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Riemannian geometry

Let Mn be a manifold of
dimension n. Let x∈M .
Then TxM is the tangent
space to M at x.
Let g be a Riemannian
metric on M .
Let ∇ be the Levi-Civita
connection of g.
Let R(g) be the
Riemann curvature of g.
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Holonomy groups

Fix x∈M .The holonomy
group Hol(g) of g is the
set of isometries of TxM
given by parallel trans-
port using ∇ about closed
loops γ in M based at x.
It is a subgroup of O(n).
Up to conjugation, it is
independent of the base-
point x.
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Berger’s classification

Let M be simply-connected
and g be irreducible and
nonsymmetric.Then Hol(g)
is one of SO(m), U(m),
SU(m), Sp(m), Sp(m)Sp(1)
for m ≥ 2, or G2 or Spin(7).
We call G2 and Spin(7)
the exceptional holonomy
groups. Dim(M) is 7 when
Hol(g) is G2 and 8 when
Hol(g) is Spin(7).
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Understanding Berger’s list

The four inner product algebras are

R — real numbers.

C — complex numbers.

H — quaternions.

O — octonions,

or Cayley numbers.

Here C is not ordered,

H is not commutative,

and O is not associative.

Also we have C ∼= R2, H ∼= R4

and O ∼= R8, with ImO ∼= R7.
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Group Acts on

SO(m) Rm

O(m) Rm

SU(m) Cm

U(m) Cm

Sp(m) Hm

Sp(m)Sp(1) Hm

G2 ImO ∼= R7

Spin(7) O ∼= R8

Thus there are two holonomy

groups for each of R,C,H,O.
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The goal of the talk
To discuss constructions
of examples of compact
manifolds of holonomy
G2 and Spin(7).
Why is this difficult?
In many problems in
geometry the simplest
examples are symmetric.
But G2- and Spin(7)-
manifolds have no
continuous symmetries.
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Why is this interesting?
• Such manifolds are
Ricci-flat.

•They are important
to physicists working
in String Theory.

•They have beautiful
geometrical properties.
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Geometry of G2

The action of G2 on R7

preserves the metric g0
and a 3-form ϕ0 on R7.
Let g be a metric and
ϕ a 3-form on M7. We
call (ϕ, g) a G2-structure
if (ϕ, g) ∼= (ϕ0, g0) at each
x ∈ M . We call ∇ϕ the
torsion of (ϕ, g).
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If ∇ϕ = 0 then (ϕ, g) is
torsion-free. Also ∇ϕ=0
iff dϕ = d∗ϕ = 0. If
(ϕ, g) is torsion-free then
Hol(g)⊆G2. Conversely,
if g is a metric on M7

then Hol(g)⊆G2 iff there
is a G2-structure (ϕ, g)
with ∇ϕ = 0. If M is
compact and Hol(g)⊆G2
then Hol(g)=G2 iff
π1(M) is finite.
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The construction, 1

First we choose a
compact 7-manifold M .
We write down an explicit
G2-structure (ϕ, g) on M
with small torsion.
Then we use analysis to
deform to a nearby G2-
structure (ϕ̃, g̃) with zero
torsion. If π1(M) is
finite then Hol(g̃)=G2
as we want.
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The construction, 2

It is not easy to find
G2-structures with small
torsion! Here is one way
to do it, in 4 steps.
Step 1. Choose a finite
group Γ of isometries of
the 7-torus T7, and a flat,
Γ-invariant G2-structure
(ϕ0, g0) on T7. Then T7/Γ
is compact, with a torsion-
free G2-structure (ϕ0, g0).
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Step 2. However, T7/Γ
is an orbifold. We repair
its singularities to get a
compact 7-manifold M .
We can resolve complex
orbifolds using algebraic
geometry.
If the singularities of T7/Γ
locally resemble S1×C3/G
for G ⊂ SU(3), then we
model M on a crepant
resolution X of C3/G.
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Step 3. M is made by
gluing patches S1×X into
T7/Γ. Now X carries ALE
metrics of holonomy SU(3).
As SU(3)⊂G2, these give
torsion-free G2-structures
on S1 ×X.
We join them to (ϕ0, g0)
on T7/Γ to get a
family

