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III.1. Introduction

In LectureIl, I explained how to de-
fine Kuranishi (co)homology K Hy,
KH*(Y;R) for R a Q-algebra. We
have KH.(Y;R) £ H3(Y;R), sin-
gular homology, and KH*(Y; R) =
Hi(Y; R), compactly-supported
cohomology.

We now discuss how to define Ku-
ranishi (co)homology theories which
work for R any commutative ring,
such as R = 7Z, not just Q-algebras,
and are isomorphic to HS(Y: R),
H(Y; R). We call these effective
Kuranishi (co)homology KHE'(Y; R),
KH(Y; R).



These (co)homology theories will
be useful for studying integrality
questions, for instance, under what
circumstances Gromov—Witten in-
variants can be defined in H*(M; Z)
rather than H*(M; Q), and the Inte-
grality Conjecture for Gopakumar—
Vafa invariants.

However, there are disadvantages
to working over Z. Some good prop-
erties of Kuranishi (co)homology can
only work over a Q-algebra, so any
theory which works over Z will not
have them.



Features of Kuranishi
(co)homology which

cannot work over R = Z

e Let X be a compact oriented Ku-
ranishi space without boundary, and
f . X — Y strongly smooth. Then
there exists gauge-fixing data G for
(X,f), and [X, f,G] is a cycle in
Kuranishi homology. he homol-
ogy class |[X, f,G]| € KH«(Y;Q) is
identified with the virtual class of

(X, £).




If X has nontrivial orbifold groups,
virtual classes are generally defined
only over Q, not Z. S0 we cannot
form [[X, f,G]] € KHE' (Y Z).
Conclusion: in effective Kuranishi
(co)homology, not all Kuranishi
spaces are allowed as (co)chains;
there must be restrictions on the
orbifold groups and orbifold strata.
So, can't use every curve moduli
space as a (co)chain, there will be
restrictions.



e Kuranishi cochains KC*(Y; R) have
a cup product U which is associa-
tive and supercommutative.

Now Steenrod squares are invari-
ants in algebraic topology defined
using the failure of the cup product
for H*(Y;Z) to be supercommu-
tative at the cochain level. They
iImply that it iIs not possible to de-
fine a cohomology theory comput-
ing H*(Y;Z) with a supercommu-
tative cup product on cochains.
Conclusion: on effective Kuranishi
cochains, the cup product cannot
be supercommutative.



Parts of the proof of KH.(Y; R)
=~ [HS(Y:R) which require R a
Q-algebra

In proving KH«(Y;R) £ HS(Y:; R)
we used Q C R in two different ways:
(a) Relation (iv) in KC«(Y; R) says
that if ' is a finite subgroup of
Aut(X, f,G) then

X/T (), m(@)] = [ X, £, 6.
This makes sense only if 1/|I"| € R,
so Q C R.



We use (iv) like this: given an arbi-
trary chain [X, f,G] we ‘cut’ X into
small pieces X., c € C with X, =
X/, for X. a Kuranishi space with
trivial stabilizers (i.e. all orbifold
groups are {1}). Then we replace

> [X& I e Gc] by > 1/“_0‘[)307 fca Gc]
ceC ) ceC .
Conclusion: we can’'t use relation

(iv) in effective Kuranishi (co)hom-
ology.



(b) At various points in the proof
we have to modify chains [X, f, G]
to perturb them into manifolds, tri-
angulate by simplices, etc. These
modifications must be preserved by
the symmetries Aut(X, f,G). But
this is not always possible with just
one modification. So we choose
an arbitrary modification, and then
average over its images under
Aut(X, f,G). To average we divide
by |Aut(X, f,G)]|. Thus need
1/|Aut(X, f,G)| € R, so Q C R.
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Note: This was why we needed
Aut(X, f, G) finite, so why we intro-
duced gauge-fixing data. Also, this
IS the same reason Fukaya—Ono use
multisections, not single-valued
sections.

