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II.1. Introduction
Let Y be an orbifold and R a Q-
algebra. We will define Kuranishi
homology KH∗(Y ;R), a homology
theory of Y with coefficients in R.
It is the homology of a chain com-
plex

(
KC∗(Y ;R), ∂

)
, spanned by iso-

morphism classes [X, f , G] of triples
(X, f , G), for X a compact, oriented
Kuranishi space with boundary and
corners, f : X → Y a strongly smooth
map, and G some gauge-fixing data
for (X, f). The boundary operator
is

∂ : [X, f , G] 7→ [∂X, f |∂X, G|∂X].
For Kuranishi cohomology, we add
co-gauge-fixing data C.

2



II.2. Why we need gauge-fixing

data

A näıve guess for how to define Ku-

ranishi homology is to take chains

KCna
k (Y ;R) spanned over R by

[X, f], where X is a compact, ori-

ented Kuranishi space with bound-

ary and corners, vdimX =k, and ∂ :

KCna
k (Y ;R) → KCna

k−1(Y ;R) to be

∂ : [X, f] 7→ [∂X, f |∂X], and

KHna∗ (Y ;R) to be the homology of
(
KCna∗ (Y ;R), ∂

)
. Unfortunately this

yields KHna∗ (Y ;R) = {0} for all Y, R.

Here is an example which shows why.
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Take Y to be a point {0}, and for
any Kuranishi space X write π :
X → Y for the trivial projection.
Let L → CP1 be the line bundle
O(1). Define a compact, oriented
Kuranishi space Xk for k ∈ Z to
be CP1 with global Kuranishi neigh-
bourhood (CP1, Lk,0, idCP1), with

obstruction bundle Lk → CP1. Then
vdimXk=0, and ∂Xk=∅, so [Xk, π]
defines a class

[
[Xk, π]

]∈KHna
0 (Y ;R).

We shall show that
[
[Xk, π]

]
=

k
[
[Y, idY ]

]
, and that

[
[Xk, π]

]
is inde-

pendent of k. Thus
[
[Y, idY ]

]
= 0.

But this is the identity in
KHna∗ (Y ;R), so KHna∗ (Y ;R) = {0}.
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When k > 0 we can choose a generic
smooth section s of Lk → CP1 which
has exactly k zeroes x1, . . . , xk, each
of multiplicity 1. Let t be the co-
ordinate on [0,1]. Then ts is a
section of Lk → [0,1] × CP1, with
(ts)−1(0)={0}×CP1∪[0,1]×{x1, . . . ,

xk}, and
(
[0,1]×CP1, Lk, ts, id(ts)−1(0)

)

is a Kuranishi neighbourhood on
(ts)−1(0), making it a Kuranishi
space of virtual dimension 1. By
taking the boundary of this we find

[
[Xk, π]

]
=

[
[{x1, . . . , xk}, π]

]

= k
[
[Y, idY ]

]

in KHna
0 (Y ;R).
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Write [z0, z1] for the homogeneous

coordinates on CP1, and define

V =
{
(t, [z0, z1]) ∈ R× CP1 :

min(|z0|2, |z1|2)max(|z0|2, |z1|2)−16 t 62
}
.

Then V is a compact oriented 3-

manifold with corners, and ∂V is

the disjoint union of three pieces, a

copy of CP1 with t = 2, the hemi-

sphere H+ =
{
[z0, z1] ∈ CP1 : |z0| 6

|z1|
}

with t = |z0|2/|z1|2, and the

hemisphere H− =
{
[z0, z1] ∈ CP1 :

|z0| > |z1|
}
with t = |z1|2/|z0|2.

6



Define the Kuranishi space Wk for

k ∈ Z to be V with Kuranishi neigh-

bourhood (V, π∗(Lk),0, idV ), where

π : V → CP1 is the projection. De-

fine Kuranishi spaces X+, X− to be

H+, H− with Kuranishi neighbour-

hoods (H±, L0,0, idH±). Now the

line bundles Lk → H± are for k ∈ Z
are isomorphic to L0 → H±. Thus

there is an isomorphism of oriented

Kuranishi spaces ∂Wk
∼= Xkq−X+q

−X−, so in KHna
0 (Y ;R) we have

[
[Xk, π]

]
=

[
[X+, π] + [X−, π]

]
,

and
[
[Xk, π]

]
is independent of k.
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It follows easily that KHna∗ (Y ;R) =
{0} for all Y, R. What went wrong?

