with Y ~ Spec A® for A* = (A*,d) an

explicit cdga generated by graded variables X; = yk+’ for

0<i<—k/2, and wly = [(«°,0,0,...)] Where ,yj have degree

f, and [#/2) -

w = Z Z —1 ddRyJ ddRXJ' o
Also the differential d in A' is given by Poisson bracket with a
Hamiltonian H in A of degree k + 1.
If k=2 mod 4, we have two statements, one étale local with w°
standard, and one Zariski local with the components of WO in the
degree k /2 variables depending on some invertible functions.

v

Ben-Bassat—Brav—Bussi—Joyce extend this to derived Artin K-stacks.
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A Darboux theorem for shifted symplectic schemes

Sketch of the proof of Theorem 1

Suppose (X, w) is a k-shifted symplectic derived K-scheme for

k <0, and x € X. Then Ly lives in degrees [k, 0]. We first show

that we can build Zariski open x € Y C X with Y ~ Spec A®, for

A* = (Dico Al d) a cdga over K with A? a smooth K-algebra,

and such that A* is freely generated over A% by graded variables
,yjk+’ in degrees —1, — . k. We take dim A° and the

number ofx ,yk+’ to be mmrmal at x.

Using theorems about periodic cyclic cohomology, we show that on
Y ~ Spec A®* we can write w|y = [(«?,0,0,...)], for w° a 2-form
of degree k with dw® = dgrw® = 0. Minimality at x implies W is
strictly nondegenerate near x, so we can change variables to write
0 =37 ;dary/*'dgrx;"". Finally, we show d in A® is a
symplectic vector field, which integrates to a Hamiltonian H.
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A Darboux theorem for shifted symplectic schemes

The case of —1-shifted symplectic derived schemes

When k = —1 the Hamiltonian H in Theorem 1 has degree 0.
Then Theorem 1 reduces to:

Corollary

Suppose (X,w) is a —1-shifted symplectic derived K-scheme.
Then (X,w) is Zariski locally equivalent to a derived critical locus
Crit(H : U — A'), for U a smooth classical K-scheme and

H: U — Al a regular function. Hence, the underlying classical
K-scheme X = to(X) is Zariski locally isomorphic to a classical
critical locus Crit(H : U — Al).

This implies that classical Calabi—Yau 3-fold moduli schemes are,
Zariski locally, critical loci of regular functions on smooth schemes.
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A Darboux theorem for shifted symplectic schemes

D-critical loci:
classical truncations of —1-shifted symplectic schemes

Theorem (Joyce arXiv:1304.4508)

Let X be a classical K-scheme. Then there exists a canonical
sheaf Sx of K-vector spaces on X, such that if R C X is Zariski
open and i : R — U is a closed embedding of R into a smooth
K-scheme U, and Ir,y C Oy is the ideal vanishing on i(R), then

O U
SX|R%Ker< v _d, )

i "Iruy-T*U

Also Sx splits naturally as Sx = SQ P Kx, where Kx is the sheaf
of locally constant functions X — K.
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A Darboux theorem for shifted symplectic schemes

The meaning of the sheaves Sx, Sy

If X = Crit(f : U — A!) then taking R = X, i =inclusion, we see
that f + I)2<,U is a section of Sx. Also f|yrea : X™*d — K is locally
constant, and if f|yrea = 0 then f + I)%’U is a section of Sy. Note
that f + Ix y = f|x in Ox = Oy/Ix.y. The theorem means that
f+ I)%,U makes sense intrinsically on X, without reference to the

embedding of X into U.

That is, if X = Crit(f : U — A!) then we can remember f up to

second order in the ideal /x ¢ as a piece of data on X, not on U.

