Constructing compact manifolds with exceptional holonomy

Dominic Joyce Oxford University England

Riemannian geometry Let M^n be a manifold of dimension n. Let $x \in M$. Then T_xM is the *tangent space* to M at x.

Let g be a Riemannian metric on M.

Let ∇ be the Levi-Civita connection of g. Let R(g) be the Riemann curvature of g.

Holonomy groups

Fix $x \in M$. The holonomy group Hol(q) of g is the set of isometries of $T_x M$ given by parallel trans*port* using ∇ about closed loops γ in M based at x. It is a subgroup of O(n). Up to conjugation, it is independent of the basepoint x.

Berger's classification

Let M be simply-connected and q be irreducible and nonsymmetric. Then Hol(g)is one of SO(m), U(m), SU(m), Sp(m), Sp(m)Sp(1)for m > 2, or G_2 or Spin(7). We call G_2 and Spin(7)the exceptional holonomy groups. Dim(M) is 7 when Hol(g) is G_2 and 8 when Hol(q) is Spin(7). 4

Understanding Berger's list

The four *inner product algebras* are

- \mathbb{R} real numbers.
- \mathbb{C} complex numbers.
- \mathbb{H} quaternions.
- \mathbb{O} octonions,

or Cayley numbers.

Here $\mathbb C$ is not ordered,

- $\mathbb H$ is not commutative,
- and \mathbb{O} is not associative.
- Also we have $\mathbb{C}\cong\mathbb{R}^2$, $\mathbb{H}\cong\mathbb{R}^4$
- and $\mathbb{O} \cong \mathbb{R}^8$, with $\operatorname{Im} \mathbb{O} \cong \mathbb{R}^7$.

Group	Acts on
SO(m)	\mathbb{R}^{m}
O(m)	\mathbb{R}^m
SU(m)	\mathbb{C}^m
U(m)	\mathbb{C}^m
Sp(m)	\mathbb{H}^m
Sp(m)Sp(1)	\mathbb{H}^m
G_2	$\operatorname{Im} \mathbb{O} \cong \mathbb{R}^7$
Spin(7)	$\mathbb{O}\cong\mathbb{R}^8$

Thus there are two holonomy groups for each of $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

The goal of the talk To discuss constructions of examples of compact manifolds of holonomy G_2 and Spin(7). Why is this difficult? In many problems in geometry the simplest examples are symmetric. But G_2 - and Spin(7)manifolds have no continuous symmetries.

7

Why is this interesting?

- Such manifolds are Ricci-flat.
- They are important to physicists working in String Theory.
- They have beautiful geometrical properties.

Geometry of G_2 The action of G_2 on \mathbb{R}^{\prime} preserves the metric g_0 and a 3-form φ_0 on \mathbb{R}^7 . Let g be a metric and φ a 3-form on M^7 . We call (φ, g) a G_2 -structure if $(\varphi, g) \cong (\varphi_0, g_0)$ at each $x \in M$. We call $\nabla \varphi$ the torsion of (φ, q) .

If $\nabla \varphi = 0$ then (φ, q) is torsion-free. Also $\nabla \varphi = 0$ iff $d\varphi = d^*\varphi = 0$. If (φ, g) is torsion-free then $Hol(q) \subset G_2$. Conversely, if g is a metric on M^7 then $Hol(g) \subseteq G_2$ iff there is a G_2 -structure (φ, q) with $\nabla \varphi = 0$. If M is compact and $Hol(g) \subseteq G_2$ then $Hol(g) = G_2$ iff $\pi_1(M)$ is finite.

The construction, 1

First we choose a compact 7-manifold M. We write down an explicit G_2 -structure (φ, g) on M with small torsion.

Then we use analysis to deform to a nearby G_2 structure ($\tilde{\varphi}, \tilde{g}$) with zero torsion. If $\pi_1(M)$ is finite then $\operatorname{Hol}(\tilde{g}) = G_2$ as we want.