The problem is with the Kuranishi
space C = ∂X+ = −∂X−. This
is a compact Kuranishi space with
vdimC = −1, topological space S1,
obstruction bundle R2 × S1 → S1,
and obstruction map s ≡ 0. It has a
large automorphism group, includ-
ing automorphisms which fix S1 but
act on the obstruction bundle R2×
S1 by a map S1 → SO(2) of degree
d ∈ Z. By cutting Xk into X+qX−
along C, ‘twisting’ C by such an
automorphism, and gluing X+, X−
together again we can make Xk+d.
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The problem is caused by chains
[X, f] with infinite automorphism
groups. So, we add extra data G

to chains to make Aut(X, f , G) fi-
nite, even if Aut(X, f) is infinite.
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II.3. Gauge-fixing data
Chains in KCk(Y ;R) will be R-linear
combinations of isomorphism classes
[X, f , G], where X is a compact, ori-
ented Kuranishi space with corners,
vdimX = k, f : X → Y is strongly
smooth, and G is a (very nonunique)
choice of gauge fixing data for (X, f).
Here are the most important prop-
erties of G:
(a) Every (X, f) has a (nonunique)
choice of gauge-fixing data G.
(b) The automorphism group
Aut(X, f , G) is finite for all (X, f , G).
(c) If G is gauge-fixing data for (X, f),
it has a restriction G|∂X, which is
gauge-fixing data for (∂X, f |∂X).
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(d) There is a natural, orientation-

reversing involution σ : ∂2X → ∂2X.

Suppose H is gauge-fixing data for

(∂X, f |∂X). Then there exists gauge-

fixing data G for (X, f) with G|∂X =

H iff H|∂2X is invariant under σ.

(e) There are good, functorial no-

tions of products, pushforwards, and

pullbacks of (co-)gauge-fixing data,

as one needs to make cup and cap

products, pushforwards, and pull-

backs in (co)homology work at the

(co)chain level.
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It does not matter exactly what

(co-)gauge-fixing data is, as long

as it has these properties (a)–(e).

My definition of gauge-fixing data

G for (X, f) involves a finite cover

of X by Kuranishi neighbourhoods

(V i, Ei, si, ψi) for i ∈ I, and finite

maps Gi : Ei → R∞ for i ∈ I, satis-

fying complex conditions. The fact

that the Gi are finite maps (that is,

(Gi)−1(p) is finite for all p ∈ R∞)

ensures that Aut(X, f , G) is finite.
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II.4. Kuranishi homology
Let Y be an orbifold. Consider
triples (X, f , G), for X a compact
oriented Kuranishi space, f : X →
Y strongly smooth, and G gauge-
fixing data for (X, f). Write [X, f , G]
for the isomorphism class of (X, f , G).
Let R be a Q-algebra.
For each k ∈ Z, define KCk(Y ;R)
to be the R-module of finite R-linear
combinations of [X, f , G] with
vdimX = k, with the relations:
(i) Write −X for X with the
opposite orientation. Then

[X, f , G] + [−X, f , G] = 0
in KCk(Y ;R), for all [X, f , G].
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(ii) Suppose there exists an isomor-

phism (a, b) : (X, f , G) → (X, f , G)

which reverses the orientation of X.

Then [X, f , G] = 0 in KCk(Y ;R).

(iii) Let [X, f , G] be an isomorphism

class. Suppose that X may be writ-

ten as a disjoint union X = X+ q
X− of compact oriented Kuranishi

spaces in a way compatible with G.

Then in KCk(Y ;R) we have

[X, f , G] =

[X+, f |X+
, G|X+

] + [X−, f |X−, G|X−].
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(iv) Suppose Γ is a finite subgroup

of Aut(X, f , G). Then X̃ = X/Γ is a

compact oriented Kuranishi space,

with π : X → X̃, and f , G push down

to π∗(f), π∗(G). We require that

[
X/Γ, π∗(f), π∗(G)

]
= 1

|Γ|
[
X, f , G

]

in KCk(Y ;R).

