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1. Introduction

Let A be an abelian category, and 9bj 4 the
moduli K-stack of objects in A4, as in the
previous talks. We shall define a very gen-
eral notion of (weak) stability condition
(r,7T,<) on A. When (7,T,<) is permis-
sible the moduli spaces Objg;, Objgi(7) of
7-(semi)stable objects in a class o € K(A)
are constructible sets in Obj 4.

We define interesting algebras H°, HI° of
constructible functions and stack functions,
generated by the characteristic function of
Obj&s(r) for a € K(A), and have interest-
ing Lie subalgebras L£1° L°. These turn
out to be independent of (r, T, ).



Given a motivic invariant T" of K-varieties,
we extend it to YT’ on constructible sets
in K-stacks, and define invariants I$(1) =
T/'(Obj%(7)) which ‘count’ r-semistable
objects in class «, and other more general
invariants ‘counting’ rT-semistable config-
urations. These satisfy additive identities.
If Ext/(X,Y)=0foralli>1and X,Y € A,
or under other conditions, we prove extra
multiplicative identities on some classes of
invariants. This happens if A = mod-KQ,
or if A = coh(P) for P a smooth curve,
or a surface with K;l semiample, or a
Calabi—Yau 3-fold. The identities come
from (Lie) algebra morphisms from HL° or
L0 to some explicit (Lie) algebra.



2. (Weak) stability conditions

Let A be an abelian category, and K(A)
the quotient of the Grothendieck group
Kg(A) by some fixed subgroup, such that
if XeAdand [X] =0 in K(A) then X = 0.
Define the positive cone in K(A):

C(A) ={[X]e K(A) : X € A, X Z0}.
Suppose (T, <) is a totally ordered set, and
T : C(A) — T a map. Call (r,T,<) a
stability condition on A if whenever «, 3,7
lie in C(A) with 8 = a + ~ then either
T(a) <7(B)<7(7), or 7(a) >7(B)>7(7), or
(o) =7(B)=7(v). This definition is mod-
elled on Rudakov’s stability conditions.
Call (r,T,<) a weak stability condition if

() <7T(B)<7(v) or 7(a)=27(8) =7(v).
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Call X € A m-semistable (or T-stable) if for
all subobjects SC X with §#0, X we have
T([S]) < 7([X/S]) (or 7([S]) < 7([X/S])).
If (r,7T,<) is a weak stability condition and
A is noetherian and r-artinian then every
X € A has a unique Harder—Narasimhan
filtration 0 = Ag C A1 C ---Ap = X with
all quotients S; = A;/A;_1 T-semistable
and 7([S1]) > --- > 7([Sn]).

If (r,7T,<) is a stability condition, every 7-
semistable X also has such a (nonunique)
filtration with S; 7-stable and 7([S;]) =
7([X]) for all 4, S; unique up to order, iso.
So T-semistability is well-behaved for weak
stability conditions, and T-stability is well-
behaved for stability conditions.



Examples. (a) Let Q = (Qq,Q1,b,e) be
a quiver, A = mod-KQ and K(A) = z¥o.
Then C(A) = N¥o\ {0}. Choose maps
c:Qo—Zand r: Qo — Z4 and define the
slope u: C(A) — R by

(@) = (Sueqq c()a())/(Sueqgo r(v)a(v)).
Then (u,R, <) is a stability condition.

(b) Let P be a smooth projective K-scheme,
A = coh(P) and K(A) = K""M(A) the nu-
merical Grothendieck group, a subgroup
of H®Ve"(P,Q). Set D = {—dimP,1 —
dimP,...,0}, and define § : C(A) — D by
0([X]) = —dim supp X. Then (4, D,<) is a
weak stability condition on A, and X € A
is T-semistable if X is pure. The 6 Harder—
Narasimhan filtration of X in A is its
torsion filtration.



