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0. Introduction

Let (S,w) be a real C*° symplectic manifold. Then under some
assumptions one can define a derived Fukaya category Dbﬁ(S,w),
with objects Lagrangians L, M in S, and morphisms

Hom*(L, M) = HF*(L, M) the Lagrangian Floer cohomology
groups. Here HF*(L, M) is not local on L,M or LN M, as it is
defined by counting ‘large’ J-holomorphic curves u: ¥ — S.

Now suppose (S,w) is a complex (holomorphic) symplectic
manifold, where $ has complex structure /, and we consider
complex Lagrangians L, M in S. Then Rew is a real C*
symplectic structure on the underlying real manifold Sk of S, so
we can define HF*(L, M) for (Sg, Rew). Note that the almost
complex structure J used to do this is not the complex structure /
on S, but is orthogonal to it, in a hyperkahler triple /, J, K.
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A simple argument using Im w shows that the only J-holomorphic
curves in the definition of HF*(L, M) are constant. This suggests
that in the complex case, HF*(L, M) might be local on L N M.
Also note that in the real C*° case we can always perturb
Lagrangians L, M to intersect transversely. But complex
Lagrangians are more rigid, we must allow L, M to be non-transverse.
| will outline a programme to define a ‘Fukaya category’' of
complex Lagrangians L, M in a complex symplectic manifold
(S,w), in which the morphisms Hom™*(L, M) ="HF*(L, M)" are
defined by constructing a perverse sheaf P} ,, on LN M and taking
its hypercohomology H*(P} ,,). We do not need S,L, M to be
compact or closed. We can also include singular ‘derived’
Lagrangians in our picture.

This programme also works for algebraic Lagrangians in a
symplectic scheme over a field K of characteristic zero. It
originates from the ‘shifted symplectic geometry’ of
Pantev—Toén—Vaquié—Vezzosi in Derived Algebraic Geometry.
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Shifted symplectic geometry

1. Shifted symplectic geometry

Let K be an algebraically closed field of characteristic zero, e.g.

K = C. Work in Toén and Vezzosi's theory of Derived Algebraic

Geometry. This gives oco-categories of derived K-schemes dSchg

and derived K-stacks dStyk. Pantev, Toén, Vaquié and Vezzosi

(arXiv:1111.3209) defined a derived version of symplectic geometry.

Let X be a derived K-scheme or K-stack, supposed locally finitely

presented. The cotangent complex ILx has exterior powers APLLx.

The de Rham differential is dyr : APLx — APT1Lx. Each APLx is

a complex, so has an internal differential d : (APLx )X — (APLyx)<*1.

We have d2:d§R:d odyr+dyr 0 d=0.

A p-form of degree k on X for k € Z is an element [w°] of

Hk (/\PLx,d). A closed p-form of degree k on X is an element
[(wWO wh,...)] € HX (EB?iO APH Ly [i],d + ddR).

There is a projection 7 : [(w%, w?,...)] = [w°] from closed p-forms

[(w®, w,...)] of degree k to p-forms [w®] of degree k.
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Shifted symplectic geometry

Shifted symplectic structures and Lagrangians

Let [w®] be a 2-form of degree k on X. Then [w°] induces a
morphism w? : Tx — Lx[k], where Tx = LLy is the tangent
complex of X. We call [w°] nondegenerate if W° : Tx — Lx[k] is a
quasi-isomorphism.

A closed 2-form w = [(w® w?,...)] of degree k on X is called a
k-shifted symplectic structure if [w°] = m(w) is nondegenerate.

If X is a derived scheme we must have kK <0, and if kK = 0 then
(X,w) is a smooth classical K-scheme.

Let (X,w) be a k-shifted symplectic derived scheme or stack.
Then PTVV define a notion of Lagrangian L in (X, w), which is a
morphism i : L — X of derived schemes or stacks together with a
homotopy i*(w) ~ 0 satisfying a nondegeneracy condition,
implying that T ~ L x[k — 1].

If L, M are Lagrangians in (X,w), then the fibre product L xx M
has a natural (k — 1)-shifted symplectic structure.
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Shifted symplectic geometry

Derived Lagrangians in classical symplectic schemes

If (S,w) is a classical smooth symplectic scheme, then it is a
0-shifted symplectic derived scheme in the sense of PTVV, and if
L,M C S are classical smooth Lagrangian subschemes, then they
are Lagrangians in the sense of PTVV.