We must take R to be a Q-algebra

so that 1/|Γ| makes sense in R.

Elements of KCk(Y ;R) will be called

Kuranishi chains.

15



Define the boundary operator ∂ or
∂k : KCk(Y ;R) → KCk−1(Y ;R) by

∂ :
∑

a∈A ρa[Xa, fa, Ga] 7−→
∑

a∈A ρa[∂Xa, fa|∂Xa, Ga|∂Xa],

where A is a finite indexing set and
ρa ∈ R for a ∈ A. Using a natural
orientation-reversing involution σ :
∂2Xa → ∂2Xa and relation (ii), we
find that ∂2 = 0.

— Explain σ on the board —
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Define the kth Kuranishi homology

group KHk(Y ;R) to be

Ker
(
∂k : KCk(Y ;R) → KCk−1(Y ;R)

)

Im
(
∂k+1 : KCk+1(Y ;R) → KCk(Y ;R)

) .

Let Y, Z be orbifolds, and h : Y → Z

a smooth map. Define the pushfor-

ward h∗ : KCk(Y ;R) → KCk(Z;R)

on Kuranishi chains by

h∗ : [X, f , G] 7→ [X, h ◦ f , h∗(G)].

Then h∗ ◦ ∂ = ∂ ◦ h∗, so h∗ induces

h∗ : KHk(Y ;R) → KHk(Z;R) on

Kuranishi homology.
17



II.5. Isomorphism with Hsi∗ (Y ;R)

For k > 0, the k-simplex ∆k is

∆k =
{
(x0, . . . , xk) ∈ Rk+1 : xi > 0,

x0 + . . . + xk = 1
}
.

Let Y be an orbifold, and R a Q-

algebra. Write Csi
k (Y ;R) for the R-

module spanned by smooth maps

σ : ∆k → Y . By identifying ∂∆k

with the disjoint union of k+1 copies

of ∆k−1 we define ∂ : Csi
k (Y ;R) →

Csi
k−1(Y ;R). Singular homology

Hsi∗ (Y ;R) is the homology of
(
Csi∗ (Y ;R), ∂

)
.
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We define a morphism
ΠKh

si : Csi
k (Y ;R) → KCk(Y ;R) by

ΠKh
si :

∑

a∈A
ρaσa 7→ ∑

a∈A
ρa

[
∆k, σa, G∆k

]
.

Here G∆k
is an explicit choice of

gauge-fixing data for (∆k, σa). Then
∂ ◦ ΠKh

si = ΠKh
si ◦ ∂, and so ΠKh

si in-
duces R-module morphisms

ΠKh
si : Hsi

k (Y ;R) → KHk(Y ;R).
Our main result is:
Theorem 1. For Y an orbifold and
R a Q-algebra, ΠKh

si : Hsi
k (Y ;R) →

KHk(Y ;R) is an isomorphism.
This shows Kuranishi homology can
be used instead of singular homol-
ogy in applications, e.g. G–W the-
ory, Lagrangian Floer homology.
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To prove Theorem 1 we must

construct an inverse

(ΠKh
si )−1 : KHKh

k (Y ;R) → Hsi
k (Y ;R).

Basically this is a virtual cycle

construction: (ΠKh
si )−1 should take

[X, f , G] to a virtual chain for X.

We use some ideas of Fukaya–Ono.