Conclusion. We need to ensure
Aut(X, f,G) = {1} for effective
Kuranishi (co)chains, not just
Aut(X, f,G) finite. (It is enough
for this to hold for (X, f,G) ‘con-
nected’.)
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III.2. Stabilizer groups and
effective orbifolds
Let V be an orbifold. Then each
v € V has stabilizer group or orb-
ifold group Staby (v), a finite group,
and V near v is locally modelled on
R™/Staby (v) near O, where Staby (v)
acts linearly on R", n =dimV.
Note: we do not require Staby (v)
to act effectively on R™. For in-
stance, Staby (v) could act trivially
on R™. So we cannot regard Staby (v)
as a subgroup of GL(n,R).
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We call an orbifold effective if
Staby (v) acts effectively on R"™ for
all v € V. Equivalently, an orbifold
V' is effective if generic pointsv e V
have Staby (v) = {1}.

For example, if ' is a finite group
then {0}/I" is a O-dimensional orb-
Ifold, a single point with stabilizer
group I, which is effective if and
only if = {1}.
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Suppose V is a compact, oriented
n-orbifold without boundary. Then
we can form the fundamental class
V] in singular homology. We have
V] e Hy,(V:Z) if V is effective, but
V] e Hyo(V; Q) if V is not effective.
This Is because when we triangu-
late V by simplices o : A, — V,
If generic points in V have stabi-
lizer I, then the simplices must be
weighted by £1/|I"|. These weights
lie in Z if V is effective, so N = {1},
and in Q otherwise.

Conclusion. To do homology over
Z,, we need effective orbifolds.
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ITII.3. Orbifold strata

If V is an orbifold, we may write
V =1Ir Vr, where the disjoint union
IS over all iIsomorphism classes of
finite groups ', and VI ={v e V-
Staby(v) = '}. This is called the
orbifold stratification of V.

This definition of VI is not very
useful, for two reasons. Firstly, VI
is not closed in V. Secondly, VI
can be a union of manifolds of dif-
ferent dimensions. If v € VI then
V' is modelled on R"™/I" near V, and
VI is modelled on the fixed points
Fix(l"') of I in R™, which depends
on the representation of I on R".
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So, make new definition of orbifold
strata V'~ INncluding a representa-
tion p of .

Let ' be a finite group, and W
be a finite-dimensional representa-
tion of I (real, for now). Call W
trivial if [ acts trivially, and non-
trivial if Fix(I") = {0}. Then ev-
ery representation W can be writ-
ten uniquely as W = Wi @ wht 3
direct sum of a trivial and nontrivial
representation.
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Let p be an isomorphism class of
nontrivial representations of ', and
V' an orbifold.

As a set, define the orbifold stra-
tum V1P to be

v = {Staby(v) - (v,\) v eV,
A [ — Staby (v) is an injective
group morphism,

[(Tvv)nt} — ,0}7

where A makes 7,V into a [ -repres-
entation, T,V = (T,V)Y®(T,V)" s
Its splitting into trivial and nontriv-
ial representations, and [(T,V)"Y is
Its iIsomorphism class.
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Define /2 : vVIe — vV by P
Staby (v) - (v, \) — w.

Then we have:

Proposition. V':? has the struc-
ture of an orbifold, with dim V' :» =
dimV —dimp, and /¢ viwe v
IS a proper, finite immersion.

Here [¢ proper implies .[-p(V1:P)
IS closed Iin V.

An orbifold V is effective iff VI :* =
D unless p is an effective representa-
tion of [, for all I, p. SO, can char-
acterize effective orbifolds by their
orbifold strata.

17



II1.4. Orbifold strata of Kuran-
Ishi spaces

Let X be a Kuranishi space. We
will define the orbifold strata X'
of X. Let pe X and (Vp, Ep, sp, ¥p)
be a Kuranishi neighbourhood of
p € X. Set v=1,1(p) in V. Then
Stabvp(v) is a finite group with rep-
resentations on the vector spaces
TwVp and Epy.