(c) For A = coh(P) and K(A) as in (b),
define G to be the set of monic real poly-
nomials t¢ 4+ a;_ 1t 1 4+ ... 4 a9 of degree
d < dimP. Define a total order ‘<’ on G
by p < q if either degp > degq, or degp =
degq and p(t) < q(t) for all t > 0.

Let L be an ample line bundle on P, and
define v : C(A) — G by v([X]) = Px(¢)/lx,
where Px (t) is the Hilbert polynomial of X
w.r.t. L, with leading coefficient [x.
Then (v,G,<) is a stability condition on
A, and X € A is 7-(semi)stable if and only
if it is Gieseker (semi)stable. Note that
X t-semistable implies X pure, we don't

need purity as an extra assumption.



Let (7,7 <) be a weak stability condition,
and for a € C(A) define Objg;, Obj(7)
to be the sets of [X] € Obj%(K) with X 7-
(semi)stable. Call (7,T,<) permissible if A
is noetherian and r-artinian and ODbj&(7)

is constructible for all a € C(A).

Examples: any weak stability condition
on mod-K¢ is permissible. Gieseker sta-

bility (v, G, <) on coh(P) is permissible.

For (I,<)aposetandx: I — K(A) a map,
define Mss, Mqst(I, =, k,7) 4 to be the sub-
sets of [(o,¢,m)] in 9MM(I, <) (K) with o({i})
7-(semi)stable and [c({i})] = k() in K(A)

for all : € I. They are constructible.



3. Algebras of constructible functions
Recall that CF(9Obj4) is an algebra, with
associative, noncommutative multiplication
x. For permissible (7,T,<), let 65(7) in
CF(9Dbj 4) and dss(I, <, k,7) € CF(MM(I, <) 4)
be the characteristic functions of Obj&(7)
and Mss(I, =, k,7) 4. Define HP2 HIO to
be the subspaces of CF(Dbj 4) spanned by
CFSY(a(1))dss(I,<,k,7) for all (I,=<, k),
with < a total order for H°.

Then H° C HP?2 are subalgebras of
CF(Dbj 4), and HEO IS generated as an
algebra by the §&(7) for a € C(A).

There are also stack function versions
0&(1),0ss(1, =, K, T), HP?, HEO.



Define £P? £!° to be the intersections of
HPa HO with the Lie algebra CF'MI(0bj 4)
supported on indecomposables. They are
Lie algebras. For a € C(A), define

1 n—1

(1) = X i

al,...,anGC(A): a1

a1++an:a7 555
T(ai):T(Oé), \V/'L

This is invertible combinatorially: we have

(1)

(7) %+ % 652 (7).

1
5?5(7') — Z g 5
.,aneC R
(Zzll’-l-??é-l-%én(:@, 6041(7_> K ek eozn(T). ( )

7(o;)=7(x), Vi
For [X] € Obj%(K) we have
o cY(7)([X]) =1 if X is r-stable,
o ¢“(7)([X]) =0 is X is T-unstable
or decomposable,
o c%(7)([X]) € Q if X is strictly

T-semistable and indecomposable.
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Therefore €(r) € CFMY(Dbj 4), so €¥(7) €
£ By (1), (2) the §&(71),€e%(r) gener-
ate the same subalgebra HI° of CF(Obj 4),
so the €*(r) are alternative generators for
HIC. It follows that £I° is the Lie subalge-
bra of CF'NAd(9Obj 4) generated by the (1)
for o € C(A), and H® = U (L£lo).

Similarly, we can construct a spanning set
for £P9 and show HP? = U(LP?). We can
also define alternative spanning sets for
HP2 in terms of r-stable or indecompos-
able r-semistable objects, with change of
pbasis formulae relating the spanning sets.
There are stack function analogues €*(7)
in SFNd(Dbj 4),... of all this.
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4. Change of weak stability condition
Let (7,T,<), (7,1, <) be different weak sta-
bility conditions on A, e.g. Gieseker sta-
bility on coh(P) w.r.t. different ample line
bundles L,L on P. Then we prove a uni-

versal formula

des(T) = Y S(at,...,an,T,T) (3)
: n€C (A
aall—l—a-|— n(_c)u S(7) % %05 (T).

