
Kuranishi (co)homology:
a new tool in

symplectic geometry.
III. Effective Kuranishi

(co)homology, integrality,
and Kuranishi (co)bordism

Dominic Joyce
Oxford University, UK

based on

arXiv:0707.3572 v5, 10/08
summarized in

arXiv:0710.5634 v2, 10/08
These slides available at

www.maths.ox.ac.uk/∼joyce/talks.html
1



III.1. Introduction
In Lecture II, I explained how to de-
fine Kuranishi (co)homology KH∗,
KH∗(Y ;R) for R a Q-algebra. We
have KH∗(Y ;R) ∼= Hsi∗ (Y ;R), sin-
gular homology, and KH∗(Y ;R) ∼=
H∗

cs(Y ;R), compactly-supported
cohomology.
We now discuss how to define Ku-
ranishi (co)homology theories which
work for R any commutative ring,
such as R = Z, not just Q-algebras,
and are isomorphic to Hsi∗ (Y ;R),
H∗

cs(Y ;R). We call these effective
Kuranishi (co)homology KHef∗ (Y ;R),
KH∗

ec(Y ;R).
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These (co)homology theories will

be useful for studying integrality

questions, for instance, under what

circumstances Gromov–Witten in-

variants can be defined in H∗(M ;Z)
rather than H∗(M ;Q), and the Inte-

grality Conjecture for Gopakumar–

Vafa invariants.

However, there are disadvantages

to working over Z. Some good prop-

erties of Kuranishi (co)homology can

only work over a Q-algebra, so any

theory which works over Z will not

have them.
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Features of Kuranishi

(co)homology which

cannot work over R = Z
• Let X be a compact oriented Ku-

ranishi space without boundary, and

f : X → Y strongly smooth. Then

there exists gauge-fixing data G for

(X, f), and [X, f , G] is a cycle in

Kuranishi homology. The homol-

ogy class
[
[X, f , G]

] ∈ KH∗(Y ;Q) is

identified with the virtual class of

(X, f).
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If X has nontrivial orbifold groups,

virtual classes are generally defined

only over Q, not Z. So we cannot

form
[
[X, f , G]

] ∈ KHef∗ (Y ;Z).
Conclusion: in effective Kuranishi

(co)homology, not all Kuranishi

spaces are allowed as (co)chains;

there must be restrictions on the

orbifold groups and orbifold strata.

So, can’t use every curve moduli

space as a (co)chain, there will be

restrictions.
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• Kuranishi cochains KC∗(Y ;R) have

a cup product ∪ which is associa-

tive and supercommutative.

Now Steenrod squares are invari-

ants in algebraic topology defined

using the failure of the cup product

for H∗(Y ;Z) to be supercommu-

tative at the cochain level. They

imply that it is not possible to de-

fine a cohomology theory comput-

ing H∗(Y ;Z) with a supercommu-

tative cup product on cochains.

Conclusion: on effective Kuranishi

cochains, the cup product cannot

be supercommutative.
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Parts of the proof of KH∗(Y ;R)
∼= Hsi∗ (Y ;R) which require R a

Q-algebra

In proving KH∗(Y ;R) ∼= Hsi∗ (Y ;R)

we used Q ⊆ R in two different ways:

(a) Relation (iv) in KC∗(Y ;R) says

that if Γ is a finite subgroup of

Aut(X, f , G) then

[
X/Γ, π∗(f), π∗(G)

]
= 1

|Γ|
[
X, f , G

]
.

This makes sense only if 1/|Γ| ∈ R,

so Q ⊆ R.
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We use (iv) like this: given an arbi-

trary chain [X, f , G] we ‘cut’ X into

small pieces Xc, c ∈ C with Xc =

X́c/Γc, for X́c a Kuranishi space with

trivial stabilizers (i.e. all orbifold

groups are {1}). Then we replace
∑

c∈C
[Xc, fc, Gc] by

∑

c∈C
1/|Γc|[X́c, f́c, Ǵc].

Conclusion: we can’t use relation

(iv) in effective Kuranishi (co)hom-

ology.
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(b) At various points in the proof

we have to modify chains [X, f , G]

to perturb them into manifolds, tri-

angulate by simplices, etc. These

modifications must be preserved by

the symmetries Aut(X, f , G). But

this is not always possible with just

one modification. So we choose

an arbitrary modification, and then

average over its images under

Aut(X, f , G). To average we divide

by |Aut(X, f , G)|. Thus need

1/|Aut(X, f , G)| ∈ R, so Q ⊆ R.
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Note: This was why we needed

Aut(X, f , G) finite, so why we intro-

duced gauge-fixing data. Also, this

is the same reason Fukaya–Ono use

multisections, not single-valued

sections.