However, if i : L — S is a derived Lagrangian in the PTVV sense,
it need not be a classical smooth Lagrangian. PTVV Lagrangians
are more general. This should be of interest even to classical
symplectic geometers, we may get an enlarged Fukaya category.
As a typical local model for PTVV derived Lagrangians, suppose
(51, w1), (S2,w2) are classical symplectic schemes, and

L1 — (S1,w1), L12 — (51 X S, —wi B wy) are classical
Lagrangians. If L1 — S1, Lip — S; are transverse, the fibre
product L X, L1 is smooth and a classical Lagrangian in (S2,w>).
If they are not transverse, the derived fibre product L1 X, Li2 is
still a derived scheme, and a PTVV derived Lagrangian in (52, w2).
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The —1-shifted symplectic case and d-critical loci

2. The —1-shifted symplectic case and d-critical loci

Theorem 1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (X,w) be a k-shifted symplectic derived K-scheme for k < 0.
If k%2 mod 4, then each x € X admits a Zariski open
neighbourhood Y C X with Y ~ Spec A® for A* = (A*,d) an

explicit cdga generated by graded variables X; = yk+’ for

0<i<—k/2, and wly = [(«°,0,0,...)] Where ,yj have degree

f, and [#/2) -

w = Z Z —1 ddRyJ ddRXJ' :
Also the differential d in A' is given by Poisson bracket with a
Hamiltonian H in A of degree k + 1.
If k=2 mod 4, we have two statements, one étale local with w°
standard, and one Zariski local with the components of WO in the
degree k /2 variables depending on some invertible functions.

v

Ben-Bassat—Brav—Bussi—Joyce extend this to derived Artin K-stacks.
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The —1-shifted symplectic case and d-critical loci

The case of —1-shifted symplectic derived schemes

When k = —1 the Hamiltonian H in Theorem 1 has degree 0.
Then Theorem 1 reduces to:

Corollary

Suppose (X,w) is a —1-shifted symplectic derived K-scheme.
Then (X,w) is Zariski locally equivalent to a derived critical locus
Crit(H : U — A'), for U a smooth classical K-scheme and

H: U — Al a regular function. Hence, the underlying classical
K-scheme X = to(X) is Zariski locally isomorphic to a classical
critical locus Crit(H : U — Al).

v

Note that if i : L — S, j: M — S are classical /derived Lagrangians
in a classical (0-shifted) symplectic scheme (S,w), then

X =L xg M is —1-shifted symplectic. Thus, the corollary tells us
that (derived) Lagrangian intersections L N M in classical
symplectic schemes are locally (derived) critical loci.
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The —1-shifted symplectic case and d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let X be a classical K-scheme. Then there exists a canonical

sheaf Sx of K-vector spaces on X, such that if R C X is Zariski

open and i : R — U is a closed embedding of R into a smooth

K-scheme U, and Igr y C Oy is the ideal vanishing on i(R), then
Sx|r = Ker >

2, lru-T*U
Also Sx splits naturally as Sx = 8)0< P Kx, where Kx is the sheaf
of locally constant functions X — K.

v

If X = Crit(f: U — Al) then taking R = X, i =inclusion, we see
that f + I)%,U is a section of Sx. Also f|yrea : X™4 — K is locally
constant, and if f|yrea = 0 then f + I)%,U is a section of Sy. Note
that f + Ix y = f|x in Ox = Oy/Ix,y. The theorem means that
f 4+ l)2<,U makes sense intrinsically on X, without reference to the
embedding of X into U. This allows us to compare ways of writing
a scheme X as a critical locus in different ways.
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The —1-shifted symplectic case and d-critical loci

D-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical K-scheme X and
a global section s € H%(S%) such that X may be covered by
Zariski open R C X with an isomorphism

i+ R — Crit(f : U— A') identifying s|g with f + I3 , for f a
regular function on a smooth K-scheme U.

That is, a d-critical locus (X, s) is a K-scheme X which may
Zariski locally be written as a critical locus Crit(f : U — Al), and
the section s remembers f up to second order in the ideal Ix y.
We also define complex analytic d-critical loci, which are complex
analytic spaces X with a section of a natural sheaf SY that are
locally modelled on the critical locus of a holomorphic function

f: U — C for U a complex manifold.
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The —1-shifted symplectic case and d-critical loci

Theorem 2 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (X,w) be a —1-shifted symplectic derived K-scheme. Then
the classical K-scheme X = ty(X) extends naturally to an
algebraic d-critical locus (X,s). The ‘canonical bundle’ of (X, s)
satisfies Kx s = det Lix|xred.

This means that d-critical loci are classical truncations of
—1-shifted symplectic derived schemes. We are working on a
similar definition of classical truncation of derived Lagrangians in
classical (0-symplectic) symplectic schemes.

