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1. Introduction

Let X be a Calabi–Yau 3-fold, and A =

coh(X) the abelian category of coherent

sheaves on X. Write K(A) for the nu-

merical Grothendieck group of A. If E is a

coherent sheaf on X, write [E] for its class

in K(A). The Chern character ch(E) lies

in Heven(X;Q). It descends to a group

morphism ch : K(A) → Heven(X;Q). So

K(A) is a finite rank lattice Zn, a sub-

group of Heven(X;Q). The Euler form is

χ : K(A) ×K(A) → Z, antisymmetric and

biadditive. Using Serre duality gives

dimHom(E, F )− dimExt1(E, F )

−dimHom(F, E)+dimExt1(F, E)=χ([E], [F ]).
(1)
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Choose an ample line bundle L on X. This

induces a notion of Gieseker stability on

A = coh(X). Write τ for the stability con-

dition coming from L. It depends on L, so

a different ample line bundle L̃ induces a

different stability condition τ̃ .

Given α ∈ K(A), we can form the moduli

spaces Mα
st(τ),Mα

ss(τ) of τ-(semi)stable

sheaves E in A with [E] = α in K(A). We

can regard these as schemes, with points

of Mα
ss(τ) being S-equivalence classes of

τ-semistable sheaves, rather than isomor-

phism classes. Alternatively, we can re-

gard them as Artin stacks, as open con-

structible subsets in the moduli stack M

of all coherent sheaves.
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Donaldson–Thomas invariants DTα(τ) are

integer-valued invariants ‘counting’ τ-(semi)

stable sheaves in class α ∈ K(A). They are

defined only in the case when Mα
st(τ) =

Mα
ss(τ), that is, when there are no strictly

semistable sheaves in class α.

The interesting property of Donaldson–

Thomas invariants is that they are un-

changed by continuous deformations of the

underlying Calabi–Yau 3-fold X, that is,

they are independent of the complex struc-

ture J of X up to deformation. This is

a strong statement, as deforming X can

change A and Mα
st(τ) radically.

Until now, it was not known how DTα(τ)

depends on τ , that is, on the choice of

ample line bundle L.
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Kai Behrend showed that DTα(τ) can be

written as a weighted Euler characteristic

DTα(τ) =
∫

Mα
st(τ)

ν dχ, (2)

where ν is the ‘microlocal function’, a Z-

valued constructible function on Mα
st(τ)

depending only on the scheme structure

of Mα
st(τ). We think of ν as a multiplic-

ity function. If Mα
st(τ) is a k-fold point

SpecC[z]/(zk) then ν ≡ k. If Mα
st(τ) is

smooth of dimension d then ν ≡ (−1)d.
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In a series of previous papers, I defined a

different set of invariants Jα(τ) ∈ Q ‘count-

ing’ τ-semistable sheaves in class α. They

are defined for all α ∈ K(A), including

classes with strictly semistables. If Mα
st(τ)

= Mα
ss(τ) then Jα(τ) is the (unweighted)

Euler characteristic χ
(
Mα

st(τ)
)
∈ Z.

The important property of the Jα(τ) is

that their transformation law under change

of stability condition is known: we can

write Jα(τ̃) as a sum of products of Jβ(τ),

with combinatorial coefficients.

However, the Jα(τ) are not invariant under

deformations of the underlying Calabi-Yau

3-fold. This is because they do not count

points in Mα
st(τ) with multiplicity, so a k-

fold point SpecC[z]/(zk) in Mα
st(τ) would

contribute 1 to Jα(τ), for instance.

6



The goal of the project
We will define a family of generalized D–
T invariants D̄Tα(τ) ∈ Q defined for all
α ∈ K(A), combining the good properties
of both the D–T invariants DTα(τ), and
my invariants Jα(τ). That is:
• D̄Tα(τ) is unchanged by deformations of
the underlying Calabi–Yau 3-fold.
• IfMα

st(τ) = Mα
ss(τ) then D̄Tα(τ) = DTα(τ).

• The D̄Tα(τ) transform according to a
known transformation law under change of
stability condition. (As for the Jα(τ), but
with sign changes).
The general method is fairly obvious: we
define D̄Tα(τ) by inserting Behrend’s mi-
crolocal function ν as a weight in the def-
inition of my Jα(τ), so that the D̄Tα(τ)
count sheaves with the correct multiplic-
ity. But the details are complex.
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2. Constructible functions on stacks

Fix K algebraically closed of characteristic

zero. Artin K-stacks F are a very gen-

eral kind of space in algebraic geometry.

