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1. Introduction

Let X be a Calabi–Yau 3-fold, and coh(X)

the abelian category of coherent sheaves

on X. Write K(X) for the numerical

Grothendieck group of coh(X). If E is a

coherent sheaf on X, write [E] for its class

in K(X). The Chern character ch(E) lies

in Heven(X;Q). It descends to a group

morphism ch : K(X) → Heven(X;Q). So

K(X) is a finite rank lattice Zn, a sub-

group of Heven(X;Q). The Euler form is

χ : K(X)×K(X) → Z, antisymmetric and

biadditive. Using Serre duality gives

dimHom(E,F )− dimExt1(E,F )

−dimHom(F,E)+dimExt1(F,E)=χ([E], [F ]).
(1)
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Choose an ample line bundle L on X. This

induces a notion of Gieseker stability on

coh(X). Write τ for the stability condi-

tion coming from L. It depends on L, so

a different ample line bundle L̃ induces a

different stability condition τ̃ .

Given α ∈ K(X), we can form the moduli

spaces Mα
st(τ),Mα

ss(τ) of τ-(semi)stable

sheaves E in coh(X) with [E] = α in K(X).

We can regard these as schemes, with points

of Mα
ss(τ) being S-equivalence classes of

τ-semistable sheaves, rather than isomor-

phism classes. Alternatively, we can re-

gard them as Artin stacks, as open con-

structible subsets in the moduli stack M

of all coherent sheaves.
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Donaldson–Thomas invariants DTα(τ) are

integer-valued invariants ‘counting’ τ-(semi)

stable sheaves in class α ∈ K(X). They

are defined only in the case when Mα
st(τ) =

Mα
ss(τ), that is, when there are no strictly

semistable sheaves in class α.

The interesting property of Donaldson–

Thomas invariants is that they are un-

changed by continuous deformations of the

underlying Calabi–Yau 3-fold X, that is,

they are independent of the complex struc-

ture J of X up to deformation. This is

a strong statement, as deforming X can

change coh(X) and Mα
st(τ) radically.

Until our work, it was not known how DTα(τ)

depends on τ , that is, on the choice of am-

ple line bundle L.
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Kai Behrend showed that DTα(τ) can be

written as a weighted Euler characteristic

DTα(τ) =
∫
Mα

st(τ)
ν dχ, (2)

where ν is the ‘microlocal function’, a Z-

valued constructible function on Mα
st(τ)

depending only on the scheme structure

of Mα
st(τ). We think of ν as a multiplic-

ity function. If Mα
st(τ) is a k-fold point

SpecC[z]/(zk) then ν ≡ k. If Mα
st(τ) is

smooth of dimension d then ν ≡ (−1)d.
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In a series of previous papers, I defined a
different set of invariants Jα(τ) ∈ Q ‘count-
ing’ τ-semistable sheaves in class α. They
are defined for all α ∈ K(X), including
classes with strictly semistables. If Mα

st(τ)
= Mα

ss(τ) then Jα(τ) is the (unweighted)
Euler characteristic χ

(
Mα

st(τ)
)
∈ Z.

The important property of the Jα(τ) is
that their transformation law under change
of stability condition is known: we can
write Jα(τ̃) as a sum of products of Jβ(τ),
with combinatorial coefficients.
However, the Jα(τ) are not invariant under
deformations of the underlying Calabi-Yau
3-fold. This is because they do not count
points in Mα

st(τ) with multiplicity, so a k-
fold point SpecC[z]/(zk) in Mα

st(τ) would
contribute 1 to Jα(τ), for instance.
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The goal of the project
We will define a family of generalized D–
T invariants D̄Tα(τ) ∈ Q defined for all
α ∈ K(X), combining the good properties
of both the D–T invariants DTα(τ), and
my invariants Jα(τ). That is:
• D̄Tα(τ) is unchanged by deformations of
the underlying Calabi–Yau 3-fold.
• IfMα

st(τ)=Mα
ss(τ) thenD̄Tα(τ)=DTα(τ).

• The D̄Tα(τ) transform according to a
known transformation law under change of
stability condition. (As for the Jα(τ), but
with sign changes).
The general method is fairly obvious: we
define D̄Tα(τ) by inserting Behrend’s mi-
crolocal function ν as a weight in the def-
inition of my Jα(τ), so that the D̄Tα(τ)
count sheaves with the correct multiplic-
ity. But the details are complex.
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2. A sketch of the Jα(τ) set up

The invariants Jα(τ), and other invariants,
are defined and studied in 7 papers (four
on ‘Configurations in abelian categories’).
Here is an oversimplified sketch:
Write M for the moduli stack of sheaves
in coh(X), an Artin stack. We define a Q-
vector space of ‘stack functions’ SF(M),
a generalization of Q-valued constructible
functions on M. Loosely, SF(M) is the
Grothendieck ring of the (2-)category of
Artin stacks over M, tensored with Q.
Then SF(M) has an associative, noncom-
mutative product ∗ making it into a Q-
algebra, a kind of universal Ringel–Hall al-
gebra. For f, g ∈ SF(M), think of (f∗g)(F )
as the ‘integral’ of f(E)g(G) over all exact
sequences 0→E→F →G→0.