{
(ϕt, gt) : t ∈ (0, ε)

}

of G2-structures on M .
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Step 4. This (ϕt, gt) has
∇ϕt = O(t4). So ∇ϕt is
small for small t. But
R(gt) = O(t−2) and the
injectivity radius δ(gt) =
O(t), since gt becomes
singular as t → 0.
For small t we deform
(ϕt, gt) to (ϕ̃t, g̃t) with
∇ϕ̃t = 0, using analysis.
Then Hol(g̃t)=G2 if
π1(M) is finite.
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Steps in the analysis proof:
• Arrange that dϕt = 0
and d∗ϕt = d∗ψt, where
ψt = O(t4).

• Set ϕ̃t = ϕt+dηt, where
d∗ηt = 0.

•Then (ϕ̃t, g̃t) is
torsion-free iff

(d∗d+dd∗)(ηt) = d∗ψt+dF (dηt),

where F is nonlinear with

F (χ) = O
(
|χ|2

)
.
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• Integrating by parts gives
‖dηt‖L2 ≤ 2‖ψt‖L2 when
‖dηt‖C0 is small.

• Solve by contraction
method in L14

2 (Λ2T ∗M),
using elliptic regularity
of d∗d + dd∗,
balls of radius t and
Sobolev embedding.
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The construction, 3

Using different groups Γ
acting on T7 or T8, and
resolving T k/Γ in more
than one way, we get many
compact manifolds with
holonomy G2 and Spin(7).
We can generalize the
construction by replacing
T7 or T8 with another
space made from a
Calabi-Yau manifold.
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Geometry of Spin(7)

The action of Spin(7) on
R8 preserves the metric
g0 and a 4-form Ω0 on R8.
Let g be a metric and Ω
a 4-form on M8. We call
(Ω, g) a Spin(7)-structure
if (Ω, g) ∼= (Ω0, g0) at each
x ∈ M . We call ∇Ω the
torsion of (Ω, g).
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If ∇Ω = 0 then (Ω, g) is
torsion-free. Also ∇Ω=0
iff dΩ = 0. If ∇Ω = 0
then Hol(g)⊆Spin(7). If
g is a metric on M8 then
Hol(g)⊆Spin(7) iff there
is a Spin(7)-structure
(Ω, g) with ∇Ω=0. If
M is compact and
Hol(g) ⊆ Spin(7) then g
has holonomy Spin(7) iff
π1(M)={1}, Â(M)=1.
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Compact examples

The first examples of
compact 8-manifolds
with holonomy Spin(7)
were constructed by me
in 1995. Here is how.
Let T8 be a torus with
flat Spin(7)-structure
(Ω0, g0), and let Γ be a
finite group acting on T8

preserving (Ω0, g0). Then
T8/Γ is an orbifold.
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We choose Γ so that the
singularities of T8/Γ are
locally modelled on C4/G,
for G ⊂ SU(4).
Then we use complex
algebraic geometry to
resolve T8/Γ, giving a
compact 8-manifold M .
Finally we use analysis to
construct metrics on M
with holonomy Spin(7).
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A new construction

We shall describe a new
way of making compact
8-manifolds with holon-
omy Spin(7), where we
start not with a torus T8

but with a Calabi-Yau 4-
orbifold Y with isolated
singular points p1, . . . , pk.
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Instead of a group Γ we
use an antiholomorphic,
isometric involution σ on
Y fixing only the pj.
Then Z = Y/〈σ〉 is a real
8-orbifold with singular
points p1, . . . , pk. We
resolve the pj to get a
compact 8-manifold M ,
and construct holonomy
Spin(7) metrics on M .
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Calabi-Yau orbifolds

A Calabi-Yau orbifold
is a compact complex
orbifold with a Kähler
metric of holonomy
SU(m). One can find
many examples using
algebraic geometry
and Yau’s proof of
the Calabi conjecture.
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The construction

Let Y be a Calabi-Yau
4-orbifold with only
isolated singular points
p1, . . . , pk, each modelled
on C4/Z4, where the
generator of Z4 acts by
(z1, . . . , z4) 7→