Suppose X = Crit(f : U — Al) = Crit(g : V — Al) is written as
a critical locus in two different ways. Then f + I)%,U, g+ I)%’V are
sections of Sx, so we can ask whether f + I)2<,U =g+ /)2<,v- This
gives a way to compare isomorphic critical loci in different smooth
classical schemes.
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A Darboux theorem for shifted symplectic schemes

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical K-scheme X and
a global section s € H%(S%) such that X may be covered by
Zariski open R C X with an isomorphism

it R — Crit(f : U — Al) identifying s|g with f + lf%,U, for f a
regular function on a smooth K-scheme U.

\

That is, a d-critical locus (X, s) is a K-scheme X which may
Zariski locally be written as a critical locus Crit(f : U — A!), and
the section s remembers f up to second order in the ideal Ix y.
We also define complex analytic d-critical loci.

Theorem 2 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (X,w) be a —1-shifted symplectic derived K-scheme. Then
the classical K-scheme X = ty(X) extends naturally to an
algebraic d-critical locus (X,s). The ‘canonical bundle’ of (X, s)
satisfies Kx s = det L] yred.

\
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Categorification using perverse sheaves: objects

3. Categorification using perverse sheaves: objects

Theorem 3 (Brav, Bussi, Dupont, Joyce, Szendréi arXiv:1211.3259)

Let (X,w) be a —1-shifted symplectic derived K-scheme. Then the
‘canonical bundle’ det(Lx) is a line bundle over the classical
scheme X = tp(X). Suppose we are given an orientation of
(X,w), i.e. a square root line bundle det(ILx)/2. Then we can
construct a canonical perverse sheaf P).(,w on X, such that if

(X, w) is Zariski locally modelled on Crit(f : U — A'), then Py
is locally modelled on the perverse sheaf of vanishing cycles PV?;,,;
of (U, f). Similarly, we can construct a natural Z-module Dy  on
X, and when K = C a natural mixed Hodge module My , on X.

v

In fact we actually construct the perverse sheaf on the oriented
d-critical locus (X, s) associated to (X,w) in Theorem 2. We also
define perverse sheaves on oriented complex analytic d-critical loci.
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Categorification using perverse sheaves: objects

Sketch of the proof of Theorem 3

Roughly, we prove Theorem 3 by taking a Zariski open cover

{R; :i €1} of X with R; = Crit(f; : U; — A'), and showing that
PV, r and PV, )6 are canonically isomorphic on R; N R;, so we
can glue the PVU r. to get a global perverse sheaf Px . on X.

In fact things are more complicated: the (local) |somorph|sms
PV, = PV, are only canonical up to sign. To make them

canonical, we use the square root det(LLx)!/? to define natural
principal Zs-bundles Q; on R;, such that

PVU £ By Q=P TJ £ ®z, Qj is canonical, and then we glue the
PVLI £ ®z, Qi to get P)'(
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Categorification using perverse sheaves: objects

Categorifying Calabi—Yau 3-fold moduli spaces

Corollary

Let Y be a Calabi-Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y, with (symmetric) obstruction theory ¢ : £* — L. Suppose
we are given a square root det(£°)'/2 for det(£®) (i.e. orientation
data, K-S). Then we have a natural perverse sheaf P/’\,l,s on M.

o

The hypercohomology H" (P} ;) is a finite-dimensional graded
vector space. The pointwise Euler characteristic X('Df\/t,s) is the
Behrend function vaq of M. Thus

2_iez(—1) dim H' (PR ) = x(M, va).
Now by Behrend 2005, the Donaldson—Thomas invariant of M is
DT (M) = x(M,vm). So, H*(P}, ) is a graded vector space
with dimension DT (M), that is, a categorification of DT(M).
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Categorification using perverse sheaves: objects

Categorifying Lagrangian intersections

Corollary
Let (S,w) be a classical smooth symplectic K-scheme of
dimension 2n, and L, M C S be smooth algebraic Lagrangians,

with square roots K Ll/ 2, K ,t,/ > of their canonical bundles. Then we
have a natural perverse sheaf P} ,, on X = LN M.

v

We also prove an analogue for complex Lagrangians in holomorphic
symplectic manifolds, using complex analytic d-critical loci.