They include K-schemes. Write F(K) for

the set of geometric points of F. Each

x ∈ F(K) has a stabilizer group IsoK(x), an

algebraic K-group, with IsoK(x) = {1} if F

is a scheme. Examples are quotient stacks

[X/G], for X a K-scheme acted on by an

algebraic K-group G.

Call S ⊆ F(K) constructible if S =
⋃n

i=1 Gi(K)

for finite type K-substacks Gi ⊆ F.

Call f : F(K) → Q constructible if f(F(K))

is finite and f−1(c) is constructible for all

0 6= c ∈ Q. Write CF(F) for the Q-algebra

of constructible functions on F.
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For φ : F → G a finite type 1-morphism

and f ∈ CF(G) define the pullback φ∗(g) =

g ◦ φ∗, where φ∗ : F(K) → G(K). Then φ∗ :

CF(G) → CF(F) is a Q-algebra morphism,

and (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.
Defining pushforwards is more difficult. Let

φ : F → G be a representable morphism

(injective on stabilizer groups). Define

CFstk(φ) : CF(F) → CF(G) by

(
CFstk(φ)f

)
(y) =

∫

φ−1∗ (y)
mφ · fdχ,

integrating using Euler characteristic as

measure, where

mφ(x) = χ
(
IsoK(φ∗(x))/φ∗(IsoK(x))

)
.
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Constructible functions on stacks satisfy:

• To each K-stack F with affine stabilizers,

associate a Q-algebra CF(F).

• Constructible S ⊆ F(K) have character-

istic functions δS ∈ CF(F).

• To each finite type 1-morphism φ : F →
G associate a pullback algebra morphism

φ∗ : CF(G) → CF(F), with (ψ◦φ)∗ = φ∗◦ψ∗.
• To each representable 1-morphism φ :

F → G associate a linear pushforward

CFstk(φ) : CF(G) → CF(F), with

CFstk(ψ ◦ φ) = CFstk(ψ) ◦CFstk(φ).

• In a Cartesian square of Artin K-stacks

E η
//

θ²²

G
ψ

²²

F
φ

// H,

the following

commutes:

CF(E)
CFstk(η)

//CF(G)

CF(F)
CFstk(φ)

//

θ∗
OO

CF(H).
ψ∗

OO
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3. Stack functions

Stack functions are a universal theory with

this package of properties. Fix an alge-

braically closed field K. Let F be an Artin

K-stack with affine stabilizers. Consider

pairs (R, ρ), where R is finite type with

affine stabilizers and ρ : R → F a repre-

sentable 1-morphism. Call (R, ρ), (R′, ρ′)
equivalent if there is a 1-isomorphism ι :

R → R′ with ρ′ ◦ ι and ρ 2-isomorphic 1-

morphisms R → F.

Write [(R, ρ)] for the equivalence class of

(R, ρ). Define SF(F) to be the Q-vector

space generated by such [(R, ρ)] with for

each closed K-substack S of R a relation

[(R, ρ)] = [(S, ρ|S)] + [(R \S, ρ|R\S)].
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Define multiplication ‘ · ’ on SF(F) by

[(R, ρ)] · [(S, σ)] = [(R×ρ,F,σ S, ρ ◦ πR)].

For G ⊆ F a finite type K-substack with

inclusion ι : G → F define the characteristic

function δ̄G(K) = [(G, ι)].

For φ : F → G of finite type define the

pullback φ∗ : SF(G) → SF(F) by

φ∗ : [(R, ρ)] 7→ [(R×ρ,G,φ F, πF)].

For φ : F → G representable define the

pushforward φ∗ : SF(F) → SF(G) by

φ∗ : [(R, ρ)] 7→ [(R, φ ◦ ρ)].