8



This ∗ induces a Lie bracket [ , ] on SF(M)

by [f, g] = f∗g−g∗f . There is a vector sub-

space SFind(M) of SF(M), the stack func-

tions ‘supported on (virtual) indecompos-

ables’, which is closed under [ , ] (though

not under ∗). Thus SFind(M) is a Lie sub-

algebra of SF(M).

Given a stability condition τ on coh(X),

we define elements δ
α
ss(τ) for α ∈ K(X) to

be the ‘characteristic function’ of Mα
ss(τ),

regarded as a substack of M.

We prove a universal transformation law

for the δ
α
ss(τ) under change of stability

condition. That is, given two stability con-

ditions τ̃ , τ on coh(X), we can write δ
α
ss(τ̃)

as a sum of products of δ
β
ss(τ) using ∗,

with combinatorial coefficients in Z.
9



If Mα
st(τ) ̸= Mα

ss(τ) then δ
α
ss(τ) does not

lie in the Lie subalgebra SFind(M). Us-
ing the δ

α
ss(τ) we define elements ϵα(τ) for

α ∈ K(X) which do lie in SFind(M). We
have ϵα(τ) = δ

α
ss(τ) if Mα

st(τ) = Mα
ss(τ).

Think of ϵα(τ) as a weighted version of
δ
α
ss(τ), where stables have weight 1, inde-

composable semistables have weights in Q,
and decomposables have weight 0.
The ϵα(τ) also satisfy a universal transfor-
mation law under change of stability con-
dition, with coefficients in Q. It can be
written solely using the Lie bracket [ , ] on
SFind(M), rather than ∗ on SF(M).
All the above works for very general abelian
categories, e.g. coh(P ) for P a smooth
projective variety over K algebraically closed
of characteristic zero.
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Now we use the Calabi–Yau 3-fold assump-
tion. Define a Lie algebra L(X) to have
basis, as a Q-vector space, symbols λα for
α ∈ K(X), and Lie bracket

[λα, λβ] = χ(α, β)λα+β, (4)

where χ is the Euler form. As χ is anti-
symmetric this satisfies the Jacobi identity.
We define a linear map Ψ : SFind(M) →
L(X) by Ψ(f) =

∑
α∈K(X)χ(f |Mα)λα,

where Mα is the substack of sheaves in
class α in M, and χ is a kind of stack-
theoretic Euler characteristic.
Here χ is not easy to define. The natu-
ral Euler characteristic of a quotient stack
[Y/G] should be χ([Y/G]) = χ(Y )/χ(G),
but χ(G) = 0 for any algebraic group of
positive rank, so we have to divide by zero.

11



The point about SFind(M) is that we can

write f ∈ SFind(M) using only [Y/G] with

rank(G) = 1, and then set χ([Y/G]) =

χ(Y )/χ(G/C×), where C× is the maximal

torus of G, and χ(G/C×) ̸= 0.

Using the Calabi–Yau 3-fold property, equa-

tion (1), we can show that Ψ : SFind(M)

→ L(X) is a Lie algebra morphism.

We then define invariants Jα(τ) ∈ Q by

Ψ(ϵα(τ)) = Jα(τ)λα for all α ∈ K(X).

Since the ϵα(τ) satisfy a universal trans-

formation law in the Lie algebra SFind(M)

under change of stability condition, and

Ψ is a Lie algebra morphism, the images

Jα(τ)λα satisfy the same transformation

law in the Lie algebra L(X).
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This yields a transformation law for the

Jα(τ) under change of stability condition,

of the form

Jα(τ̃) =
∑

iso. classes
of Γ, I, κ

± U(Γ, I, κ; τ, τ̃)·∏
i∈I

Jκ(i)(τ)·
∏

edges
i− j in Γ

χ(κ(i), κ(j)).
(5)

Here Γ is a connected, simply-connected

undirected graph with vertices I, κ : I →
K(X) has

∑
i∈I κ(i) = α, and U(Γ, I, κ; τ, τ̃)

in Q are explicit combinatorial coefficients.
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3. A Lie algebra morphism
Ψ̃ : SFind(M) → L̃(X)