The construction, 2

It is not easy to find G_2 -structures with small torsion! Here is one way to do it, in 4 steps. Step 1. Choose a finite group Γ of isometries of the 7-torus T^7 , and a flat, Γ -invariant G_2 -structure (φ_0, g_0) on T^7 . Then T^7/Γ is compact, with a torsionfree G_2 -structure (φ_0, g_0).

Step 2. However, T^7/Γ is an *orbifold*. We repair its singularities to get a compact 7-manifold M. We can resolve *complex* orbifolds using algebraic geometry.

If the singularities of T^7/Γ locally resemble $S^1 \times \mathbb{C}^3/G$ for $G \subset SU(3)$, then we model M on a crepant resolution X of \mathbb{C}^3/G . **Step 3.** M is made by gluing patches $S^1 \times X$ into T^7/Γ . Now X carries ALE metrics of holonomy SU(3). As $SU(3) \subset G_2$, these give torsion-free G_2 -structures on $S^1 \times X$.

We join them to (φ_0, g_0) on T^7/Γ to get a family $\{(\varphi_t, g_t) : t \in (0, \epsilon)\}$ of G_2 -structures on M. **Step 4.** This (φ_t, g_t) has $\nabla \varphi_t = O(t^4)$. So $\nabla \varphi_t$ is small for small t. But $R(q_t) = O(t^{-2})$ and the injectivity radius $\delta(q_t) =$ O(t), since g_t becomes singular as $t \rightarrow 0$. For small t we deform (φ_t, g_t) to $(\tilde{\varphi}_t, \tilde{g}_t)$ with $\nabla \tilde{\varphi}_t = 0$, using analysis. Then Hol $(\tilde{q}_t) = G_2$ if $\pi_1(M)$ is finite.

Steps in the analysis proof:

- Arrange that $d\varphi_t = 0$ and $d^*\varphi_t = d^*\psi_t$, where $\psi_t = O(t^4)$.
- Set $\tilde{\varphi}_t = \varphi_t + d\eta_t$, where $d^*\eta_t = 0$.
- Then $(\tilde{\varphi}_t, \tilde{g}_t)$ is torsion-free iff

 $(\mathsf{d}^*\mathsf{d}+\mathsf{d}\mathsf{d}^*)(\eta_t) = \mathsf{d}^*\psi_t + \mathsf{d}F(\mathsf{d}\eta_t),$

where F is nonlinear with $F(\chi) = O(|\chi|^2).$

 Integrating by parts gives $\|d\eta_t\|_{L^2} \le 2\|\psi_t\|_{L^2}$ when $\|d\eta_t\|_{C^0}$ is small. Solve by contraction method in $L_2^{14}(\Lambda^2 T^*M)$, using elliptic regularity of $d^*d + dd^*$, balls of radius t and Sobolev embedding.

The construction, 3 Using different groups Γ acting on T^7 or T^8 , and resolving T^k/Γ in more than one way, we get many compact manifolds with holonomy G_2 and Spin(7). We can generalize the construction by replacing T^7 or T^8 with another space made from a Calabi-Yau manifold.

18

Geometry of Spin(7)The action of Spin(7) on \mathbb{R}^8 preserves the metric g_0 and a 4-form Ω_0 on \mathbb{R}^8 . Let g be a metric and Ω a 4-form on M^8 . We call (Ω, q) a Spin(7)-structure if $(\Omega, g) \cong (\Omega_0, g_0)$ at each $x \in M$. We call $\nabla \Omega$ the torsion of (Ω, q) .