Conclusion. We need to ensure

Aut(X, f , G) = {1} for effective

Kuranishi (co)chains, not just

Aut(X, f , G) finite. (It is enough

for this to hold for (X, f , G) ‘con-

nected’.)
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III.2. Stabilizer groups and

effective orbifolds

Let V be an orbifold. Then each

v ∈ V has stabilizer group or orb-

ifold group StabV (v), a finite group,

and V near v is locally modelled on

Rn/StabV (v) near 0, where StabV (v)

acts linearly on Rn, n = dimV .

Note: we do not require StabV (v)

to act effectively on Rn. For in-

stance, StabV (v) could act trivially

on Rn. So we cannot regard StabV (v)

as a subgroup of GL(n,R).
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We call an orbifold effective if

StabV (v) acts effectively on Rn for

all v ∈ V . Equivalently, an orbifold

V is effective if generic points v ∈ V

have StabV (v) = {1}.
For example, if Γ is a finite group

then {0}/Γ is a 0-dimensional orb-

ifold, a single point with stabilizer

group Γ, which is effective if and

only if Γ = {1}.
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Suppose V is a compact, oriented

n-orbifold without boundary. Then

we can form the fundamental class

[V ] in singular homology. We have

[V ] ∈ Hn(V ;Z) if V is effective, but

[V ] ∈ Hn(V ;Q) if V is not effective.

This is because when we triangu-

late V by simplices σ : ∆n → V ,

if generic points in V have stabi-

lizer Γ, then the simplices must be

weighted by ±1/|Γ|. These weights

lie in Z if V is effective, so Γ = {1},
and in Q otherwise.

Conclusion. To do homology over

Z, we need effective orbifolds.
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III.3. Orbifold strata
If V is an orbifold, we may write
V =

∐
Γ V Γ, where the disjoint union

is over all isomorphism classes of
finite groups Γ, and V Γ = {v ∈ V :
StabV (v) ∼= Γ}. This is called the
orbifold stratification of V .
This definition of V Γ is not very
useful, for two reasons. Firstly, V Γ

is not closed in V . Secondly, V Γ

can be a union of manifolds of dif-
ferent dimensions. If v ∈ V Γ then
V is modelled on Rn/Γ near V , and
V Γ is modelled on the fixed points
Fix(Γ) of Γ in Rn, which depends
on the representation of Γ on Rn.
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So, make new definition of orbifold

strata V Γ,ρ, including a representa-

tion ρ of Γ.

Let Γ be a finite group, and W

be a finite-dimensional representa-

tion of Γ (real, for now). Call W

trivial if Γ acts trivially, and non-

trivial if Fix(Γ) = {0}. Then ev-

ery representation W can be writ-

ten uniquely as W = W tr ⊕Wnt, a

direct sum of a trivial and nontrivial

representation.
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Let ρ be an isomorphism class of
nontrivial representations of Γ, and
V an orbifold.
As a set, define the orbifold stra-
tum V Γ,ρ to be

V Γ,ρ =
{
StabV (v) · (v, λ) : v ∈ V,

λ : Γ → StabV (v) is an injective

group morphism,
[
(TvV )nt]

= ρ
}
,

where λ makes TvV into a Γ-repres-
entation, TvV = (TvV )tr⊕(TvV )nt is
its splitting into trivial and nontriv-
ial representations, and

[
(TvV )nt]

is
its isomorphism class.
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Define ιΓ,ρ : V Γ,ρ → V by ιΓ,ρ :

StabV (v) · (v, λ) 7→ v.

Then we have:

Proposition. V Γ,ρ has the struc-

ture of an orbifold, with dimV Γ,ρ =

dimV − dim ρ, and ιΓ,ρ : V Γ,ρ → V

is a proper, finite immersion.

Here ιΓ,ρ proper implies ιΓ,ρ(V Γ,ρ)

is closed in V .