These satisfy the same properties as the

constructible functions operations. When

charK=0, define πstk
F :SF(F)→CF(F) by

πstk
F : [(R, ρ)] 7→ CFstk(ρ)1,

Then πstk
F takes ‘ · ’,δ̄S,φ∗, φ∗ on SF(· · · ) to

‘ · ’,δS,φ∗, φ∗ on CF(· · · ).
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4. ‘Virtual rank’ and projections Πvi
n

If G is an algebraic K-group, it has a max-
imal torus TG, unique up to conjugation.
The rank of G is the dimension of TG. So
GL(n,K) has rank n, for instance.
For n > 0 we can define projections Πvi

n :
SF(F) → SF(F) which project to stack func-
tions with ‘virtual rank n’. The rough idea
is this: if Πvi

n takes [R, ρ] to [Rn, ρ], where
Rn is the substack of points in R whose
stabilizer groups have rank n. In fact this
is true only if the stabilizer groups of R are
abelian.
These satisfy (Πvi

n )2 = Πvi
n , so that Πvi

n is
a projection, and Πvi

m ◦ Πvi
n = 0 for m 6= n.

They commute with pushforwards.
The Πvi

n are important for Ringel–Hall al-
gebras because they have a deep compat-
ibility with the Ringel–Hall multiplication.
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If R is a quotient stack [X/G] and G has

maximal torus TG and Weyl group W (G, TG),

then Πvi
n ([R, ρ]) has a complicated expres-

sion

Πvi
n

(
[(R, ρ)]

)
=

∫

t∈TG

|{w ∈ W (G, TG) : w · t = t}|
|W (G, TG)|

[(
[X{t}/CG({t})], ρ ◦ ι{t}

)]
dµn,

where X{t} is the subscheme of X fixed

by t, and CG({t}) the subgroup of G com-

muting with t, and µn is a certain measure

on constructible subsets of TG. See the

handout for more details.
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5. Ringel–Hall algebras
of constructible functions

Let X be a Calabi–Yau 3-fold, and A =
coh(X). Write M for the moduli stack of
objects in A, and Exact for the moduli stack
of exact sequences 0 → E1 → E2 → E3 →
0 in A. There are 1-morphisms πj : Exact →
M projecting 0 → E1 → E2 → E3 → 0 to
Ej for j = 1,2,3.
Define a binary operation ∗ on CF(M) by

f ∗ g = CFstk(π2)
(
(π1 × π3)

∗(f ⊗ g)
)
.

Essentially, this says that

(f ∗ g)(E2) =
∫

0→E1→E2→E3→0

f(E1)g(E3)dχ,

integrating over exact sequences w.r.t. the
Euler characteristic.
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Then ∗ is associative. We prove this using
diagrams of Cartesian squares of stacks in-
volving M, Exact, and the Cartesian square
property of CF stk in §2.
Write CF ind(M) for the subspace of f in
CF(M) supported on indecomposables, that
is, f(E) = 0 unless E is indecomposable
(E 6= 0, E 6∼= E1 ⊕ E2 for E1, E2 6= 0;
equivalently, Aut(E) has rank 1.) Then
CF ind(M) is a Lie subalgebra of CF(M)
under the Lie bracket [f, g] = f ∗ g − g ∗ f .
To see this, note that f ∗g is supported on
E with one or two indecomposable factors,
and for E1, E2 indecomposable

(f∗g)(E1⊕E2) = f(E1)g(E2)+f(E2)g(E1),

symmetric in f, g, so [f, g](E1 ⊕ E2) = 0.
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6. Ringel–Hall algebras
of stack functions

Similarly, define a binary operation ∗ on
SF(M) by

f ∗ g = (π2)∗
(
(π1 × π3)

∗(f ⊗ g)
)
.

This is associative, by the same proof as
for CF(M).
The analogue of constructible functions
supported on indecomposables is stack func-
tions with virtual rank 1, that is f ∈ SF(M)
with Πvi

1 (f) = f . (Actually, need to re-
strict to stack functions ‘with algebra sta-
bilizers’ SFal(M), but ignore this.) De-
fine SFind(M) = {f ∈ SF(M) : Πvi

1 (f) =
f}. Then SFind(M) is a Lie subalgebra of
SF(M) with [f, g] = f ∗ g−g ∗f . The proof
is complicated: it involves a deep compat-
ibility between ∗ and Πvi

n .
πstk

M : SF(M)→ CF(M) is an algebra mor-

phism, and takes SFind(M) to CF ind(M).
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Let τ be a stability condition on A = coh(X),
e.g. Gieseker stability. For α ∈ K(A),
write Mα

ss(τ) for the substack of M of τ-
semistable sheaves in class α. Write δα

ss(τ)
for the characteristic function of Mα

ss(τ) in
CF (M). Write δ̄α

ss(τ) for the stack func-
tion [(Mα

ss(τ), inc)] in SF(M).
For α ∈ C(A), define

εα(τ) =
∑

α1,...,αn∈C(A):
α1+···+αn=α,
τ(αi)=τ(α), ∀i

(−1)n−1

n
·

δ
α1
ss (τ) ∗ · · · ∗ δαn

ss (τ).
(3)