Here S(---) are explicit combinatorial co-
efficients equal to 1,0 or —1, depending
on the orderings of 7(«;) and 7(«;). There
are problems with whether (3) has finitely
many nonzero terms. This is true if A =
mod-K@ or A = coh(P) for dimP < 2.
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Sketch proof: Say T dominates T if 7(a) < 7(0)
implies 7(a) < 7(B8) for a,6€ C(A). Then for a €
C(A) we have

6ss(T) = Z 5351 (7) % - % 658 (7).
ai,...,an€C(A): a1+-+an=q, (4)
T(o;)=T(a) Vi, T(a1)>-->7(an)

To prove (4), let X € A have 7 Harder—Narasimhan
filtration O = Ag C --- C A, = X with 7-semistable
factors S; = A;/A;_1, and set «; = [S;] in C(A).
Then X is T-semistable iff 7(«;) = 7(«) for all 1,
and 6gd (1) *- - -x8%2 (1) is the characteristic function
of all [X] with = Harder—Narasimhan filtrations with
these aq,...,an.

We can combinatorially invert (4) to write §&(7)
in terms of 6<¢(7). This gives two special cases
of (3). For the general case, we find a weak sta-
bility condition (7,7T,<) dominating both (r,T,<)
and (7,T,<) and use (4) to write 65(F) in terms
of 6ds(7) and its inverse to write 6% (7) in terms of
SS(T) The argument uses associativity of x. The
stack function analogue also holds. []
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Now (3) shows §5(7) lies in the subalge-
bra of CF(9Dbj4) generated by the 5555(7),
and vice versa. Thus HY = HE. Simi-
larly, the (Lie) algebras P23 Hio cPa rto
and P23 HIO £Pa O are independent of
the choice of (r,T,<).

Combining (1), (2) and (3) gives

()= Y Ulaq,...,0n,T,T) (5)
Oy () e,

for combinatorial coefficients U(---) € Q.
We rewrite (5) as a Lie algebra identity

e*(T) = (1) + Q-linear combination
of commutators of €¢*1(7),...,e*" (1),

(6)

where a commutator is
[e¥(), P ()] =€(7) % €’ (1) —€” (1) x (1),
[e®(7), [65(7'),67(7')]], and so on.
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5. Invariants counting r-semistables
Recall from first seminar: let Y be a mo-
tivic invariant of K-varieties with values in
a Q-algebra A, £ ="T(K), £and ¢F—1, k> 1
invertible in A. We extend Y uniquely to
T/(F) for finite type K-stacks g, such that
T([X/G]) = T(X)T(G)~1 for X a variety
and G a special K-group.

Example: T(X) can be the virtual
Poincaré polynomial Px(z), N\ the
Q-algebra of rational functions in z.

For such T, A, define a Q-linear map

Ma : SF(Obj 4) — A by

Ma: [(R, p)] = T(R).
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If (r,7,<) is a permissible weak stability
condition and a € C(A), define invariants
18(7) = NAGBL() = T(Objg(r)) and
JY)N = (0 — 1)NAE¥(T)) in A. Since
e*(t) € SFINA(Dbj 4), can show J¥(T)" lies
in a certain subalgebra A° of A in which
¢ — 1 is not invertible.

There is a Q-algebra morphism =« : A° —
Q with #(¢) = 1, which projects virtual
Poincaré polynomials to Euler characteris-
tics. Set Ja(T>Q:7T(Ja(T)A>.