An orbifold V is effective iff V Γ,ρ =

∅ unless ρ is an effective representa-

tion of Γ, for all Γ, ρ. So, can char-

acterize effective orbifolds by their

orbifold strata.
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III.4. Orbifold strata of Kuran-

ishi spaces

Let X be a Kuranishi space. We

will define the orbifold strata XΓ,ρ

of X. Let p ∈ X and (Vp, Ep, sp, ψp)

be a Kuranishi neighbourhood of

p ∈ X. Set v = ψ−1
p (p) in Vp. Then

StabVp(v) is a finite group with rep-

resentations on the vector spaces

TvVp and Ep|v.
We need to think of TvVp ª Ep|v as

a formal difference of representa-

tions of StabVp(v), that is, a virtual

representation.
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A virtual vector space W1ªW2 is a
formal difference of finite-dimensional
vector spaces W1, W2. We call W1ª
W2 and W ′

1ªW ′
2 equivalent if W1⊕

A ∼= W ′
1 ⊕ B and W2 ⊕ A ∼= W ′

2 ⊕ B

for some finite-dimensional vector
spaces A, B.
Write vdim(W1 ª W2) = dimW1 −
dimW2.
If Γ is a finite group, virtual Γ-
representations and equivalence are
the same with Γ-representations, not
vector spaces.
Equivalence classes of virtual Γ-rep-
resentations lie in a lattice Zl, the
Grothendieck group K0(mod-Γ).
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Let ρ be an equivalence class of
virtual nontrivial Γ-representations.
Let X be a Kuranishi space. As a
set, define

XΓ,ρ =
{
StabX(p) · (p, λ) : p ∈ X,

λ : Γ → StabX(p) is an injective

group morphism,
[
(TvVp)

nt ª (Ep|v)nt]
= ρ

}
,

where (Vp, . . . , ψp) is a Kuranishi neigh-
bourhood for p, and v = ψ−1

p (p)
in Vp, and λ : Γ → StabX(p) =
StabVp(v) makes TvVp, Ep|v into Γ-

representations, and (TvVp)nt, (Ep|v)nt

are their nontrivial parts.
20



Define ιΓ,ρ : XΓ,ρ → X by ιΓ,ρ :

StabX(p) · (p, λ) 7→ p.

Then we have:

Proposition. XΓ,ρ has the struc-

ture of a Kuranishi space, with

vdimXΓ,ρ = vdimX − vdim ρ, and

ιΓ,ρ lifts to a proper, finite, strongly

smooth map ιΓ,ρ : XΓ,ρ → X.

To prove this, note that the con-

dition
[
(TvVp)nt ª (Ep|v)nt]

= ρ is

preserved by coordinate changes

(φpq, φ̂pq), as going from (Vq, . . . , ψq)

to (Vp, . . . , ψp) adds the same Γ-rep-

resentation to TvVq and Eq|v.
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Also note that as vdim ρ can be

positive, negative or zero, can have

vdimXΓ,ρ < vdimX or vdimXΓ,ρ >

vdimX or vdimXΓ,ρ = vdimX.

If X is a compact oriented Kuran-

ishi space without boundary, f : X →
Y is strongly smooth, and V C(X, f)

is a virtual class for X in the homol-

ogy of Y , can show that V C(X, f) ∈
Hsi∗ (Y ;Z) if vdimXΓ,ρ 6 vdimX − 2

for all Γ 6= {1} and ρ with XΓ,ρ 6=∅.
So, integrality of virtual classes fails

due to orbifold strata XΓ,ρ with

vdimXΓ,ρ > vdimX − 2.
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III.5. Effective Kuranishi spaces

Let X be a Kuranishi space. We

call X effective if for all p ∈ X, if

(Vp, Ep, sp, ψp) is a Kuranishi neigh-

bourhood in the germ at p in X,

and v = ψ−1
p (p) in Vp, then StabVp(v)

acts effectively on TvVp and trivially

on Ep|v.
If λ : Γ → StabX(p) is an injec-

tive group morphism, this implies

that Γ acts effectively on TvVp and

trivially on Ep|v. Hence (TvVp)nt

is an effective Γ-representation and

(Ep|v)nt = 0.
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Thus ρ =
[
(TvVp)ntª(Ep|v)nt]

is the
equivalence class of an effective Γ-
representation, not a virtual repre-
sentation. Hence, if X is an effec-
tive Kuranishi space then XΓ,ρ =
∅ unless ρ is the equivalence class
of an effective Γ-representation. If
Γ 6= {1} this implies dim ρ > 0. If
X is orientable we also exclude the
case dim ρ = 1. Therefore if XΓ,ρ 6=
∅ and Γ 6= {1} then vdimXΓ,ρ 6
vdimX−2. This was the condition
to define virtual class for X over Z.
So, for effective Kuranishi spaces,
can define virtual classes over Z.
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Another feature of effective Kuran-
ishi spaces: if (Vp, Ep, sp, ψp) is a
Kuranishi neighbourhood near p on
an effective Kuranishi space X, then
the stabilizers of Vp act trivially on
the fibres of Ep (at least near v =
ψ−1

p (p)). Hence, Ep is a vector bun-
dle, not just an orbibundle. Let
s̃p be a generic small perturbation
of sp. Then s̃p is transverse, and
(s̃p)−1(0) is an effective suborbifold
of Vp. Therefore, an effective Ku-
ranishi space X can be perturbed to
an effective orbifold X̃, by a single-
valued perturbation. Also effective
orbifolds have virtual chains over Z.
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III.6. Effective Kuranishi
homology