This is invertible combinatorially: we have

δα
ss(τ) =

∑

α1,...,αn∈C(A):
α1+···+αn=α,
τ(αi)=τ(α), ∀i

1

n!
·

εα1(τ) ∗ · · · ∗ εαn(τ).
(4)

Similarly, define stack functions ε̄α(τ) in
SF(M) by the analogue of (3) using δ̄

αi
ss(τ);

they satisfy the analogue of (4).
18



For [E] ∈ M(K) in class α ∈ K(A) we have

• εα(τ)([E]) = 1 if E is τ-stable,

• εα(τ)([E]) = 0 is E is τ-unstable

or decomposable,

• εα(τ)([E]) ∈ Q if E is strictly

τ-semistable and indecomposable.

Hence εα(τ) is supported on indecompos-

ables, so εα(τ) lies in the Lie algebra

CFind(M). Also ε̄α(τ) lies in the Lie al-

gebra SFind(M). (Proof very nontrivial.)

The δα
ss(τ), ε

α(τ) and δ̄α
ss(τ), ε̄

α(τ) satisfy

many interesting universal algebra identi-

ties in CF(M),SF(M). Those involving

only the εα(τ), ε̄α(τ) can be written as Lie

algebra identities. For example, there are

change of stability condition formulae writ-

ing δα
ss(τ̃), . . . , ε̄

α(τ̃) in terms of δ
β
ss(τ), . . . ,

ε̄β(τ) for two stability conditions τ̃ , τ .
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7. Algebra morphisms from
Ringel–Hall algebras

The heart of the Kontsevich–Soibelman
paper, as Tom told us, is this: let X be a
Calabi-Yau 3-fold over K. Let Υ be a mul-
tiplicative motivic invariant of quasiprojec-
tive K-varieties taking values in a commu-
tative Q-algebra Λ. Suppose Υ(K) = ℘2

for some ℘ ∈ Λ with ℘ and ℘2k − 1 invert-
ible in Λ for k = 1,2, . . .. For example, let
Υ(Y ) be the virtual Poincaré polynomial
PY (t), Λ = Q(t) be rational functions in t,
and ℘ = t.
Define a Λ-algebra A(X) to have Λ-basis
aα for α ∈ K(A), and multiplication

aα ? aβ = ℘χ(α,β)aα+β.

Conjecture (K–S). There is a natural al-
gebra morphism Φ : SF(M) → A(X).
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That is, Φ is a morphism from a very

large, universal algebra SF(M) to a much

smaller, explicit algebra A(X). We could

define motivic Donaldson–Thomas invari-

ants DTα
Υ(τ) ∈ Λ by Φ(δ̄α

ss(τ)) = DTα
Υ(τ)aα.

Then as Φ is an algebra morphism, identi-

ties on the δ̄α
ss(τ) in SF(M), such as change

of stability condition, translate to multi-

plicative identities on the DTα
Υ(τ).

However, this approach does not work when

Υ is the Euler characteristic, since Υ(K) =

℘2 = 1, so ℘2k − 1 is not invertible.

In general, morphisms from Ringel–Hall (Lie)

algebras to smaller, explicit (Lie) algebras

are a powerful way of defining invariants

with multiplicative properties – see my con-

figurations papers.
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8. A Lie algebra morphism
Ψ : SFind(M) → C(X)

Define a Q-Lie algebra C(X) to have basis,
as a Q-vector space, symbols cα for α ∈
K(A), and Lie bracket

[cα, cβ] = χ(α, β) cα+β, (5)

where χ is the Euler form. As χ is antisym-
metric this satisfies the Jacobi identity. In
my configurations paper II (2005) I defined
a Lie algebra morphism Ψ : SFind(M) →
C(X) by Ψ(f) =

