
D-orbifolds,
Kuranishi spaces,

and polyfolds.

Dominic Joyce, Oxford

January, 2010

based on

arXiv:0910.3518,

arXiv:1001.0023,

and work in progress.

See also

arXiv:0707.3572v5 and

arXiv:0710.5634v2.

These slides available at

www.maths.ox.ac.uk/∼joyce/talks.html
1



1. Introduction

Several important areas in Symplectic Ge-

ometry — open and closed Gromov–Witten

invariants, Lagrangian Floer cohomology,

Symplectic Field Theory, etc. — are con-

cerned with moduli spaces of stable J-

holomorphic curves. Here (M,ω) is a sym-

plectic manifold, J is a choice of almost

complex structure on M compatible with

ω. We have to consider moduli spaces

M(M,J, β) of J-holomorphic curves u : Σ→
M in M , where Σ is a Riemann surface,

possibly with boundary or marked points,

which may have nodal singularities, and β

is some topological data we fix, e.g. the

genus and number of marked points of Σ

and the homology class [u(Σ)] ∈ H2(M ;Z).
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Then M(M,J, β) is a topological space.

By including ‘stable’ curves with nodal sin-

gularities, we can usually make M(M,J, β)

compact. The idea is to ‘count’ the mod-

uli space M(M,J, β) to get a ‘number’

of J-holomorphic curves with topological

data β. This ‘number’ could be in Z, or in

Q, or a chain or homology class in some

homology theory. To do this ‘counting’

we need an extra geometric structure on

M(M,J, β), which makes it behave like a

compact oriented manifold (possibly with

boundary or corners). The goal is to make

the ‘number’ of J-holomorphic curves in-

dependent of choice of J (possibly up to

some kind of homotopy in a homology the-

ory), and so is an invariant of (M,ω).
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Any such J-holomorphic curve programme
must solve four basic problems:
(a) Define the kind of geometric struc-
ture G you want to put on moduli spaces
M(M,J, β).
(b) Prove that moduli spaces M(M,J, β)
really do have geometric structure G. Prove
that relationships between curve moduli
spaces (e.g. boundary formulae) lift to re-
lations between the structures G.
(c) Prove that given a compact topolog-
ical space T with structure G you can de-
fine a ‘number of points’ in T , in Z or Q or
some homology theory. (This is a virtual
cycle or virtual chain construction.)
(d) Derive some interesting consequences
in symplectic geometry – define G–W in-
variants, prove the Arnold Conjecture, etc.
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Of these, to do problem (b) in full general-

ity is definitely the worst: to model moduli

spaces M(M,J, β) near singular curves Σ

involves gruesome analytic problems which

take decades to sort out properly. In the

beginning (the 1990s), it was not done

properly. There was a race to get down

to (d) and claim the geometric theorems

first, so the treatment of (a)–(c) by some

groups was rushed and unsatisfactory.

I am not going to talk about problem (b),

in fact, I don’t want to go anywhere near

it. My interest today is in problem (a)

(and problem (c)).
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Oversimplifying rather, there are broadly

three approaches in the literature:

(i) (The Fukaya school). Geometric

structure G is called a Kuranishi space.

(Actually, an ‘oriented Kuranishi space with

virtual tangent bundle’.) Fukaya–Ono 1999,

Fukaya–Oh–Ohta–Ono 2003–2009.

(ii) (The Hofer school). Geometric struc-

ture G is called a polyfold. (Actually, a

‘Fredholm section of a polyfold bundle over

a polyfold’.) Hofer, Wysocki and Zehnder

2005–2020 (?). Seems to be rigorous.

(iii) (The rest of the world). Make

strong assumptions on geometry, e.g. (M,ω)

exact, J generic. Then ensure that mod-

uli spaces M(M,J, β) are manifolds (or at

least ‘pseudomanifolds’).
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Kuranishi spaces and polyfolds are philo-
sophically opposed: Kuranishi spaces re-
member only minimal information about
the moduli problem, but polyfolds remem-
ber essentially everything. E.g. for J-holo-
morphic curves, the polyfold moduli space
remembers the Banach manifolds of (not
necessarily J-holomorphic) Ck-maps u : Σ
→M for all k = 0,1, . . . ,∞, and the inclu-
sion relations between them.
So there should be a truncation functor
from polyfolds to Kuranishi spaces.
This means that we can take the Hofer et
al. proof of existence of polyfold structures
on moduli spaces (when it is finished), and
deduce existence of Kuranishi structures
on moduli spaces, to replace the Fukaya
et al. proof (which has holes in, I’m told).
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In the Fukaya picture, there are also prob-
lems with the definition of Kuranishi spaces,
which changes a bit with each version. No
definition (including mine in 2007) is really
satisfactory. For example, until the 2009
edition of [FOOO] the definition of ‘vir-
tual tangent bundle’ was too weak for the
construction of virtual cycles to be correct.