However, ensuring the virtual chains

are functorial, and compatible at

boundary and corners of X, makes

the proof very complex and diffi-

cult. A lot of the technical issues

in [FOOO] are transferred to the

proof of Theorem 1 in my set-up.
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We prove Theorem 1 by taking a
class α in KHk(Y ;R) and represent-
ing it by cycles with better and bet-
ter properties, until we get a
cycle in the image of ΠKh

si .
It is essential in the proof that R is
a Q-algebra, and that Aut(X, f , G)
is always finite as in II.3(b) above.
Some steps in the proof involve mod-
ifying [X, f , G] somehow, and then
averaging this over Aut(X, f , G) to
get something with the original sym-
metry group. Symmetries are im-
portant as they represent choices
in the way you can identify chains,
and so in how chains can cancel.
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II.6. Kuranishi cohomology
In Kuranishi homology we used triples
(X, f , G), in which f : X → Y was
strongly smooth, X was oriented,
and G was gauge-fixing data. For
Kuranishi cohomology we use triples
(X, f , C), in which f : X → Y is a
strong submersion, (X, f) is coori-
ented, and C is co-gauge-fixing data.
Here a coorientation of a (strong)
submersion is a relative orientation.
If f : X → Y is a submersion of
manifolds, then a coorientation is
an orientation on the fibres of the
vector bundle Ker

(
df : TX → f∗(TY )

)

over X.
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Let Y be an orbifold. Consider triples

(X, f , C), for X a compact Kuran-

ishi space, f : X → Y a cooriented

strong submersion, and C co-gauge-

fixing data for (X, f). Write [X, f , C]

for the isomorphism class of (X, f , C).

Let R be a Q-algebra.

For each k ∈ Z, define KCk(Y ;R)

to be the R-module of finite R-linear

combinations of [X, f , C] with

vdimX = dimY − k, with the ana-

logues of relations (i)–(iv) in §II.4.
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Define d or dk : KCk(Y ;R) →
KCk+1(Y ;R) by

d :
∑

a∈A ρa[Xa, fa, Ca] 7−→
∑

a∈A ρa[∂Xa, fa|∂Xa, Ca|∂Xa].

Then d2 = 0.

Define the kth Kuranishi cohomol-

ogy group KHk(Y ;R) to be

Ker
(
dk : KCk(Y ;R) → KCk+1(Y ;R)

)

Im
(
dk−1 : KCk−1(Y ;R) → KCk(Y ;R)

) .
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Remarks. In general, homology or
bordism involves structures on X,
such as orientations, and cohomol-
ogy or cobordism involves the cor-
responding relative structures for f :
X → Y , such as coorientations.
Also note: for manifolds X, Y , if
f : X → Y is a submersion, then
dimX > dimY . So if we defined
KCk(Y ;R) using [X, f, C] for X a
manifold with dimX = dimY −k, f
a submersion then KCk(Y ;R) = 0
for k > 0, which would be no use.
However, if X is a Kuranishi space
and f : X → Y a strong submersion,
can have vdimX < dimY . Strong
submersions are easy to produce.
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Let Y, Z be orbifolds, and h : Y → Z

a smooth map. Define the pull-
back h∗ : KCk(Z;R) → KCk(Y ;R)
on Kuranishi chains by

h∗ : [X, f , C] 7→ [Y×h,Z,fX, πY , h∗(C)].

Here Y ×h,Z,f X is the fibre product
of Kuranishi spaces, defined as f

is a strong submersion. The coori-
entation for (X, f) pulls back to a
coorientation for (Y ×h,Z,f X, πY ).
Then h∗ ◦ d = d ◦ h∗, so h∗ induces
h∗ : KHk(Z;R) → KHk(Y ;R) on
Kuranishi cohomology.
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Define a cup product KCk(Y ;R)×
KCl(Y ;R) → KCk+l(Y ;R) by

[X, f , C] ∪ [X̃, f̃ , C̃] =
[
X ×

f ,Y,f̃
X̃, πY , C ×Y C̃

]
,

using fibre products of Kuranishi
spaces. This is associative and su-
percommutative, at the cochain level,
and compatible with d, so it in-
duces ∪ : KHk(Y ;R)×KHl(Y ;R) →
KHk+l(Y ;R).
Define cap products the same way.
Note: products of co-gauge-fixing
data C ×Y C̃ are very nontrivial – it
was difficult to make them associa-
tive and commutative.
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II.7. Poincaré duality
Now suppose Y is oriented, of di-
mension n. For k ∈ Z define
ΠKh