∑
α∈K(A) χ(f |Mα

A)c
α,

where Mα is the substack of sheaves in
class α in M, and χ is a kind of stack-
theoretic Euler characteristic.
Here χ is not easy to define. The natu-
ral Euler characteristic of a quotient stack
[X/G] should be χ([X/G]) = χ(X)/χ(G),
but χ(G) = 0 for any algebraic group of
positive rank, so we have to divide by zero.
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The point about SFind(M) is that we can
write f ∈ SFind(M) using only [X/G] with
rank(G) = 1, and then set χ([X/G]) =
χ(X)/χ(G/C×), where C× is the maximal
torus of G, and χ(G/C×) 6= 0.
Using the Calabi-Yau 3-fold property, equa-
tion (1), we can show that Ψ : SFind(M)
→ C(X) is a Lie algebra morphism.
We then define invariants Jα(τ) ∈ Q by
Ψ(εα(τ)) = Jα(τ)cα for all α ∈ K(A).
Since the εα(τ) satisfy a universal trans-
formation law in the Lie algebra SFind(M)
under change of stability condition, and
Ψ is a Lie algebra morphism, the images
Jα(τ)cα satisfy the same transformation
law in the Lie algebra C(X).
Note that the Jα(τ) do not count sheaves
with multiplicity, as Ψ does not include
Behrend functions. So they will not be
unchanged under deformations of X.
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9. Another Lie algebra morphism
Ψ̃ : SFind(M) → C̃(X)

We can now explain our new work. We
want to modify the Lie algebra morphism
Ψ by inserting Behrend’s microlocal func-
tion ν as a weight in its definition of Ψ,
to get a new Lie algebra morphism Ψ̃. As
ν is a ‘multiplicity function’, the new gen-
eralized D–T invariants D̄Tα(τ) we define
using Ψ̃ will count sheaves with multiplic-
ity, and so they will be unchanged under
deformations of X.
Surprisingly, we also have to change the
signs in the Lie algebra C(X).
Define a Lie algebra C̃(X) to have basis,
as a Q-vector space, symbols c̃α for α ∈
K(A), and Lie bracket

[c̃α, c̃β] = (−1)χ(α,β)χ(α, β) c̃α+β, (6)

which is (5) with an extra factor (−1)χ(α,β).
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Define a linear map Ψ̃ : SFind(M) → C̃(X)
by Ψ̃(f) =

∑
α∈K(A) χ(f |Mα

A, ν)c̃α, where

χ(· · · , ν) is χ weighted by ν.
Theorem. Ψ̃ : SFind(M) → C̃(X) is a Lie
algebra morphism.
This follows from my previous proof that
Ψ is a Lie algebra morphism, together with
two multiplicative identities for the Behrend
function ν, that is

ν(E1 ⊕ E2) = (−1)χ([E1],[E2])ν(E1)ν(E2), (7)∫

ε∈P (Ext1(E2,E1))
ν(F )dχ−

∫

ε∈P (Ext1(E1,E2))
ν(F )dχ = (8)

(
dimExt1(E2, E1)−dimExt1(E1, E2)

)
ν(E1⊕E2),

where in the first integral in (8), F is de-
fined in terms of ε such that the exact
sequence 0 → E1 → F → E2 → 0 corre-
sponds to ε ∈ P (Ext1(E2, E1)), and simi-
larly for the second integral.
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10. Proving the Behrend

function identities (7),(8)

Let F be a C-scheme or Artin C-stack, lo-

cally of finite type. The Behrend function

νF is a Z-valued constructible function on

F which measures the ‘multiplicity’ of F

at each point. In general it is difficult to

compute. But there is a special case in

which we can give an explicit formula for

νF: suppose F is a C-scheme, U is a com-

plex manifold, f : U → C is holomorphic,

and F is locally isomorphic (in the analytic

topology) to Crit(f) as a complex analytic

space. Then

νF(x) = (−1)dimU
(
1− χ(MFf(x))