This is related to Kashiwara and Schapira 2008, and Behrend and
Fantechi 2009. We think of the hypercohomology H*(P} ,,) as
being morally related to the (undefined) Lagrangian Floer
cohomology HF*(L, M) by H'(P} ,,) =~ HF™*"(L, M).

We are working on defining ‘Fukay,/a categories’ for
algebraic/complex symplectic manifolds using these ideas.
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4. Categorification using perverse sheaves: morphisms

We have seen that oriented —1-shifted symplectic derived
K-schemes/stacks (X, w) carry perverse sheaves Py . We also
expect that proper, oriented Lagrangiansi: L — X should have
associated hypercohomology elements py € H*(Py ) with
interesting properties, which can be interpreted as the morphisms
in a categorification of —1-shifted symplectic geometry.

Definition
Let (X,w) be a —1-shifted symplectic derived scheme, and

i : L — X a Lagrangian. Choose an orientation det(ILx)'/? for
(X,w). The Lagrangian structure induces a natural isomorphism

a: 0 — i*(det(ILx)). An orientation for L is an isomorphism
B: O, —s i*(det(Lx)'/2) with 82 = .
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Categorification using perverse sheaves: morphisms

Let (X,w) be a k-shifted symplectic derived K-scheme for k < 0,
and i: L — X a Lagrangian. Then Theorem 1 shows that X,w can
be put in an explicit local ‘Darboux form’' (Spec A®,wa). Joyce
and Safronov prove a ‘Lagrangian Neighbourhood Theorem' saying
that L,i and the homotopy h : i*(w) ~ 0 can also be put in an
explicit local form relative to A®, wa. When k = —1 this yields:

Theorem 4 (Joyce and Safronov arXiv:1506.04024)

Let (X,w) be a —1-shifted symplectic derived K-scheme, and

i: L — X a Lagrangian, and y € L with i(y) = x € X. Theorem 1
implies that (X,w) is equivalent near x to Crit(H : U — Al), for
U a smooth, affine K-scheme. Then L,i, h near y have an explicit
local model depending on a smooth, affine K-scheme V/, a trivial
vector bundle E — V', a nondegenerate quadratic form Q on E, a
section s € HY(E), and a smooth morphism ¢ : V — U with
Q(s,s) = ¢*(H), where to(L) = s=1(0) C V Zariski locally.
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Let (X,w) be an oriented —1-shifted symplectic derived K-scheme
or K-stack, and i : L — X an oriented Lagrangian. Then there is a
natural morphism in D2(L)

p: Qlvdim L] — i*(Pg ),

with given local models in the ‘Darboux form’ presentations for
X,w, L in Theorem 4.

Lino Amorim and | have an outline proof of Conjecture A in the
scheme case over K = C, and also of a complex analytic version.
In fact Conjecture A is only the first and simplest in a series of
conjectures, which really should be written using oco-categories,
concerning higher coherences of the morphisms . under products,
Verdier duality, composition of Lagrangian correspondences, etc.
Our methods also allow us to prove these further conjectures.

See Amorim and Ben-Bassat arXiv:1601.01536 for more on this.
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Categorification using perverse sheaves: morphisms

Consequences of Conjecture A: perverse COHAs for CY3's

Let Y be a Calabi—-Yau 3-fold, and M the moduli stack of
coherent sheaves on Y, so M is —1-shifted symplectic.

Let £xact be the derived stack of short exact sequences

0 — FL — F, — F3 — 0in coh(Y), with projections

7y, o, 3 : Exact — M. Ben-Bassat (work in progress) shows
1 X X3 Exact — (M, w) X (M, —w) x (M, w) is Lagrangian.
Suppose we have ‘orientation data’ for Y, i.e. an orientation for
(M, w), with a compatibility condition on exact sequences, which
is equivalent to an orientation on £xact.