We need to think of T,V & Ep|y as
a formal difference of representa-
tions of Stabvp(v), that is, a virtual
representation.
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A virtual vector space W1 & Ws is a
formal difference of finite-dimensional
vector spaces Wy, Wo. We call W16
W> and Wi © W) equivalent if W1 &
AZSWi@Band Wod A= W5d B
for some finite-dimensional vector
spaces A, B.

Write vdim(W1 © W) = dim W7 —
dim Wo.

If T is a finite group, virtual T -
representations and equivalence are
the same with I'-representations, not
vector spaces.

Equivalence classes of virtual [ -rep-
resentations lie in a lattice Z!, the
Grothendieck group Kg(mod-I).
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Let p be an equivalence class of
virtual nontrivial I -representations.
Let X be a Kuranishi space. As a
set, define

X'P = {Stabx(p) - (p,\) : p € X,
A [T — Stabyx(p) is an injective
group morphism,

(ToVp)™ © (Eplo)™] = p},

where (Vp,...,¥p) is a Kuranishi neigh-
bourhood for p, and v = v, *(p)

in Vp, and X : I — Stabx(p) =
Stabvp(v) makes TyVp, Eply into I'-

representations, and (T, V)", (Ep|y)"™
are their nontrivial parts.
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Define 2 : X — X by P
Stabx(p) - (p, A) — p.

Then we have:

Proposition. X':» has the struc-
ture of a Kuranishi space, with
vdim X" = vdim X — vdimp, and
JLoP Jifts to a proper, finite, strongly
smooth map J/»: X'+  X.

To prove this, note that the con-
dition [(TuVp)"t © (Eplu)" = p is
preserved by coordinate changes
(¢bpq, Ppq), as going from (Vy, ..., 2q)
to (Vp,...,¥p) adds the same -rep-
resentation to T,V; and Ejgv.
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Also note that as vdimp can be
positive, negative or zero, can have
vdim X"+? < vdim X or vdim X"+ >
vdim X or vdim X" * = vdim X

If X is a compact oriented Kuran-
Ishi space without boundary, f: X —
Y is strongly smooth, and VC(X, f)
IS a virtual class for X in the homol-
ogy of Y, can show that VC (X, f) €
HS(Y:;7) if vdim X'» <vdimX — 2
for all ™ % {1} and p with X" P=£0.
So, integrality of virtual classes fails
due to orbifold strata X'-? with
vdim X2 > vdim X — 2.
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ITI1.5. Effective Kuranishi spaces
Let X be a Kuranishi space. We
call X effective if for all p € X, if
(Vp, Ep, sp, ¥p) is @ Kuranishi neigh-
bourhood in the germ at p in X,
and v = ¢, *(p) in Vp, then Staby, (v)
acts effectively on T,Vp and trivially
on Eply.

If A\ : I — Staby(p) is an injec-
tive group morphism, this implies
that I acts effectively on TV, and
trivially on Ep|,. Hence (T,Vp)"t
IS an effective [ -representation and
(Epln)"t = 0.
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Thus p = [(T, V)"t S (Ep|y)" is the
equivalence class of an effective [ -
representation, not a virtual repre-
sentation. Hence, if X is an effec-
tive Kuranishi space then X'» =
D unless p is the equivalence class
of an effective I -representation. If
[ #%= {1} this implies dimp > 0. If
X is orientable we also exclude the
case dimp = 1. Therefore if X £
® and T #= {1} then vdimX'» <
vdim X — 2. This was the condition
to define virtual class for X over Z.
So, for effective Kuranishi spaces,
can define virtual classes over Z.
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Another feature of effective Kuran-
ishi spaces: if (Vp, Ep, sp,¥p) IS a
Kuranishi neighbourhood near p on
an effective Kuranishi space X, then
the stabilizers of V, act trivially on
the fibres of FE, (at least near v =
¥, 1(p)). Hence, Ej, is a vector bun-
dle, not just an orbibundle. Let
sp be a generic small perturbation
of sp. Then s, is transverse, and
(5,)~1(0) is an effective suborbifold
of V. Therefore, an effective Ku-
ranishi space X can be perturbed to
an effective orbifold X, by a single-
valued perturbation. Also effective
orbifolds have virtual chains over Z.
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II1.6. Effective Kuranishi
homology