We now have the ingredients for
KHef∗ (Y ;R). Let Y be an orbifold
and R a commutative ring. We
define effective Kuranishi chains
KCk(Y ;R) to be spanned over R by
isomorphism classes [X, f , G], where
X is a compact, oriented, effective
Kuranishi space, and f : X → Y
is strongly smooth, and G is ef-
fective gauge-fixing data for (X, f).
This is like gauge-fixing data, but
with stronger conditions that imply
Aut(X, f , G) = {1} for (X, f , G) con-
nected. We impose relations (i)–
(iii) of §II.4, but not (iv).
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This gives a homology theory iso-
morphic to Hsi∗ (Y ;R). Can also de-
fine effective Kuranishi cohomology
KH∗

ec(Y ;R), where the cochains
KC∗ec(Y ;R) are spanned by [X, f , C]
with f : X → Y a cooriented, coef-
fective strong submersion. (Coef-
fective is a relative version of ef-
fective). Can prove Poincaré du-
ality and KH∗

ec(Y ;R) ∼= H∗
cs(Y ;R)

only for Y a manifold, as Poincaré
duality over Z fails for orbifolds.
The cup product ∪ on KC∗ec(Y ;R)
is associative, but not supercom-
mutative, because products of ef-
fective co-gauge-fixing data are not
commutative.
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III.7. Classical bordism
Let Y be a manifold or orbifold, and
R a commutative ring. Define the
classical bordism groups Bk(Y ;R)
for k ∈ Z to be the R-modules of
finite R-linear combinations of iso-
morphism classes [X, f ] for X a com-
pact, oriented k-manifold without
boundary and f : X → Y a smooth
map, with relations:
(i) [X, f ] + [X ′, f ′] = [X qX ′, f q f ′]

for all classes [X, f ], [X ′, f ′]; and
(ii) let Z be a compact, oriented

(k +1)-manifold with boundary
but without corners, and g : Z→
Y be smooth.Then [∂Z, g|∂Z]=0.
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Then classical bordism groups are a

generalized homology theory. Usu-

ally Bk(Y ;Z) is written MSOk(Y ).

There is a corresponding general-

ized cohomology theory called cobor-

dism, written MSOk(Y ). It has an

algebraic topology definition in terms

of limits of homotopy groups, but

no good definition using differential

geometry, as far as I know.
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III.7. Kuranishi bordism

Let Y be an orbifold. Motivated

by classical bordism, consider pairs

(X, f), where X is a compact ori-

ented Kuranishi space without bound-

ary or corners, and f : X → Y is

strongly smooth. An isomorphism

between pairs (X, f), (X̃, f̃) is an

orientation-preserving strong diffeo-

morphism i : X → X̃ with f = f̃ ◦
i. Write [X, f] for the isomorphism

class of (X, f). Let R be a commu-

tative ring and k ∈ Z.
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Define the Kuranishi bordism group
KBk(Y ;R) of Y to be the R-module
of finite R-linear combinations of
isomorphism classes [X, f] for which
vdimX = k, with the relations:
(i) [X, f] + [X ′, f ′] = [X qX ′, f q f ′]

for all classes [X, f], [X ′, f ′]; and
(ii) let W be a compact oriented Ku-

ranishi space with boundary but
without corners, with vdimW =
k+1, and e : W →Y be strongly
smooth. Then [∂W, e|∂Z]=0.