We can now explain our new work. We
want to modify the Lie algebra morphism
Ψ by inserting Behrend’s microlocal func-
tion ν as a weight in its definition of Ψ,
to get a new Lie algebra morphism Ψ̃. As
ν is a ‘multiplicity function’, the new gen-
eralized D–T invariants D̄Tα(τ) we define
using Ψ̃ will count sheaves with multiplic-
ity, and so they will be unchanged under
deformations of X.
Surprisingly, we also have to change the
signs in the Lie algebra L(X).
Define a Lie algebra L̃(X) to have basis,
as a Q-vector space, symbols λ̃α for α ∈
K(X), and Lie bracket

[λ̃α, λ̃β] = (−1)χ(α,β)χ(α, β) λ̃α+β, (6)

which is (4) with an extra factor (−1)χ(α,β).
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Define a linear map Ψ̃ : SFind(M) → L̃(X)
by Ψ̃(f) =

∑
α∈K(X)χ(f |Mα, ν)λ̃α, where

χ(· · · , ν) is χ weighted by ν.

Theorem. Ψ̃ : SFind(M) → L̃(X) is a Lie
algebra morphism.

This follows from my previous proof that
Ψ is a Lie algebra morphism, together with
two multiplicative identities for the Behrend
function ν, that is:

ν(E1 ⊕ E2) = (−1)χ([E1],[E2])ν(E1)ν(E2), (7)∫
ϵ∈P (Ext1(E2,E1))

ν(F )dχ−
∫
ϵ∈P (Ext1(E1,E2))

ν(F )dχ = (8)(
dimExt1(E2, E1)−dimExt1(E1, E2)

)
ν(E1⊕E2),

where in the first integral in (8), F is de-
fined in terms of ϵ such that the exact
sequence 0 → E1 → F → E2 → 0 corre-
sponds to ϵ ∈ P (Ext1(E2, E1)), and simi-
larly for the second integral.
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4. Proving the Behrend

function identities (7),(8)

Let F be a C-scheme or Artin C-stack, lo-

cally of finite type. The Behrend function

νF is a Z-valued constructible function on

F which measures the ‘multiplicity’ of F

at each point. In general it is difficult to

compute. But there is a special case in

which we can give an explicit formula for

νF: suppose F is a C-scheme, U is a com-

plex manifold, f : U → C is holomorphic,

and F is locally isomorphic (in the analytic

topology) to Crit(f) as a complex analytic

space. Then

νF(x) = (−1)dimU
(
1− χ(MFf(x))

)
,

with MFf(x) the Milnor fibre of f at x.
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Our proof of (7),(8) involves first showing

that we can write an atlas for the moduli

stack M of coherent sheaves on a Calabi–

Yau 3-fold X over C in the form Crit(f) lo-

cally in the analytic topology, for f a holo-

morphic function on a complex manifold

U . Note that f, U are not algebraic, they

are constructed by transcendental, gauge-

theoretic methods. Our proof works only

over C, not for more general fields K.
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The proof has three steps:

(a) Show that the moduli stack M of co-
herent sheaves on X is locally isomorphic
(in the Zariski topology) to the moduli
stack Vect of vector bundles on X. (This
works for Calabi–Yau m-folds X over K for
any m,K.)

(b) Show that an atlas for Vect near [E]
can be locally written in the form Crit(f)
for f : U → C, where f, U are invariant
under at least the maximal compact sub-
group of Aut(E).

(c) Prove (7),(8) using an atlas near E =
E1⊕E2, and localizing under the action of
the U(1) group {idE1

+λ idE2
: λ ∈ U(1)}.
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For (a), one uses Seidel–Thomas twists to show

the local equivalence of moduli of sheaves and

vector bundles. Given an integer n, the Seidel–

Thomas twist TOX(−n) with OX(−n) is the Fourier-

Mukai transform from D(X) to D(X) with kernel:

cone(OX(n) �OX(−n) → O∆).

Let E ∈ M. For n ≫ 0, Tn(E) = TOX(−1)(E)[−1] is

a sheaf, not a more general complex, and we have:

0 → Tn(E) → OX(−n)⊗H0(E(n)) → E → 0.

As X is Calabi–Yau, Tn induces local isomorphisms

of moduli spaces. We inductively define integers

n1, . . . , nm ≫ 0 and set Fi = Tni ◦ Tni−1 . . . ◦ Tn1(E).

We get an exact sequence:

0 → Fm → OX(−nm)⊗H0(Fm−1(nm)) →
. . . → OX(−n1)⊗H0(E(n1)) → E → 0.