(iz1, iz2, iz3, iz4).
We call this a singular
point of type 1

4(1,1,1,1).
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Pick an antiholomorphic,
isometric involution σ on
Y , fixing only p1, . . . , pk,
and let Z = Y/〈σ〉. As
SU(4) ⊂ Spin(7) and Y
has holonomy SU(4),
there is a torsion-free
Spin(7)-structure (Ω,g) on
Y . We can choose (Ω, g)
to be σ-invariant, so (Ω,g)
pushes down to Z. Thus
Z is a Spin(7)-orbifold.
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All the singularities pj of
Z are modelled on R8/G,
where G=〈α, σ〉 is a non-
abelian group of order 8,
and α, σ act on R8=C4 by
α : (z1, . . . , z4) 7→

(iz1, iz2, iz3, iz4),
σ : (z1, . . . , z4) 7→

(z̄2,−z̄1, z̄4,−z̄3).
There are two different
ways to resolve R8/G
within holonomy Spin(7).

28



The first way is to take
a crepant resolution W1
of C4/〈α〉, and lift σ to a
free antiholomorphic
involution of W1.
Then X1=W1/〈σ〉 is a
resolution of R8/G.There
is an ALE metric with
holonomy SU(4) on W1
which pushes down to a
metric on W1/〈σ〉 with
holonomy Z2 n SU(4).
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But there is a second
complex structure on R8,
so that σ is holomorphic
and α anti-holomorphic.
Resolve C4/〈σ〉 to get W2,
lift α to W2, and X2 =
W2/〈α〉 is a resolution of
R8/G, with ALE metrics
of holonomy Z2nSU(4).
Note that we have used
two different inclusions of
Z2 n SU(4) in Spin(7).
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We resolve each point pj
in Z using either X1 or
X2, to get a compact 8-
manifold M . Now Z, X1
and X2 carry torsion-free
Spin(7)-structures.
We glue these together
to get a Spin(7)-structure
(Ωt, gt) on M for t ∈ (0, ε),
with torsion O(t24/5).
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For small t we can
deform (Ωt, gt) to a
torsion-free Spin(7)-
structure (Ω̃, g̃) on M .
If we resolve using X1 for
all pj then π1(M) = Z2
and Hol(g̃) = Z2nSU(4).
If we use X2 for any pj
then π1(M) = {1} and
Hol(g̃) = Spin(7). This
is what we want.
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An example
Let Y be the degree
12 hypersurface in the
weighted projective space
CP5

1,1,1,1,4,4 given by
{
[z0, . . . , z5] ∈ CP5

1,...,4 :

z12
0 +z12

1 +z12
2 +z12

3
+z3

4+z3
5=0

}
.

Then c1(Y ) = 0, so Y is
a Calabi-Yau 4-orbifold. It
has 3 singularities p1, p2, p3,
of type 1

4(1,1,1,1).
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Define σ : Y → Y by
σ : [z0, . . . , z5] 7→
[z̄1,−z̄0, z̄3,−z̄2, z̄5, z̄4].

Then σ is an anti-
holomorphic involution,
fixing only p1, p2, p3. We
apply our construction to
Y and σ, to get a com-
pact 8-manifold M with
holonomy Spin(7) and
Betti numbers b2=0,
b3=0 and b4=2446.
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Conclusions

Using hypersurfaces in
other weighted projective
spaces, and dividing by
finite groups, we can find
many new examples of
compact 8-manifolds with
holonomy Spin(7). Here
are some of their Betti
numbers.
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Betti numbers (b2, b3, b4)

(4, 33, 200) (3, 33, 202)
(2, 33, 204) (1, 33, 206)
(0, 33, 208) (1, 0, 908)
(0, 0, 910) (1, 0, 1292)
(0, 0, 1294) (1, 0, 2444)
(0, 0, 2446) (0, 6, 3730)
(0, 0, 4750) (0, 0, 11 662)

Note that b4 tends to be
rather large — bigger than
in the first construction,
where b4 ≈ 100-200.
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