)
,

with MFf(x) the Milnor fibre of f at x.
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Our proof of (7),(8) involves first showing

that we can write an atlas for the moduli

stack M of coherent sheaves on a Calabi–

Yau 3-fold X over C in the form Crit(f) lo-

cally in the analytic topology, for f a holo-

morphic function on a complex manifold

U . Note that f, U are not algebraic, they

are constructed by transcendental, gauge-

theoretic methods. Our proof works only

over C, not for more general fields K.
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The proof has three steps:
(a) Show that the moduli stack M of co-
herent sheaves on X is locally isomorphic
(in the Zariski topology) to the moduli
stack Vect of vector bundles on X. (This
works for Calabi–Yau m-folds X over K for
any m,K.)
(b) Show that an atlas for Vect near [E]
can be locally written in the form Crit(f)
for f : U → C, where f, U are invariant
under at least the maximal compact sub-
group of Aut(E).
(c) Prove (7),(8) using an atlas near E =
E1⊕E2 and localizing under the action of
the U(1) group {idE1

+λ idE2
: λ ∈ U(1)}.
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For (a), one uses Fourier–Mukai transforms (Seidel–

Thomas twists) to show the local equivalence of

moduli of sheaves and vector bundles. Seidel–

Thomas twists work for all Calabi-Yau m-folds, X.

Given an integer n, the Seidel–Thomas twist with

OX(−n), Tn, is the Fourier-Mukai transform from

D(X) to D(X) with kernel:

cone(OX(n) £OX(−n) → O∆).

Given E ∈ M. For large enough n, F = Tn(E) is a

sheaf and we have:

0 → F → OX(−n)⊗H0(E(n)) → E → 0.

To show local isomorphisms of moduli at E and F ,

one needs to check that Tn induces an equivalence

of functors between DefE and DefF over the cate-

gory of noetherian henselian local K-algebras with

residue field K (the category of analytic germs at

a point).
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Then we can define Tn inductively, with integers

n1, . . . , nm. Let Fi = Tni ◦ Tni−1 . . . ◦ Tn1(E). Then

we get an exact sequence:

0 → Fm → OX(−nm)⊗H0(Fm−1(m)) →
. . . → OX(−n1)⊗H0(E(n1)) → E → 0

By the Hilbert Syzygy Theorem, Fm is a vector

bundle.
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For (b), we use an idea of Richard Thomas.

Let E → X be a fixed complex (not holo-

morphic) vector bundle. The holomor-

phic structures on E are ∂̄-operators ∂̄E :

C∞(E) → C∞(E ⊗C Λ0,1T ∗X). The set of

such ∂̄-operators is an infinite-dimensional

affine space A. A ∂̄-operator ∂̄E is a holo-

morphic structure iff the (0,2)-curvature

∂̄2
E is zero. Gauge transformations G =

C∞(Aut(E)) act on A. Thus, the mod-

uli space (stack) of holomorphic structures

on E up to isomorphisms is

ME = {∂̄E ∈ A : ∂̄2
E = 0}/G.

Richard observed that {∂̄E ∈ A : ∂̄2
E = 0}

is Crit(CS), in some infinite-dimensional

manifold sense, where CS : A → C is the

holomorphic Chern–Simons functional.
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To prove (b), we show that an atlas for

Vect near (E, ∂̄E) can be written locally as

Crit(CS|U), where U is a finite-dimensional

complex submanifold of A, which is roughly

speaking transverse to the orbit of G through

∂̄E. We use results of Miyajima and others

which locally identify the moduli spaces of

holomorphic structures on E, and of ana-

lytic vector bundles on X, and of algebraic

vector bundles on X.
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To prove (c): let E = E1 ⊕ E2 be a co-

herent sheaf on X. Then (a),(b) show

that we can write an atlas for M near E

as Crit(f) near 0, where f is a holomor-

phic function defined near 0 on Ext1(E1⊕
E2, E1 ⊕ E2), and f is invariant under the

action of T = {idE1
+λ idE2

: λ ∈ U(1)} on

Ext1(E1 ⊕ E2, E1 ⊕ E2) by conjugation.

The fixed points of T on Ext1(E1⊕E2, E1⊕
E2) are Ext1(E1, E1) ⊕ Ext1(E2, E2), and

that the restriction of f to these fixed

points is f1 + f2, where fj is defined near

0 in Ext1(Ej, Ej), and Crit(fj) is an atlas

for M near Ej.
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The Milnor fibre MFf(0) is invariant under

T , so by localization we have

χ(MFf(0))=χ(MFf(0)T)=χ(MFf1+f2(0)).

The Thom–Sebastiani theorem gives

1− χ(MFf1+f2(0)) = (1− χ(MFf1(0))

(1− χ(MFf2(0)).

