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Riemannian geometry

Let M"™ be a manifold of
dimension n. Let x&€e M.
Then1,.M is the tangent
space to M at =x.

Let g be a Riemannian
metric on M.

Let V be the Levi-Civita
connection of g.

Let R(g) be the
Riemann curvature of g.
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Holonomy groups

Fixxe M. The holonomy
group Hol(g) of g is the

set of isometries of T, M

given by parallel trans-

port using V about closed
loops v In M based at =x.

[t is a subgroup of O(n).

Up to conjugation, it is

iIndependent of the base-

point x.



Berger’s classification

Let M be simply-connected
and g be irreducible and
nonsymmetric. Then Hol(g)
is one of SO(m), U(m),
SU(m), Sp(m), Sp(m)Sp(1)
form > 2, or Go or Spin(7).
We call G> and Spin(7)
the exceptional holonomy
groups. Dim(M) is 7 when
Hol(g) is G and 8 when
Hol(g) is Spin(7).
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Understanding Berger’s list

T he four inner product algebras are

R — real numbers.

C — complex numbers.
H — quaternions.

O — octonions,

or Cayley numbers.
Here C is not ordered,
H is not commutative,
and O is not associative.
Also we have C = R?2, H = R4
and O = RS, with ImQ £ R’.



Group Acts on

SO(m) R™
O(m) R™
SU(m) cm
U(m) c™m
Sp(m) H™
Sp(m)Sp(1) H™
G5 ImOQ = R
Spin(7) 0 = RS

T hus there are two holonomy
groups for each of R, C, H, O.



T he goal of the talk
To discuss constructions
of examples of compact
manifolds of holonomy
Go> and Spin(7).

WwWhy iIs this difficult?
In many problems in
geometry the simplest
examples are symmetric.
But G»>- and Spin(7)-
manifolds have no
continuous symmetries.
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\VVhy iIs this interesting?
e Such manifolds are
Ricci-flat.
e [ hey are important
to physicists working
in String T heory.
e [ hey have beautiful
geometrical properties.



Geometry of G»

The action of G> on R'
preserves the metric gg
and a 3-form ¢g on R’.
Let g be a metric and
© a 3-form on M'. We
call (v, g) a Go-structure

if (¢,9) = (v0,90) at each
x € M. We call Vo the

torsion of (v, g).



If Vo =0 then (p,q) is
torsion-free. Also Vo =0
iff dp = d*¢ = 0. If
(@, g) is torsion-free then
Hol(g) CG». Conversely,
if g is a metric on M’
then Hol(g) C G5 iff there
is a Go-structure (o, g)
with Vo = 0. If M is
compact and Hol(g) C G»
then Hol(g) =G5 iff

w1 (M) is finite.
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The construction, 1

First we choose a
compact 7-manifold M.
We write down an explicit
Go-structure (p,g) on M
with small torsion.

T hen we use analysis to
deform to a nearby Go»-
structure (@, g) with zero
torsion. If w1(M) is
finite then Hol(g) =G5
as we want.
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T he construction, 2

[t is not easy to find
G>-structures with small
torsion! Here Is one way
to do it, Iin 4 steps.

Step 1. Choose a finite
group I of isometries of
the 7-torus T/, and a flat,
[ -invariant Go-structure
(¢o,90)onT’. ThenT’/I
IS compact, with a torsion-
free Go-structure (g, g0).



Step 2. However, T/l

IS an orbifold. We repair

Its singularities to get a

compact 7-manifold M.

VWe can resolve complex

orbifolds using algebraic

geometry.

If the singularities of T/ /I
locally resemble S1xC3/G
for G C SU(3), then we

model M on a crepant

resolution X of C3/G.
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Step 3. M is made by
gluing patches S1x X into
T'/I". Now X carries ALE
metrics of holonomy SU(3).
As SU(3) C G5, these give
torsion-free Go-structures
on S x X.

We join them to (QOO,gQ)
on T'/I" to get a

family {(¢¢, g¢) : t € (0,¢€)}
of Go-structures on M.
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Step 4. This (g&t,gt) has
Vot = O(t4). So Vi is
small for small ¢t. But
R(g;) = O(t~2) and the
injectivity radius 6(g;) =
O(t), since g; becomes
singular as t — O.

For small ¢t we deform
(¢t,9t) to (@t, gt) with
Vo = 0, using analysis.
Then Hol(gy) =Go if

w1 (M) is finite.
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Steps in the analysis proof:

e Arrange that dyy = O
and d*p; = d™¢, where
Y = O(t%).

o Set oy = p+dns, where
d*n; = 0.

e Then (¢4, gt) IS
torsion-free iff

(d*d=4-dd™)(n:) = d™yy+dF(dny),

where F'i1s nonlinear with
F(x) = O(|x|?).
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e Integrating by parts gives
dnell 2 < 2|9t 2 when
dntll~o Is small.

e SOolve by contraction
method in LA4*(A2T*M),
using elliptic regularity
of d*d + dd~,
pballs of radius ¢t and
Sobolev embedding.
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T he construction, 3

Using different groups I
acting on T or T°, and
resolving T%/I" in more
than one way, we get many
compact manifolds with
holonomy G» and Spin(7).
VWe can generalize the
construction by replacing
T’ or T® with another
space made from a
Calabi-Yau manifold.
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Geometry of Spin(7)

The action of Spin(7) on
RS preserves the metric
go and a 4-form Qg on RS.
Let g be a metric and €2
a 4-form on MS. We call
(€2,g9) a Spin(7)-structure
if (€2,9) = (20, 90) at each
xr € M. We call V{2 the
torsion of (€2,q).
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If VQ2=0 then (€2,9) is
torsion-free. Also V$2=0
Iff d€2 = 0. If V2 =20
then Hol(g) C Spin(7). If
g is a metric on M3 then
Hol(g) C Spin(7) iff there
is a Spin(7)-structure
(€2, g) with VQ=0. If
M is compact and
Hol(g) C Spin(7) then g
has holonomy Spin(7) iff
1 (M)={1}, A(M)=1.
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Compact examples

The first examples of
compact 8-manifolds
with holonomy Spin(7)
were constructed by me
N 1995. Here is how.
Let T° be a torus with
flat Spin(7)-structure
(20,90), and let I be a
finite group acting on T
preserving (£2p,g90). Then
T8/I is an orbifold.
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We choose I so that the
singularities of T8/I" are
locally modelled on C*/G,
for G C SU(4).