We now have the ingredients for
KHE'(Y;R). Let Y be an orbifold
and R a commutative ring. We
define effective Kuranishi chains
KC.(Y; R) to be spanned over R by
isomorphism classes [ X, f, G], where
X IS a compact, oriented, effective
Kuranishi space, and f : X — Y
IS strongly smooth, and G is ef-
fective gauge-fixing data for (X, f).
This is like gauge-fixing data, but
with stronger conditions that imply
Aut(X, f,G) = {1} for (X, f,G) con-
nected. We impose relations (i)—
(iii) of §II.4, but not (iv).
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This gives a homology theory iso-
morphic to H'(Y; R). Can also de-
fine effective Kuranishi cohomology
KHZ-(Y; R), where the cochains
KCi-(Y; R) are spanned by [X, f, C]
with f: X — Y a cooriented, coef-
fective strong submersion. (Coef-
fective is a relative version of ef-
fective). Can prove Poincaré du-
ality and KHZ-(Y;R) = H (Y, R)
only for Y a manifold, as Poincaré
duality over Z fails for orbifolds.
The cup product U on KCZ-(Y; R)
IS associative, but not supercom-
mutative, because products of ef-
fective co-gauge-fixing data are not
commutative.
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III.7. Classical bordism
Let Y be a manifold or orbifold, and
R a commutative ring. Define the
classical bordism groups Bi(Y; R)
for £k € Z to be the R-modules of
finite R-linear combinations of iso-
morphism classes [ X, f] for X a com-
pact, oriented k-manifold without
boundary and f : X — Y a smooth
map, with relations:
() [X, 1+ XL fl=[XTOX' f1I f]
for all classes [X, f], [X’, f']; and
(ii) let Z be a compact, oriented
(k+ 1)-manifold with boundary
but without corners, and g : Z —
Y be smooth. Then [0Z, g|57] =0.
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T hen classical bordism groups are a
generalized homology theory. Usu-
ally Br(Y;Z) is written MSO(Y).
There is a corresponding general-
Ized cohomology theory called cobor-
dism, written M SOF(Y). It has an
algebraic topology definition in terms
of limits of homotopy groups, but
no good definition using differential
geometry, as far as I know.
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III. 7. Kuranishi bordism

Let Y be an orbifold. Motivated
by classical bordism, consider pairs
(X, f), where X is a compact ori-
ented Kuranishi space without bound-
ary or corners, and f : X — Y Is
strongly smooth. An isomorphism
between pairs (X, f),(X,f) is an
orientation-preserving strong diffeo-
morphism i : X — X with f = fo
i. Write [ X, f] for the isomorphism
class of (X, f). Let R be a commu-
tative ring and k € Z.
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Define the Kuranishi bordism group
KB, (Y; R) of Y to be the R-module
of finite R-linear combinations of
isomorphism classes [ X, f] for which
vdim X = k, with the relations:
() [X, ]+ XL ]l = [X T X, 710 f]
for all classes [X, f], [X’, f/]; and
(ii) let W be a compact oriented Ku-
ranishi space with boundary but
without corners, with vdimW =
k+1, and e: W —Y be strongly
smooth. Then [0W,e|g,] =0
Define MEPY : BL(Y; R) — KBL(Y; R)
by KD [X ]l — [X,f]. Define
_IK : KBk(Y, R) - KH(Y; RR7Q)
Oy I‘Iﬁg - [X, 7] — [[X, £,G]], where
G is any gauge-fixing data for (X, f).
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II1.8. Kuranishi cobordism
Similarly, following the definition of
Kuranishi cohomology, consider
pairs (X, f), where X is a compact
Kuranishi space without boundary
or corners, and f : X — Y is a
cooriented strong submersion. De-
fine the Kuranishi cobordism group
KBF(Y: R) of Y to be the R-module
generated by isomorphism classes
X, f] for which vdim X =dimY —k,
with relations (i),(ii) as above.
Define NESE : KBR(Y; R) — KH*(Y;
R®7Q) by MRS« [X, f] — [[X, £, ],
where C is any co-gauge-fixing data
for (X, f).
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As for Kuranishi (co)homology, can
define cup and cap products on Ku-
ranishi (co)bordism, pushforwards
on bordism, pullbacks on cobordism
— the whole homology/cohomology
package.