Theorem 3 (Bussi arXiv:1404.1329)

Let (S,w) be a complex symplectic manifold and i : L — S,
Jj: M — S be smooth complex Lagrangians. Then the fibre

product X = L x; s ; M as a complex analytic space extends
naturally to a complex analytic d-critical locus (X, s).
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Categorification using perverse sheaves: objects

3. Categorification using perverse sheaves: objects

Theorem 4 (Brav, Bussi, Dupont, Joyce, Szendréi arXiv:1211.3259)

Let (X,w) be a —1-shifted symplectic derived K-scheme. Then the
‘canonical bundle’ det(ILx) is a line bundle over the classical
scheme X = to(X). Suppose we are given an orientation of
(X,w), i.e. a square root line bundle det(ILx)/2. Then we can
construct a canonical perverse sheaf P).(,w on X, such that if

(X, w) is Zariski locally modelled on Crit(f : U — A'), then Py
is locally modelled on the perverse sheaf of vanishing cycles PV{;,f
of (U, f). Similarly, we can construct a natural Z-module Dy  on
X, and when K = C a natural mixed Hodge module My , on X.

In fact we actually construct the perverse sheaf on the oriented
d-critical locus (X, s) associated to (X,w) in Theorem 2. We also
define perverse sheaves on oriented complex analytic d-critical loci.
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Categorification using perverse sheaves: objects

Sketch of the proof of Theorem 4

Roughly, we prove Theorem 4 by taking a Zariski open cover
{R; :i €1} of X with R; = Crit(f; : U; — A'), and showing that
PV, . and PV, )b are canonically isomorphic on R; N R;, so we
can glue the PVU r. to get a global perverse sheaf Py ~on X.

In fact things are more complicated: the (local) |somorph|sms
PV = PVU r, are only canonical up to sign. To make them

canonical, we use the square root det(LLx)!/? to define natural
principal Zy-bundles Q; on R;, such that

PVU £ By Q; = PV' £ Oz, Qj is canonical, and then we glue the
PV, £ ®z, Qi to get P'
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Categorification using perverse sheaves: objects

Categorifying Lagrangian intersections

Corollary

Let (S,w) be a classical smooth symplectic K-scheme of
dimension 2n, and L, M C S be smooth algebraic Lagrangians,
with square roots K Ll/ 2, K ,t,/ 2 of their canonical bundles. Then we
have a natural perverse sheaf P} )\, on X = LN M. The analogue

holds for complex Lagrangians in complex symplectic manifolds.

v

This looks similar to results on quantization of symplectic manifolds,
e.g. Kashiwara and Schapira’s DQ-modules. K-S build a category
of modules V on S supported on Lagrangians. If V,, V), are
supported on L, M, then Hom(V,, V) is a perverse sheaf over
CI[[R]] supported on LN M. But our P} ,, can be defined over any
commutative ring, not just over C[[A]]. |

We think of the hypercohomology H*( ZM) as related to the

(undefined) Lagrangian Floer cohomology by ]I-]I"(PZ,M)%HF"*”(L, M).
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4. Categorification using perverse sheaves: morphisms

We have seen that oriented —1-shifted symplectic derived
K-schemes/stacks (X, w) carry perverse sheaves Py . We also
expect that proper, oriented PTVV Lagrangians i : L — X should
have associated hypercohomology elements . € H*(Py ) with
interesting properties, which can be interpreted as the m’orphisms
in a categorification of —1-shifted symplectic geometry.

Definition
Let (X,w) be a —1-shifted symplectic derived scheme, and

i : L — X a Lagrangian. Choose an orientation det(ILx)'/? for
(X,w). The Lagrangian structure induces a natural isomorphism

a: 0 — i*(det(ILx)). An orientation for L is an isomorphism
B: O, —s i*(det(Lx)'/2) with 82 = .
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Categorification using perverse sheaves: morphisms

Let (X,w) be a k-shifted symplectic derived K-scheme for k < 0,
and i: L — X a Lagrangian. Then Theorem 1 shows that X,w can
be put in an explicit local ‘Darboux form’' (Spec A®,wa). Joyce
and Safronov prove a ‘Lagrangian Neighbourhood Theorem' saying
that L,i and the homotopy h : i*(w) ~ 0 can also be put in an
explicit local form relative to A®, wa. When k = —1 this yields:

Theorem 5 (Joyce and Safronov arXiv:1506.04024)

Let (X,w) be a —1-shifted symplectic derived K-scheme, and

i: L — X a Lagrangian, and y € L with i(y) = x € X. Theorem 1
implies that (X,w) is equivalent near x to Crit(H : U — Al), for
U a smooth, affine K-scheme. Then L,i, h near y have an explicit
local model depending on a smooth, affine K-scheme V/, a trivial
vector bundle E — V', a nondegenerate quadratic form Q on E, a
section s € HY(E), and a smooth morphism ¢ : V — U with
Q(s,s) = ¢*(H), where to(L) = s=1(0) C V Zariski locally.
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Categorification using perverse sheaves: morphisms

Let (X,w) be an oriented —1-shifted symplectic derived K-scheme
or K-stack, and i : L — X an oriented Lagrangian. Then there is a
natural morphism in D2(L)

p: Qlvdim L] — i*(Pg ),

with given local models in the ‘Darboux form’ presentations for
X,w, L in Theorem 5.