Define ΠKb
bo : Bk(Y ;R) → KBk(Y ;R)

by ΠKb
bo : [X, f ] 7→ [X, f ]. Define

ΠKh
Kb : KBk(Y ;R) → KHk(Y ;R⊗ZQ)

by ΠKh
Kb : [X, f] 7→ [

[X, f , G]
]
, where

G is any gauge-fixing data for (X, f).
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III.8. Kuranishi cobordism
Similarly, following the definition of
Kuranishi cohomology, consider
pairs (X, f), where X is a compact
Kuranishi space without boundary
or corners, and f : X → Y is a
cooriented strong submersion. De-
fine the Kuranishi cobordism group
KBk(Y ;R) of Y to be the R-module
generated by isomorphism classes
[X, f] for which vdimX = dimY −k,
with relations (i),(ii) as above.
Define ΠKch

Kcb : KBk(Y ;R) → KHk(Y ;
R⊗ZQ) by ΠKch

Kcb : [X, f] 7→ [
[X, f , C]

]
,

where C is any co-gauge-fixing data
for (X, f).
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As for Kuranishi (co)homology, can

define cup and cap products on Ku-

ranishi (co)bordism, pushforwards

on bordism, pullbacks on cobordism

– the whole homology/cohomology

package.

Can also define other kinds of

Kuranishi bordism. In particular,

define effective Kuranishi bordism

KBeb
k (Y ;R) as for KBk(Y ;R) but

with X, W effective, and effective

Kuranishi cobordism KBk
ecb(Y ;R) as

for KBk(Y ;R) but with f : X → Y ,

e : W → Y coeffective.
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Then we have projections Πef
eb :

KBeb
k (Y ;R) → KHef

k (Y ;R) and

Πec
ecb : KBk

ecb(Y ;R) → KHk
ec(Y ;R).

Using the isomorphisms between (ef-

fective) Kuranishi homology and sin-

gular homology, we see that we have

projections KB∗(Y ;Z) → Hsi∗ (Y ;Q)

and KBeb∗ (Y ;Z) → Hsi∗ (Y ;Z).
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III.9. Projections ΠΓ,ρ

Let Γ be a finite group and ρ an

isomorphism class of nontrivial vir-

tual representations of Γ. Then for

each Kuranishi space X we have an

orbifold stratum XΓ,ρ, with strongly

smooth map ιΓ,ρ : XΓ,ρ → X.

We would like to define a projection

ΠΓ,ρ : KBk(Y ;R) → KBk−dim ρ(Y ;R)

by ΠΓ,ρ : [X, f] 7→ [XΓ,ρ, f ◦ ιΓ,ρ].

There is one problem: we need to

make an orientation on XΓ,ρ from

the orientation on X. This is pos-

sible if |Γ| is odd, and ΠΓ,ρ is well-

defined.
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We can show that the projections

ΠKh
Kb◦ΠΓ,ρ : KBk(Y ;Z) → KHk−dim ρ

(Y ;Q) ∼= Hsi
k−dim ρ(Y ;Q) are linearly

independent. Therefore KBk(Y ;Z)
is huge. Even for Y a single point,

KBk(Y ;Z) has at least one gener-

ator over Z for each isomorphism

class of finite groups Γ with |Γ| odd,

and ρ with dim ρ = k.
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III.10. Gromov–Witten
type invariants

Let (M, ω) be a compact symplec-
tic manifold, J an almost complex
structure compatible with ω, β ∈
H2(M ;Z), and g, m > 0. Then the
moduli spaceMg,m(M, J, β) of genus
g stable J-holomorphic curves in class
β in M with m marked points is a
compact oriented Kuranishi space
with strong submersions evi : Mg,m
(M, J, β) → M . The G–W type in-
variant GWKb

g,m(β) =
[Mg,m(M, J, β),

ev1× · · ·×evm
]
in KB∗(Mm;Z) is well-

defined and independent of J and
other choices.
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These G–W invariants in KB∗(Mm;Z)
project to KH∗(Mm;Q) ∼= Hsi∗ (Mm;Q),
and their images are the symplec-
tic G–W invariants of Fukaya–Ono.
So they are refinements of conven-
tional G–W invariants.
Two important points:
(a) since the groups KB∗(Mm;Z)
the invariants lie in are huge, these
invariants contain more information
than conventional G–W invariants,
including information ‘counting’ J-
hol curves with symmetry group Γ.
(b) as they lie in groups defined
over Z, not Q, they are a tool for
studying integrality properties of G–
W invariants.
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I have a sketch proof (with many

holes) of the Integrality Conjecture

for Gopakumar–Vafa invariants us-

ing similar ideas. Actually I need to

use almost complex Kuranishi

bordism, involving an extra ‘almost

complex structure’ on the Kuran-

ishi spaces to do this.

The main idea is to ‘blow up’ a Ku-

ranishi space at its orbifold strata

to get an effective Kuranishi space.

This gives a functor B : KBk(Y ;Z) →
KBeb

k (Y ;Z). Then we map KBeb
k

(Y ;Z) → KHef
k (Y ;Z) ∼= Hsi

k (Y ;Z).

39