Then as in Theorem 3 we have a perverse sheaf P;\,t,s, with
hypercohomology H*(P;Vl,s)' Applying Conjecture A to €xact and
using Verdier duality should (?) give an associative multiplication
on H*(P$%, .), making it into a Cohomological Hall Algebra, as in

M.s
Kontsevich—Soibelman arXiv:1006.2706, COHAs for CY3 quivers.
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Categorification using perverse sheaves: morphisms

Consequences of Conjecture A: ‘Fukaya categories’
for algebraic / complex symplectic manifolds

Let (S,w) be a algebraic/complex symplectic manifold, with
dim¢c S = 2n, and L, M C S be algebraic/complex Lagrangians
(not supposed compact or closed), with square roots of canonical
bundles KL1/2, K,t,/z.

Then the intersection L N M is oriented —1-shifted symplectic / an
oriented complex analytic d-critical locus, and carries a perverse
sheaf P[ p by Theorem 3.

We should think of the shifted hypercohomology H*~"(P} ;) as a
substitute for the Lagrangian Floer cohomology HF*(L, M’) in
symplectic geometry. But HF*(L, M) is the morphisms in the
derived Fukaya category D?.Z (S, w) in symplectic geometry.
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Categorification using perverse sheaves: morphisms

If L, M, N are Lagrangians in (S,w), then MN L, NN M, LN N are
—1-shifted symplectic / d-critical loci, and LN M N N is
Lagrangian in the product (M N L) x (NN M) x (LN N)
(Ben-Bassat arXiv:1309.0596).

Applying Conjecture A to LN M N N and rearranging using Verdier
duality Pg, , ~D(Py, ;) gives

L
prmn : PLay@ Py nln] — PL -

Taking hypercohomology gives the multiplication

HF*(L, M) x HF*(M, N) — HF*(L, N), which is composition of
morphisms in the derived Fukaya category D*.Z (S, w).

Higher coherences for such morphisms p; p n under composition
should give the A,.-structure needed to define a derived ‘Fukaya
category’ DP.Z (S, w), which we hope to do.
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Comments on a proof of Conjecture A

In Theorem 3 we constructed a perverse sheaf Py on an oriented
—1-shifted symplectic (X,w). We did this by cons’tructing a Zariski
open cover {R; : i € I} of X = to(X), and perverse sheaves P? on
R;, and isomorphisms «j; : P,-’|R,.QRJ. — PJ-’\RI.QRJ. on all double
overlaps R; N R;, with ajx = aji o ajj on triple overlaps

Ri N RN Rk. Then a unique Py  exists with Py |r = P?, as
perverse sheaves glue like sheaves. 7

In Conjecture A, we have explicit local models pi; for the morphism
pL on an open cover {S; : j € J} of L = ty(L), constructed using
our local models for L, X, i in Theorem 4. However, this is not
enough to define u, as such morphisms do not glue like sheaves.
It is an oo-category gluing problem: we need to construct higher
coherences between pi, ..., uj, on n-fold overlaps S; N ---NS;,
for all n=2,.... This is difficult, as perverse sheaves of vanishing
cycles are not easy to handle on the cochain level.
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Categorification using perverse sheaves: morphisms

Actually, to prove Conjecture A we need first to re-prove Theorem
3 in an oo-categorical way, without using the sheaf property of
perverse sheaves, but constructing Py  directly as a complex on X.
We can define d-correspondences i : L — (X, s) in d-critical loci,
which are classical truncations of Lagrangiansi: L — (X,w) in
—1-shifted symplectic schemes. Our proposed proof of Conjecture
A factors through these classical truncations, and also has a
complex analytic version.

One of our key ideas is to give a new expression for the perverse
sheaf of vanishing cycles PV, ; for a holomorphic function

f : U— C of a complex manifold, as an explicit complex on
Crit(f), using the theory of ‘M-cohomology’ in Joyce
arXiv:1509.05672. This new expression is easier to glue on overlaps
between critical charts (U, f;), (U;, f;), and to control the higher
coherences on multiple overlaps. This complex is built using
differential geometry of manifolds, which is why we need K = C.
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