Interpret I&(7), J4(m)N, JY(7)$* as different
iInvariants ‘counting’ m-semistables in class
ain C(A).
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From second seminar: if Ext/(X,Y) = O
for all + > 1 and X,Y € A then there is a
biadditive x : K(A) x K(A) — Z with
dimHom(X,Y) — dimExt1(X,Y) = x([X], [Y])
for all X, Y € A. This holds for A =
mod-K@ and A = coh(P), P smooth curve.
Then we construct an algebra morphism
PN I SF(Obj 4) — A(A, A, x) to an explicit
algebra A(A,A\,x). Suppose (7,7,<) and
(7, T, <) are permissible weak stability con-
ditions on A. Applying ®" to the stack
function analogue of (3) above gives:
Ic(T)= > S(aq,...,an,T,T)-
O‘O}l’;’,‘?{foff;“gé: ¢~ 2i<i<j<n X(aj,05) - (7)
M, Isd (7).
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We can also prove that (7) holds if A =
coh(P) for P a smooth projective surface
with K;l semiample, even though ®M is
not a morphism in this case. If 7 dom-
inates T then applying ®" to the stack
function analogue of (4) above yields:

I8H = % 0~ 2i<i<j<n X(@j,05).
at,...,an€C(A): a1+4+an=q, 7o (8)
#(a)=7(a) Vi, 7(a1)>>7(an) =1 Isd(7).

This is because we can show using Serre
duality and 7(a1) > --- > 7(ap) that all
the relevant Ext? groups between terms
in (4) vanish, so we reduce to the case
Ext/(X,Y) =0 for all i >1 and X,Y € A.
We can then prove (7) from (8) in the

same way that we proved (3) from (4).
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6. Sheaves on Calabi—Yau 3-folds

Recall from second seminar: if A = coh(P) for P
a Calabi—Yau 3-fold then for biadditive ¥ : K(A) %
K(A)—7Z and all X,Y in A we have

dim Hom(X,Y) — dim Ext!(X,Y)—
dim Hom(Y, X) 4+ dim Ext! (Y, X) = x([X],[Y]).

We construct W : SFINd(0bj 4) — C(A,Q,3%), a
Lie algebra morphism to an explicit algebra. Let
(1,7,<), (7, T,<) be permissible weak stability con-
ditions on A. If o € C(A) then €¥(7) € SFINA(Dbj 4),
and W2(e¥(1)) = J¥(1)%c™. Applying \UQ to (5),
which is a Lie algebra identity as in (6), vyields:

Ja(%)Q — Z V(I_aI?/{)T?%)'
isg.f I(_Zl’aIS’SKeS H J/-i(z')(T)Q.
el (10)
1T x(x@@),x(G)).

edges
1— 7 in [
Here I is a connected, simply-connected digraph
with vertices I, k : I — C(A) has > ;7 x(i) = «, and
V(---) € Q are explicit combinatorial coefficients,
depending on orientation of ' only up to sign.
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Remarks: e I haven't proved (10) has
only finitely many nonzero terms. But can
find 7 = 19,71, ...,7n = 7 With finitely many
terms going from 7,1 to 7, : = 1,...,n.
e (10) expresses JY(7)** in terms of invari-
ants J2(7) of the same type. This is a
special feature of the C—-Y 3-fold case. In
general, we can only write Iss(I,<,k,T) as
a linear combination of Iss(J,<,\,7) for
posets (J, <) larger than (I, <X).

e The J¥(7)* are not expected to be
unchanged by deformations of X, as
Donaldson—Thomas invariants are.
Conjecture: there exists an extension of
D—T invariants to the stable#semistable
case, which are deformation-invariant, and

transform according to (10).
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e The form of (10) as a sum over graphs I
emerges combinatorially in a bizarre way.
But it is natural in the mirror picture of
counting SL 3-folds, when one SL 3-fold
decays into a tree of intersecting SL
3-folds as the complex structure deforms.
Conjecture: there exist invariants count-
ing SL 3-folds in class a € H3(M,Z) in
a C=Y 3-fold M, which are independent
of the Kahler class, and transform accord-
ing to (10) under deformation of complex
structure.

e The sum over I in (10) looks like a
sum of Feynman diagrams. I think there is
some new physics behind this, to do with
[N-stability.
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