I believe I can now fix this problem, and
give a rigorous, ‘correct’ definition of Ku-
ranishi spaces – or at least, what the def-
inition of Kuranishi spaces ought to have
been. I call these new objects ‘d-orbifolds’.
They are based on ideas coming from a
completely different direction: David Spi-
vak’s ‘derived manifolds’, arXiv:0810.5174,
which come out of Jacob Lurie’s Derived
Algebraic Geometry programme.
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Spivak’s ‘derived manifolds’ are complex
objects, which form an∞-category (a sim-
plicial category), i.e. they have nontriv-
ial n-morphisms for all n > 1. My ‘d-
manifolds’ are (I believe) a truncated ver-
sion of derived manifolds, with less infor-
mation, which form a 2-category.
‘D-orbifolds’ are an orbifold version of d-
manifolds. Kuranishi spaces should really
be ‘d-orbifolds with corners’.
I think d-manifolds are better than derived
manifolds for applications in Symplectic
Geometry: they are simpler, they have
enough structure to form virtual cycles,
and I believe that the Fukaya/Hofer proofs
will be enough to deduce a d-orbifold struc-
ture on J-holomorphic curve moduli spaces,
but not sufficient to deduce a derived orb-
ifold structure.
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** Advertizing feature: please

buy my (co)homology theory **

In arXiv:0707.3572v5, arXiv:0710.5634v2

I define (co)homology theories in which

the (co)chains are Kuranishi spaces (with

extra data). These are parked for the mo-

ment while I sort out definition of Kuran-

ishi spaces; I will rewrite them using d-

orbifolds instead of Kuranishi spaces, and

then they will (I claim) be rigorous.

They are a novel solution to problem (c).

Forming virtual chains or virtual cycles in

these (co)homology theories is trivial, as

the moduli space is its own virtual chain.

There is no need to perturb moduli spaces.

This gives a huge simplification to [FOOO]-

style Lagrangian Floer cohomology.
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2. D-manifolds

To get the idea across I am going to ex-

plain only the simplest class of these ob-

jects: d-manifolds without boundary. I

also study d-orbifolds (locally modelled on

X/G for X a d-manifold and G a finite

group), and d-manifolds and d-orbifolds

with boundary, or with corners.

They are founded on the ideas of C∞-ring

and C∞-scheme from Synthetic Differen-

tial Geometry, an approach to smooth man-

ifolds using the tools of Algebraic Geom-

etry, going back to Lawvere, Dubuc, Mo-

erdijk and Reyes,. . . in the 1960s-1980s.

I have also nicked ideas from David Spi-

vak’s derived manifolds, and Jacob Lurie.
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2.1. C∞-rings

Let X be a manifold, and write C∞(X)

for the smooth functions c : X→R. Then

C∞(X) is an R-algebra: we can add smooth

functions (c, d) 7→ c+d, and multiply them

(c, d) 7→ cd, and multiply by λ ∈ R.

But there are many more operations on

C∞(X) than this, e.g. if c : X → R is

smooth then exp(c) : X → R is smooth,

giving exp : C∞(X) → C∞(X), which is

algebraically independent of addition and

multiplication.

Let f : Rn → R be smooth. Define Φf :

C∞(X)n → C∞(X) by Φf(c1, . . . , cn)(x) =

f
(
c1(x), . . . , cn(x)

)
for all x ∈ X. Then ad-

dition comes from f : R2 → R, f : (x, y) 7→
x+ y, multiplication from (x, y) 7→ xy, etc.
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Definition 1. A C∞-ring is a set C to-
gether with n-fold operations Φf : Cn → C

for all smooth maps f : Rn → R, n > 0,
satisfying the following conditions:
Let m,n > 0, and fi : Rn → R for i =
1, . . . ,m and g : Rm → R be smooth func-
tions. Define h : Rn→ R by

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)),

for (x1, . . . , xn) ∈ Rn. Then for all c1, . . . , cn
in C we have

Φh(c1, . . . , cn) =

Φg(Φf1
(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)).