T hen we use complex
algebraic geometry to
resolve T3/I", giving a
compact 8-manifold M.
Finally we use analysis to
construct metrics on M
with holonomy Spin(7).
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A hew construction

We shall describe a new
way of making compact
3-manifolds with holon-
omy Spin(7), where we
start not with a torus T
but with a Calabi-Yau 4-
orbifold 'Y with isolated
singular points py, ..., pg.
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Instead of a group I we
use an antiholomorphic,
Isometric involution o on
Y fixing only the p;.
Then Z =Y/(o) is a real
S-orbifold with singular
points pq,...,pr. Ve
resolve the p; to get a
compact 8-manifold M,
and construct holonomy
Spin(7) metrics on M.
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Calabi-Yau orbifolds

A Calabi-Yau orbifold
IS @ compact complex
orbifold with a Kahler
metric of holonomy
SU(m). One can find
many examples using
algebraic geometry
and Yau's proof of
the Calabi conjecture.
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T he construction

Let Y be a Calabi-Yau
4-orbifold with only
ISsolated singular points
p1,---,PL, €ach modelled
on C%/Za, where the
generator of Za acts by
(21,--.,24) —
(iZl,iZQ,i23,iZ4).
We call this a singular
point of type z(1,1,1,1).
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Pick an antiholomorphic,
iIsometric involution o on
Y, fixing only pq1,...,pg,
and let Z = Y/{(o). As
SU(4) C Spin(7) and Y
has holonomy SU(4),
there is a torsion-free
Spin(7)-structure (€2,g) on
Y. We can choose (€2, g)
to be o-invariant, so (£2,9)
pushes down to Z. Thus
Z is a Spin(7)-orbifold.
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All the singularities p; of

Z are modelled on R8/@G,
where G=(a, o) iS a non-
abelian group of order 8,
and a, o act on R8=C*% by

o (z1,...,24) —
(iZl,iZQ,iZ3,iZ4),
o.(z1,...,24) —

(2?7__217547__23)'
There are two different
ways to resolve R8/G

within holonomy Spin(7).



The first way is to take
a crepant resolution W;
of C*/{a), and lift o to a
free antiholomorphic
involution of Wj.

Then X1=W;/(o) is a
resolution of R3/G. There
IS an ALE metric with
holonomy SU(4) on W4
which pushes down to a
metric on Wy /(o) with
holonomy Z» x SU(4).
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But there is a second
complex structure on RS,
soO that o Is holomorphic
and o anti-holomorphic.
Resolve C*/ (o) to get Wo,
lift o to Wo, and X, =
Ws/{a) is a resolution of
R3/G, with ALE metrics
of holonomy Z» x SU(4).
Note that we have used
two different inclusions of

Zo> x SU(4) in Spin(7).




We resolve each point p;
In Z using either X7 or
X»>, tO get a compact 8-
manifold M. Now Z, X4
and X» carry torsion-free
Spin(7)-structures.

We glue these together
to get a Spin(7)-structure
(24, g¢) on M fort € (0,¢),
with torsion O(t24/5).
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For small ¢t we can
deform (€24, ¢;) to a
torsion-free Spin(7)-
structure (€2,g) on M.
If we resolve using X1 for
all D then 7T1(M) = /5
and Hol(g) = Z>xSU(4).
It we use X, for any pj
then m1(M) = {1} and
Hol(g) = Spin(7). This
IS what we want.
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An example
Let Y be the degree
12 hypersurface in the
vveig hted projective space
CP111144 glven by

A A B

{[ZO,.. 25] ECP]_ 4 :
zc1)2——212—|—z 2—|—Z
+23423=0l
Then c1(Y) =0, so Y is
a Calabi-Yau 4-orbifold. It
has 3 singularities p1, po, p3,
of type 2(1,1,1,1).
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Define o : Y — Y by
20, ..,25] —

[Zla —20, 23, — 22, %5, 24]
Then o Is an anti-
holomorphic involution,
fixing only p1,po,p3. We
apply our construction to
Y and o, to get a com-
pact 8-manifold M with
holonomy Spin(7) and
Betti numbers b2 =0,
b3=0 and b*=2446.
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Conclusions

Using hypersurfaces in
other weighted projective
spaces, and dividing by
finite groups, we can find
many new examples of
compact 8-manifolds with
holonomy Spin(7). Here
are some of their Bettl
numbers.
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Betti numbers (b2, b3, b%)

(4,33,200) (3,33,202)
(2,33,204) (1,33,206)
(0, 33,208) (1,0, 908)

(0,0,910) (1,0,1292)
(0,0,1294) (1,0,2444)
(0, 0, 2446) (0,6,3730)
(0, 0, 4750) (0,0, 11 662)

Note that b* tends to be
rather large — bigger than
INn the first construction,
where b* ~ 100-200.
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