Equation (7) then follows easily from

νM(E) = (−1)dimExt1(E,E)−dimHom(E,E)

(1− χ(MFf(0)),

and the analogues for E1, E2. Equation

(8) uses a more involved argument to do

with Milnor fibres of f at non-fixed points

of the U(1)-action.
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11. Generalized D–T invariants
We then define invariants D̄Tα(τ) ∈ Q by
Ψ̃(εα(τ)) = D̄Tα(τ)c̃α for all α ∈ K(A).
Since Ψ̃ is a Lie algebra morphism, and
the εα(τ) satisfy a universal transformation
law under change of stability condition, it
follows that the D̄Tα(τ) satisfy a known
transformation law under change of sta-
bility condition. When Mα

st(τ) = Mα
ss(τ)

we have εα(τ) = δ
α
ss(τ), giving

D̄Tα(τ) =
∫

Mα
st(τ)

ν dχ = DTα(τ) (9)

by (2). Thus, the D̄Tα(τ) are generaliza-
tions of Donaldson–Thomas invariants.
It remains to show that the D̄Tα(τ) are
unchanged under deformations of the
underlying Calabi–Yau 3-fold X.
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In algebraic geometry, to get invariants invariant

under deformation, one uses intersection numbers,

because of the law of ”conservation of numbers”.

It is more or less standard now to use virtual funda-

mental class and perfect obstruction theory to get

counting invariants from moduli spaces which are

invariant under deformation (Li–Tian, Behrend–

Fantechi).

One needs dimAut to be constant to have per-

fectness. For our moduli space, Mα
ss, the deforma-

tion/obstruction at a point [E] is given by Exti(E, E).

The infinitesimal automorphism is given by Hom(E, E).

When E is stable, dimHom(E, E) = 1. When E is

strictly semistable, dimHom(E, E) ≥ 1.
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One can also try to rigidify Mα
ss to a moduli of

sheaves with extra structures. A natural choice is

the moduli of stable pairs M
α,n
stp which parametrizes

equivalence classes of non-zero stable pairs. A pair

of class (α, n) is a morphism: s : OX(−n) → E

where E is a coherent sheaf of class α.

Let τ(E) = PE(m)
rank(E) be the Gieseker stability on co-

herent sheaves, then τ ′(s) = PE(m)+q
rank(E) with rational

number q is the new stability condition on pairs.

Note that the stability condition depends on a pa-

rameter q. We can pick q for 0 < q ¿ 1 so that if

a pair is stable then E is Gieseker semistable. And

if a pairs is semistable, then it is stable. Conse-

quently, we have

π : M
α,n
stp → Mα

ss,

where π is the forgetful map. Here π is surjective

and smooth. And M
α,n
stp is a fine moduli scheme.

In fact, M
α,n
stp is an atlas for Mα

ss.
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The deformation/obstruction theory of

I : OX(−n) → E

is governed by Exti(I, E), i = −1,0, . . .. It is not

perfect. It is the idea of PT to replace Exti(I, E) by

Exti(I, I), which is perfect and symmetric. Exti(I, I)
is the deformation theory of I as complexes. PT

can identify arbitrary infinitesimal deformation of

I as pairs with deformations as complexes. We

can’t do that. Instead, we show that deformation

spaces are isomorphic and the obstruction space of

pairs maps injectively into the obstruction space of

complexes. These facts come from a long exact

sequence obtained by applying Hom(I, ∗) to

I→ OX(−n) → E

38



// Ext−1(I, E)

// Hom(I, I) // Hom(I,OX(−n)) // Hom(I, E)

// Ext1(I, I) // Ext1(I,OX(−n)) // Ext1(I, E)

// Ext2(I, I).

Here, Ext−1(I, E) = 0, because of stability. Also

Hom(I, I) ∼= Hom(I,OX(−n)) ∼= H0(OX)

and

Ext1(I,OX(−n)) = H1(OX) = 0

by assumption. Therefore, Hom(I, E) ∼= Ext1(I, I)
and Ext1(I, E) maps injectively into Ext2(I, I).
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Consequently, Exti(I, I) gives us a symmetric per-

fect obstruction theory in the sense of [BF] on

M
α,n
stp . The resulting virtual class has dimension

zero. We can define invariants of stable pairs us-

ing the virtual fundamental class.

PIα,n =
∫

[Mα,n
stp ]vir

1 = χ(Mα,n
stp , νM

α,n
stp

).