Also defining πj : (x1, . . . , xn) 7→ xj for j =
1, . . . , n we have Φπj : (c1, . . . , cn) 7→ cj.
A morphism of C∞-rings is φ : C→ D with
Φf ◦φn = φ◦Φf : Cn→ D for all smooth f :
Rn → R. Write C∞Rings for the category
of C∞-rings.
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Then C∞(X) is a C∞-ring for any manifold

X, and from C∞(X) we can recover X up

to canonical isomorphism.

If f : X → Y is smooth then f∗ : C∞(Y )→
C∞(X) is a morphism of C∞-rings; con-

versely, if φ : C∞(Y ) → C∞(X) is a mor-

phism of C∞-rings then φ = f∗ for some

unique smooth f : X → Y . This gives a full

and faithful functor F : Man→ C∞Ringsop

by F : X 7→ C∞(X), F : f 7→ f∗.

Thus, we can think of manifolds as exam-

ples of C∞-rings, and C∞-rings as general-

izations of manifolds. But there are many

more C∞-rings than manifolds. For exam-

ple, C0(X) is a C∞-ring for any topological

space X.
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2.2. C∞-schemes

We can now develop the whole machin-

ery of scheme theory in Algebraic Geome-

try, replacing rings or algebras by C∞-rings

throughout — see my arXiv:1001.0023.

A C∞-ringed space X = (X,OX) is a topo-

logical space X with a sheaf of C∞-rings

OX. Write C∞RS for the category of C∞-

ringed spaces.

The global sections functor Γ : C∞RS →
C∞Ringsop maps Γ : (X,OX) 7→ OX(X).

It has a right adjoint, the spectrum functor

Spec : C∞Ringsop → C∞RS. That is, for

each C∞-ring C we construct a C∞-ringed

space SpecC. On the subcategory of fair

C∞-rings, Spec is full and faithful.
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A C∞-ringed space X is called an affine

C∞-scheme if X ∼= SpecC for some C∞-

ring C. We call X a C∞-scheme if X

can be covered by open subsets U with

(U,OX|U) an affine C∞-scheme. Write

C∞Sch for the full subcategory of C∞-schemes

in C∞RS.

If X is a manifold, define a C∞-scheme

X = (X,OX) by OX(U) = C∞(U) for all

open U ⊆ X. Then X ∼= SpecC∞(X).

This defines a full and faithful embedding

Man ↪→ C∞Sch. So we can regard mani-

folds as examples of C∞-schemes.
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All fibre products exist in C∞Sch. But in
manifolds Man, fibre products X ×f,Z,g Y
need exist only if f : X → Z and g : Y → Z

are transverse. When f, g are not trans-
verse, the fibre product X ×f,Z,g Y exists
in C∞Sch as a C∞-scheme, but may not
be a manifold.
We also define vector bundles, coherent
sheaves and quasicoherent sheaves on a
C∞-scheme X, and write coh(X),qcoh(X)
for the categories of coherent and qua-
sicoherent sheaves. Then qcoh(X) is an
abelian category. A C∞-scheme X has a
well-behaved cotangent sheaf T ∗X.
If f : X → Y is a morphism of C∞-schemes,
we define pullback f∗ : coh(Y) → coh(X)
and f∗ : qcoh(Y) → qcoh(X). It is a right
exact functor.
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Differences with Algebraic Geometry

The topology on C∞-schemes is finer than

the Zariski topology on schemes – affine

schemes are always Hausdorff. No need to

introduce the étale topology.

Can find smooth functions supported on

(almost) any open set. (Almost) any open

cover has a subordinate partition of unity.

Our C∞-rings C are generally not noethe-

rian as R-algebras. So ideals I in C may

not be finitely generated, even in C∞(Rn).

This also causes problems with coherent

sheaves: if φ : E → F is a morphism of

coherent sheaves on X then Coker φ (in

qcoh(X)) is coherent, but Ker φ need not

be coherent, so coh(X) is not an abelian

category.
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2.3. The 2-category of d-spaces
We define d-manifolds as a 2-subcategory
of a larger 2-category of d-spaces. These
are ‘derived’ versions of C∞-schemes.