Kch :KCk(Y ;R)→KCn−k(Y ;R) by

ΠKh
Kch : [X, f , C] 7→ [X, f , GC],

where GC is gauge-fixing data for
(X, f) defined using C (involves an
extra choice), and the combining
the coorientation for (X, f) and the
orientation on Y gives an orienta-
tion on X. Then ∂ ◦ΠKh

Kch = ΠKh
Kch ◦

d, so they induce morphisms
ΠKh

Kch : KHk(Y ;R) → KHn−k(Y ;R).
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We can construct an inverse for ΠKh
Kch

on (co)homology. On (co)chains
we can’t define ΠKch

Kh : [X, f , G] 7→
[X, f , CG], since f may not be a
strong submersion. Instead we de-
fine ΠKch

Kh : KCn−k(Y ;R) → KCk(Y ;R)
by ΠKch

Kh : [X, f , G] 7→ [XY , fY , CY
G].

Here XY is X with a new Kuranishi
structure, and fY : XY → Y is a
strong submersion, a modified ver-
sion of f. Basically, we add a copy
of f∗(TY ) to both tangent and ob-
struction bundles of X.
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Then d◦ΠKch
Kh = ΠKch

Kh ◦∂, so they in-

duce morphisms on (co)homology

ΠKch
Kh : KHn−k(Y ;R) → KHk(Y ;R).

Theorem 2. For Y an oriented n-

orbifold and R a Q-algebra, ΠKh
Kch :

KHk(Y ;R) → KHn−k(Y ;R) and

ΠKch
Kh : KHn−k(Y ;R) → KHk(Y ;R)

are inverse, so they are both iso-

morphisms.

This is Poincaré duality for Kuran-

ishi (co)homology.
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Now for Y an oriented n-orbifold

and R a Q-algebra we have

Hsi
n−k(Y ;R) ∼= Hk

cs(Y ;R), where

H∗
cs(Y ;R) is compactly-supported

cohomology. Combining this with

Theorems 1 and 2 gives Hk
cs(Y ;R)

∼= KHk(Y ;R). We can remove the

assumption Y oriented, giving:

Corollary 3. For Y an orbifold and

R a Q-algebra, we have Hk
cs(Y ;R) ∼=

KHk(Y ;R), with KHk(Y ;R) = 0

for k < 0.
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Note: we get compactly-supported
cohomology as chains are [X, f , C]
with X compact, so supported in a
compact set f(X).
By comparing cup product with the
intersection product on Hsi∗ (Y ;R)
for Y oriented, we can prove:
Theorem 4. The isomorphisms
Hsi∗ (Y ;R) ∼= KH∗(Y ;R), H∗

cs(Y ;R)
∼= KH∗(Y ;R) identify the cup and
cap products on H∗

cs(Y ;R), Hsi∗ (Y ;R)
with those on KH∗(Y ;R), KH∗(Y ;R).
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II.8. Conclusions.

Kuranishi (co)homology is well

adapted for use in symplectic ge-

ometry, because we can turn mod-

uli spaces of J-holomorphic curves

M with evaluation maps ev : M→
Y directly into (co)chains [M, ev, G]

or [M, ev, C] just by choosing (co-)

gauge-fixing data G, C. There is

no need to perturb moduli spaces.

Choosing (co-)gauge-fixing data is

a much milder process, there is no

problem in making infinitely many

compatible choices.
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Also, Kuranishi (co)homology is very

well behaved at the cochain level,

with cup products that are every-

where defined, associative, and

supercommutative on Kuranishi

cochains. This is useful in Lagrangian

Floer cohomology, in which the mod-

uli spaces M are Kuranishi spaces

with boundary and corners, and the

boundary ∂M is written as a dis-

joint union
∐
M′,M′′±M′ ×L M′′ of

fibre products M′ ×L M′′ of other

curve moduli spaces M′,M′′.
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We translate this into an exact

algebraic identity on Kuranishi

cochains, roughly of the form

d[M, ev, C] =
∑

M′,M′′
±[M′, ev′, C′] ∪L [M′′, ev′′, C′′].

We can then define a geometric A∞
algebra directly on the completed

Kuranishi cochains K̂C∗(Y ; Λnov),

bypassing many steps in [FOOO].
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