Lino Amorim and | have an outline proof of Conjecture A in the
scheme case over K = C, and also of a complex analytic version.
In fact Conjecture A is only the first and simplest in a series of
conjectures, which really should be written using oco-categories,
concerning higher coherences of the morphisms . under products,
Verdier duality, composition of Lagrangian correspondences, etc.
Our methods also allow us to prove these further conjectures.

See Amorim and Ben-Bassat arXiv:1601.01536 for more on this.
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Categorification using perverse sheaves: morphisms

Consequences of Conjecture A: ‘Fukaya categories’
for algebraic / complex symplectic manifolds

Let (S,w) be a algebraic/complex symplectic manifold, with
dimc S = 2n, and L, M C S be algebraic/complex Lagrangians
(not supposed compact or closed), with square roots of canonical
bundles KL1/2, K,t,/2.

Then the intersection L N M is oriented —1-shifted symplectic / an
oriented complex analytic d-critical locus, and carries a perverse
sheaf P[ p by Theorem 4.

We should think of the shifted hypercohomology H*~"(P} ;) as a
substitute for the Lagrangian Floer cohomology HF*(L, M’) in
symplectic geometry. But HF*(L, M) is the morphisms in the
derived Fukaya category D?.7 (S, w) in symplectic geometry.
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Categorification using perverse sheaves: morphisms

If L, M, N are Lagrangians in (S,w), then MN L, NN M, LN N are
—1-shifted symplectic / d-critical loci, and LN M N N is
Lagrangian in the product (M N L) x (NN M) x (LN N)
(Ben-Bassat arXiv:1309.0596).

Applying Conjecture A to LN M N N and rearranging using Verdier
duality Py, , ~D(Py, ) gives

L
prmn : PLy@ Py nln] — PL -

Taking hypercohomology gives the multiplication

HF*(L, M) x HF*(M, N) — HF*(L, N), which is composition of
morphisms in the derived Fukaya category D*.7 (S, w).

Higher coherences for such morphisms p; p n under composition
should give the A,-structure needed to define a derived ‘Fukaya
category’ DP.Z (S, w), which we hope to do. [End of talk.]
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Categorification using perverse sheaves: morphisms

Comments on a proof of Conjecture A

In Theorem 4 we constructed a perverse sheaf P)'(’w on an oriented
—1-shifted symplectic (X,w). We did this by constructing a Zariski
open cover {R; : i € I} of X = to(X), and perverse sheaves P? on
R;, and isomorphisms a; : P,-’|R,.QRJ. — PJ-'\RI.QRJ. on all double
overlaps R; N R;, with ajx = aji o ajj on triple overlaps

Ri 0 Rj N Rg. Then a unique Py  exists with P).(,w‘Ri = P?, as
perverse sheaves glue like sheaves.

In Conjecture A, we have explicit local models 1i; for the morphism
pL on an open cover {S; : j € J} of L = ty(L), constructed using
our local models for L, X, i in Theorem 5. However, this is not
enough to define u, as such morphisms do not glue like sheaves.
It is an oo-category gluing problem: we need to construct higher
coherences between fi, ..., uj, on n-fold overlaps S; N ---NS;,
for all n=2,.... This is difficult, as perverse sheaves of vanishing
cycles are not easy to handle on the cochain level.
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Categorification using perverse sheaves: morphisms

Actually, to prove Conjecture A we need first to re-prove Theorem
4 in an oo-categorical way, without using the sheaf property of
perverse sheaves, but constructing Py  directly as a complex on X.
We can define d-correspondences i : L — (X,s) in d-critical loci,
which are classical truncations of Lagrangiansi: L — (X,w) in
—1-shifted symplectic schemes. Our proposed proof of Conjecture
A factors through these classical truncations, and also has a
complex analytic version.

One of our key ideas is to give a new expression for the perverse
sheaf of vanishing cycles PV, ; for a holomorphic function

f : U — C of a complex manifold, as an explicit complex on
Crit(f), using the theory of ‘M-cohomology’ in Joyce
arXiv:1509.05672. This new expression is easier to glue on overlaps
between critical charts (U, f;), (U;, f;), and to control the higher
coherences on multiple overlaps. This complex is built using
differential geometry of manifolds, which is why we need K = C.
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