Can also define other kinds of
Kuranishi bordism. In particular,
define effective Kuranishi bordism
KB$P(Y; R) as for KBy(Y;R) but
with X, W effective, and effective
Kuranishi cobordism KB%_.(Y; R) as
for KB*(Y; R) but with f: X — Y,
e . W — Y coeffective.
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Then we have projections MEL

KB$P(Y;R) — KH{(Y;R) and
ngs, : KBE (Y, R) — KHS.(Y; R).
Using the isomorphisms between (ef-
fective) Kuranishi homology and sin-
gular homology, we see that we have
projections KB«(Y;7Z) — H3(Y: Q)
and KBE°(Y:72) — HS(Y:Z).
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I11.9. Projections n'»

Let ' be a finite group and p an
Isomorphism class of nontrivial vir-
tual representations of '. Then for
each Kuranishi space X we have an
orbifold stratum X" P, with strongly
smooth map /' #?: Xw» - X

We would like to define a projection
N'»: KBL(Y; R) — KBy_gim ,(Y; R)
by MM [ X, f] — [XT+P fo.P].
There is one problem: we need to
make an orientation on X':? from
the orientation on X. This is pos-
sible if |I"] is odd, and M'? is well-
defined.
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We can show that the projections
Nikhon' - KB(Y;Z) — KHy_gim,
(Y;Q) = H,i'_dimp(Y; Q) are linearly
independent. Therefore KB, (Y ;Z)
IS huge. Even for Y a single point,
KBy (Y ;7Z) has at least one gener-
ator over 7Z for each isomorphism
class of finite groups I with |I"] odd,

and p with dimp = k.
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III.10. Gromov—W.itten

type invariants
Let (M,w) be a compact symplec-
tic manifold, J an almost complex
structure compatible with w, G €
H>(M;7Z), and g,m > 0. Then the
moduli space Mg m (M, J, 3) of genus
g stable J-holomorphic curves in class
B in M with m marked points is a
compact oriented Kuranishi space
with strong submersions ev; : Mg.m
(M, J,3) — M. The G—=W type in-
variant Gngfgz(ﬁ) — [./\_/lg,m(M, J, B),
evy X -+ Xevp| in KB«(M™; Z) is well-
defined and independent of J and
other choices.
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These G—W invariants in KBy«(M™; Z)
project to KH.(M™; Q) = H'(M™; Q),
and their images are the symplec-
tic G—=W invariants of Fukaya—Ono.
So they are refinements of conven-
tional G—W invariants.

Two important points:

(a) since the groups KB«(M™;7Z)
the invariants lie in are huge, these
Invariants contain more information
than conventional G—W invariants,
Including information ‘counting’ J-
hol curves with symmetry group I.
(b) as they lie in groups defined
over Z, not QQ, they are a tool for
studying integrality properties of G—
W invariants.
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I have a sketch proof (with many
holes) of the Integrality Conjecture
for Gopakumar—Vafa invariants us-
INg similar ideas. Actually I need to
use almost complex Kuranishi
bordism, involving an extra ‘almost
complex structure’ on the Kuran-
Ishi spaces to do this.

The main idea is to ‘blow up’ a Ku-
ranishi space at its orbifold strata
to get an effective Kuranishi space.
This gives a functor B : KBp(Y;Z) —
KBS$P(Y;Z). Then we map KBgP
(Y;Z) — KHS'(Y;Z) = H}(Y; 7).
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