We can do everything in families, so we get defor-

mation invariance.
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Write PIα(N, τ) ∈ Z for the invariant count-

ing pairs (E, s) with E a semistable sheaf

in class α and s ∈ H0(E ⊗LN), for N À 0,

where L is the ample line bundle used to

define τ . Yinan has proved that PIα(N, τ)

is unchanged by deformations of X.

We claim that PIα(N, τ) can be written in

terms of the D̄Tβ(τ) by

PIα(N, τ) =
∑

α1,...,αn∈K(A):
α1+···+αn=α,
τ(αi)=τ(α) ∀i

(−1)n

n!

n∏

i=1

(−1)χ([L−N ]−α1−···−αi−1,αi)·
χ([L−N ]− α1 − · · · − αi−1, αi)D̄Tαi(τ).

(10)
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To prove (10) for fixed N À 0 we in-
troduce an auxiliary abelian category B,
whose objects are triples (V, E, φ) for V a
finite-dimensional C-vector space, E a co-
herent sheaf, and φ : V → H0(E ⊗ LN) a
linear map. Then K(B) = Z⊕K(A), with
[(V, E, φ)] = (dimV, [E]). If α ∈ K(A) then
objects in class (1, α) in B are (V, E, φ) with
dimV = 1 and [E] = α, so we can identify
V = C and φ with φ(1) = s ∈ H0(E ⊗LN).
Thus, objects in class (1, α) are pairs (E, s)
of the kind PIα(N, τ) counts.
From τ on A we produce two stability con-
ditions τ ′, τ ′′ on B. Elements (0, E,0) in
class (0, α) are τ ′- and also τ ′′-(semi)stable
iff E is τ-(semi)stable. Also (C,0,0) is
both τ ′- and also τ ′′-stable. All (C, E, s) for
E 6= 0 are τ ′-unstable, and are τ ′′-stable iff
(E, s) is a τ-stable pair in Yinan’s sense.
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We can now make invariants D̄T (k,α)(τ ′),
D̄T (k,α)(τ ′′) in B as for D̄Tα(τ) in A. We

find that D̄T (1,0)(τ ′) = 1, and for α 6= 0 in

K(A) we have D̄T (0,α)(τ ′) = D̄Tα(τ) and

D̄T (1,α)(τ ′) = 0.

Similarly D̄T (1,0)(τ ′′) = 1, and for α 6= 0

in K(A) we have D̄T (0,α)(τ ′′) = D̄Tα(τ)

and D̄T (1,α)(τ ′′) = PIα(N, τ). Using the

change of stability condition formula in B
to write D̄T (1,α)(τ ′′) in terms of D̄T (0,β)(τ ′),
D̄T (1,β)(τ ′) yields (10).
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Finally, we note that (10) implies that

PIα(N, τ) = (−1)χ([L−N ],α)χ([L−N ], α)D̄Tα(τ)+· · · ,

where the lower order terms ‘· · · ’ involve

only D̄Tβ(τ) with dimβ = dimα and

rankβ < rankα.

Also χ([L−N ], α) = dimH0(E ⊗ LN) > 0

for N À 0. Thus, fixing dimα and arguing

by induction on rankα, since PIα(N, τ) is

deformation-invariant, we see that D̄Tα(τ)

is deformation-invariant.
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Integrality properties of the invariants
Suppose E is stable and rigid in class α.
Then kE = E⊕· · ·⊕E is strictly semistable
in class kα, for k > 2. Calculations show
that E contributes 1 to D̄Tα(τ), and kE

contributes 1/k2 to D̄T kα(τ). So we do
not expect the D̄Tα(τ) to be integers, in
general.
Define new invariants KSα(τ) ∈ Q by

D̄Tα(τ) =
∑

k>1:k divides α

1

k2
KSα/k(τ).

Then the kE for k > 1 above contribute 1
to KSα(τ) and 0 to KSkα(τ) for k > 1.

Conjecture. Suppose τ is generic, in the
sense that τ(α) = τ(β) implies χ(α, β) =
0. Then KSα(τ) ∈ Z for all α ∈ K(A).

These KSα(τ) may coincide with invari-
ants conjectured by Kontsevich–Soibelman,
and in String Theory should perhaps be in-
terpreted as ‘numbers of BPS states’.
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