If $\nabla \Omega = 0$ then (Ω, g) is torsion-free. Also $\nabla \Omega = 0$ iff $d\Omega = 0$. If $\nabla\Omega = 0$ then $Hol(g) \subseteq Spin(7)$. If g is a metric on M^8 then $Hol(q) \subset Spin(7)$ iff there is a Spin(7)-structure (Ω, q) with $\nabla \Omega = 0$. If M is compact and $Hol(q) \subset Spin(7)$ then g has holonomy Spin(7) iff $\pi_1(M) = \{1\}, \hat{A}(M) = 1.$

Compact examples

The first examples of compact 8-manifolds with holonomy Spin(7)were constructed by me in 1995. Here is how. Let T^8 be a torus with flat Spin(7)-structure (Ω_0, g_0) , and let Γ be a finite group acting on T^8 preserving (Ω_0, g_0) . Then T^8/Γ is an orbifold.

We choose Γ so that the singularities of T^8/Γ are locally modelled on \mathbb{C}^4/G , for $G \subset SU(4)$.

Then we use complex algebraic geometry to resolve T^8/Γ , giving a compact 8-manifold M. Finally we use analysis to construct metrics on Mwith holonomy Spin(7).

A new construction

We shall describe a new way of making compact 8-manifolds with holonomy Spin(7), where we start not with a torus T^8 but with a *Calabi-Yau 4orbifold* Y with isolated singular points p_1, \ldots, p_k . Instead of a group Γ we use an antiholomorphic, isometric involution σ on Y fixing only the p_j . Then $Z = Y/\langle \sigma \rangle$ is a real 8-orbifold with singular points p_1, \ldots, p_k . We resolve the p_j to get a compact 8-manifold M, and construct holonomy Spin(7) metrics on M.

Calabi-Yau orbifolds A Calabi-Yau orbifold is a compact complex orbifold with a Kähler metric of holonomy SU(m). One can find many examples using algebraic geometry and Yau's proof of the Calabi conjecture.

The construction Let Y be a Calabi-Yau 4-orbifold with only isolated singular points p_1, \ldots, p_k , each modelled on $\mathbb{C}^4/\mathbb{Z}_4$, where the generator of \mathbb{Z}_4 acts by $(z_1,\ldots,z_4)\mapsto$ $(iz_1, iz_2, iz_3, iz_4).$

We call this a singular point of type $\frac{1}{4}(1, 1, 1, 1)$.

Pick an antiholomorphic, isometric involution σ on Y, fixing only p_1,\ldots,p_k , and let $Z = Y/\langle \sigma \rangle$. As $SU(4) \subset Spin(7)$ and Y has holonomy SU(4), there is a torsion-free Spin(7)-structure (Ω,q) on Y. We can choose (Ω, q) to be σ -invariant, so (Ω,q) pushes down to Z. Thus Z is a Spin(7)-orbifold.

27

All the singularities p_j of Z are modelled on \mathbb{R}^8/G , where $G = \langle \alpha, \sigma \rangle$ is a nonabelian group of order 8, and α, σ act on $\mathbb{R}^8 = \mathbb{C}^4$ by $\alpha : (z_1, \ldots, z_4) \mapsto$ $(iz_1, iz_2, iz_3, iz_4),$ $\sigma:(z_1,\ldots,z_4)\mapsto$ $(\overline{z}_2, -\overline{z}_1, \overline{z}_4, -\overline{z}_3).$ There are two different ways to resolve \mathbb{R}^8/G within holonomy Spin(7).

The first way is to take a crepant resolution W_1 of $\mathbb{C}^4/\langle \alpha \rangle$, and lift σ to a free antiholomorphic involution of W_1 . Then $X_1 = W_1 / \langle \sigma \rangle$ is a resolution of \mathbb{R}^8/G . There is an ALE metric with holonomy SU(4) on W_1 which pushes down to a metric on $W_1/\langle \sigma \rangle$ with holonomy $\mathbb{Z}_{2} \ltimes SU(4)$.