Definition. A d-space is a is a quintu-
ple X = (X,O′X, EX, ıX, X) where X =
(X,OX) is a separated, second countable,
locally fair C∞-scheme, O′X is a second
sheaf of C∞-rings on X, and EX is a qua-
sicoherent sheaf on X, and ıX : O′X → OX
is a surjective morphism of sheaves of C∞-
rings whose kernel IX is a sheaf of square
zero ideals in O′X, and X : EX → IX is
a surjective morphism in qcoh(X), so we
have an exact sequence of sheaves on X:

EX
X //O′X

ıX //OX // 0.
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A 1-morphism f : X → Y is a triple f =
(f, f ′, f ′′), where f = (f, f ]) : X → Y is a
morphism of C∞-schemes and f ′ : f−1(O′Y )
→ O′X, f ′′ : f∗(EY ) → EX are sheaf mor-
phisms such that the following commutes:

f−1(EY )
f ′′

��

f−1(Y )

//f−1(O′Y )
f ′

��

f−1(ıY )

//f−1(OX)
f ]

��

// 0

EX
X //O′X

ıX //OX // 0.

Let f , g : X → Y be 1-morphisms with
f = (f, f ′, f ′′), f = (g, g′, g′′). Suppose f =
g. A 2-morphism η : f ⇒ g is a morphism

η : f−1(ΩO′Y
)⊗f−1(O′Y ) OX −→ EX

in qcoh(X), where ΩO′Y
is the sheaf of

cotangent modules of O′Y , such that g′ =
f ′+ X ◦ η ◦ΠXY and g′′ = f ′′+ η ◦ f∗(φY ),
for natural morphisms ΠXY , φY .

Theorem 1. This defines a strict
2-category of d-spaces dSpa.

20



Theorem 2. Let g : X → Z, h : Y →
Z be 1-morphisms of d-spaces. Then an

explicit 2-category fibre product exists in

dSpa. That is, we can construct an object

W , 1-morphisms e : W → X, f : W →
Y and a 2-morphism η : g ◦ e ⇒ h ◦ f ,
satisfying a universal property.

We can map C∞Sch into dSpa by tak-

ing a C∞-scheme X to the d-space X =

(X,OX,0, idOX ,0), with exact sequence

0 0 //OX
idOX //OX // 0.

This embeds C∞Sch, and hence manifolds

Man, as discrete 2-subcategories of dSpa.

For transverse fibre products of manifolds,

the fibre products in Man and dSpa agree.
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2.4. The 2-subcategory of d-manifolds

Definition. A d-space X is a d-manifold

of dimension n ∈ Z if X may be covered by

open d-subspaces Y equivalent in dSpa to

a fibre product U×WV , where U ,V ,W are

manifolds without boundary and dimU +

dimV − dimW = n. We allow n < 0.

Think of a d-manifold X=(X,O′X, EX, ıX, X)

as a ‘classical’ C∞-scheme X, with extra

‘derived’ data O′X, EX, ıX, X.

Write dMan for the full 2-subcategory of

d-manifolds in dSpa. It is not closed under

fibre products in dSpa, but we can say:

Theorem 3. All fibre products of the form

X ×Z Y with X,Y d-manifolds and Z a

manifold exist in the 2-category dMan.
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Here is how to relate d-manifolds and Ku-
ranishi spaces. Let V be a manifold, and
E → V a vector bundle (the obstruction
bundle), and s : V → E a smooth sec-
tion (the Kuranishi map). We define a d-
manifold X from the data (V,E, s), called
a principal d-manifold, of dimension dimV−
rankE. Any d-manifold W is covered by
principal d-manifolds X.
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The orbifold version of this is basically the
Kuranishi neighbourhoods in the Fukaya–
Ono definition of Kuranishi spaces: a Ku-
ranishi neighbourhood (V,E, s, ψ) on a topo-
logical space X is an orbifold V , a vector
bundle E → V , a smooth section s : V →
E, and a map ψ : s−1(0) ↪→ X which is a
homeomorphism with an open set in X.
The problems in the definition of Kuranishi
spaces are mainly to do with saying when
two Kuranishi neighbourhoods are com-
patible, how Kuranishi neighbourhoods are
glued on double overlaps, triple overlaps,
and so on. In our theory this is answered
by saying that Kuranishi neighbourhoods
are glued on overlaps by giving an equiva-
lence in dSpa between open subsets of the
corresponding principal d-manifolds.
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There should also be a version of this story

in Algebraic Geometry, using rings or al-

gebras rather than C∞-rings. Let us call

these algebraic d-manifolds. They should

be related to objects people already study.

I expect that algebraic d-manifolds should

be some kind of 2-category truncation of

the ∞-category of quasi-smooth derived

schemes in the sense of Lurie or Toen.

Also, an algebraic d-manifold should be

roughly the same thing as a scheme with

a perfect obstruction theory.

So maybe there is no real need to intro-

duce algebraic d-manifolds. Still, the claim

(unproved) that they form a 2-category

with good fibre products seems attractive.
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