But there is a second complex structure on \mathbb{R}^8 . so that σ is holomorphic and α anti-holomorphic. Resolve $\mathbb{C}^4/\langle \sigma \rangle$ to get W_2 , lift α to W_2 , and $X_2 =$ $W_2/\langle \alpha \rangle$ is a resolution of \mathbb{R}^8/G , with ALE metrics of holonomy $\mathbb{Z}_2 \ltimes SU(4)$. Note that we have used two different inclusions of $\mathbb{Z}_2 \ltimes SU(4)$ in Spin(7).

30

We resolve each point p_j in Z using either X_1 or X_2 , to get a compact 8manifold M. Now Z, X_1 and X_2 carry torsion-free Spin(7)-structures.

We glue these together to get a Spin(7)-structure (Ω_t, g_t) on M for $t \in (0, \epsilon)$, with torsion $O(t^{24/5})$. For small t we can deform (Ω_t, g_t) to a torsion-free Spin(7)structure $(\tilde{\Omega}, \tilde{q})$ on M. If we resolve using X_1 for all p_j then $\pi_1(M) = \mathbb{Z}_2$ and $Hol(\tilde{g}) = \mathbb{Z}_2 \ltimes SU(4)$. If we use X_2 for any p_j then $\pi_1(M) = \{1\}$ and $Hol(\tilde{g}) = Spin(7)$. This is what we want.

An example Let Y be the degree 12 hypersurface in the weighted projective space $\mathbb{C}P^{5}_{1,1,1,1,4,4}$ given by $\{[z_0, \ldots, z_5] \in \mathbb{C}P_{1,\ldots,4}^{\mathsf{b}}\}$ $z_{0}^{12} + z_{1}^{12} + z_{2}^{12} + z_{3}^{12}$ $+z_4^3+z_5^3=0$ Then $c_1(Y) = 0$, so Y is a Calabi-Yau 4-orbifold. It has 3 singularities p_1, p_2, p_3 , of type $\frac{1}{4}(1, 1, 1, 1)$.

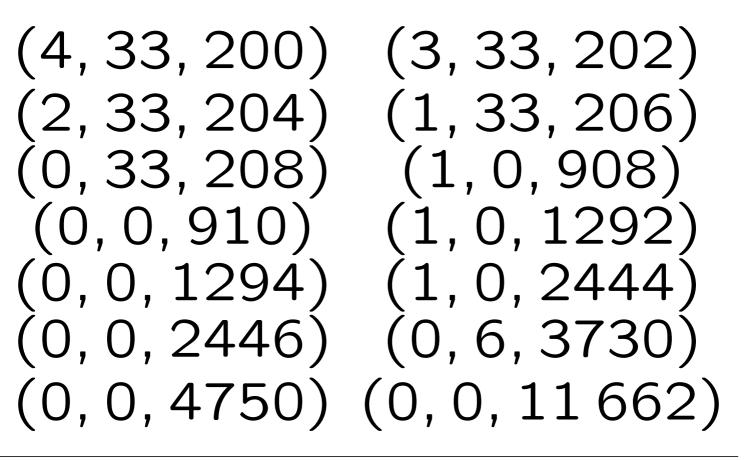
33

Define $\sigma: Y \to Y$ by $\sigma : [z_0, \ldots, z_5] \mapsto$ $[\bar{z}_1, -\bar{z}_0, \bar{z}_3, -\bar{z}_2, \bar{z}_5, \bar{z}_4].$ Then σ is an antiholomorphic involution, fixing only p_1, p_2, p_3 . We apply our construction to Y and σ , to get a compact 8-manifold M with holonomy Spin(7) and Betti numbers $b^2 = 0$. $b^3 = 0$ and $b^4 = 2446$.

Conclusions

Using hypersurfaces in other weighted projective spaces, and dividing by finite groups, we can find many new examples of compact 8-manifolds with holonomy Spin(7). Here are some of their Betti numbers.

Betti numbers (b^2, b^3, b^4)



Note that b^4 tends to be rather large — bigger than in the first construction, where $b^4 \approx 100-200$.

36