Applying Tn decreases the homological dimension

hd(E) of E by 1 until it is zero. As 0 6 hd(E) 6 m

we have 0 6 hd(Fi) 6 m − i, so hd(Fm) = 0, and

Fm is a vector bundle.
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For (b), we use an idea of Richard Thomas.
Let E → X be a fixed complex (not holo-
morphic) vector bundle. The holomor-
phic structures on E are ∂̄-operators ∂̄E :
C∞(E) → C∞(E ⊗C Λ0,1T ∗X). The set of
such ∂̄-operators is an infinite-dimensional
affine space A. A ∂̄-operator ∂̄E is a holo-
morphic structure iff the (0,2)-curvature
∂̄2E is zero. Gauge transformations G =
C∞(Aut(E)) act on A. Thus, the mod-
uli space (stack) of holomorphic structures
on E up to isomorphisms is

ME = {∂̄E ∈ A : ∂̄2E = 0}/G.

Richard observed that {∂̄E ∈ A : ∂̄2E = 0}
is Crit(CS), in some infinite-dimensional
manifold sense, where CS : A → C is the
holomorphic Chern–Simons functional.
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To prove (b), we show that an atlas for

Vect near (E, ∂̄E) can be written locally as

Crit(CS|U), where U is a finite-dimensional

complex submanifold of A, which is roughly

speaking transverse to the orbit of G through

∂̄E. We use results of Miyajima and others

which locally identify the moduli spaces of

holomorphic structures on E, and of ana-

lytic vector bundles on X, and of algebraic

vector bundles on X.
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To prove (c): let E = E1 ⊕ E2 be a co-

herent sheaf on X. Then (a),(b) show

that we can write an atlas for M near E

as Crit(f) near 0, where f is a holomor-

phic function defined near 0 on Ext1(E1⊕
E2, E1 ⊕ E2), and f is invariant under the

action of T = {idE1
+λ idE2

: λ ∈ U(1)} on

Ext1(E1 ⊕ E2, E1 ⊕ E2) by conjugation.

The fixed points of T on Ext1(E1⊕E2, E1⊕
E2) are Ext1(E1, E1) ⊕ Ext1(E2, E2), and

that the restriction of f to these fixed

points is f1 + f2, where fj is defined near

0 in Ext1(Ej, Ej), and Crit(fj) is an atlas

for M near Ej.
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The Milnor fibre MFf(0) is invariant under

T , so by localization we have

χ(MFf(0))=χ(MFf(0)
T)=χ(MFf1+f2(0)).

The Thom–Sebastiani theorem gives

1− χ(MFf1+f2(0)) = (1− χ(MFf1(0))

(1− χ(MFf2(0)).

Equation (7) then follows easily from

νM(E) = (−1)dimExt1(E,E)−dimHom(E,E)

(1− χ(MFf(0)),

and the analogues for E1, E2. Equation

(8) uses a more involved argument to do

with Milnor fibres of f at non-fixed points

of the U(1)-action.
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5. Generalized D–T invariants
We then define invariants D̄Tα(τ) ∈ Q by
Ψ̃(ϵα(τ)) = D̄Tα(τ)λ̃α for all α ∈ K(X).
Since Ψ̃ is a Lie algebra morphism, and
the ϵα(τ) satisfy a universal transformation
law under change of stability condition, it
follows that the D̄Tα(τ) satisfy a known
transformation law under change of sta-
bility condition. When Mα

st(τ) = Mα
ss(τ)

we have ϵα(τ) = δ
α
ss(τ), giving

D̄Tα(τ) =
∫
Mα

st(τ)
ν dχ = DTα(τ) (9)

by (2). Thus, the D̄Tα(τ) are generaliza-
tions of Donaldson–Thomas invariants.
It remains to show that the D̄Tα(τ) are
unchanged under deformations of the
underlying Calabi–Yau 3-fold X.
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To do this we define an auxiliary invari-

ant PIα,N(, τ) ∈ Z counting ‘stable pairs’

(E, s) with E a semistable sheaf in class

α and s ∈ H0(E ⊗ LN), for N ≫ 0, where

L is the ample line bundle used to define

τ . By a similar proof to Pandharipande–

Thomas invariants, the moduli space of

stable pairs has a symmetric obstruction

theory, so PIα,N(, τ) is unchanged by de-

formations of X.

We then prove that PIα,N(, τ) can be writ-

ten in terms of the D̄Tβ(τ) by

PIα,N(, τ) =
∑

α1,...,αn∈K(X):
α1+···+αn=α,
τ(αi)=τ(α) ∀i

(−1)n

n!

n∏
i=1

(−1)χ([L
−N ]−α1−···−αi−1,αi)·

χ([L−N ]− α1 − · · · − αi−1, αi)D̄Tαi(τ).

(10)
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We prove (10) using a change of stability
condition formula in an auxiliary abelian
category B, whose objects are triples (V,E, ϕ)
for V a finite-dimensional C-vector space,
E a coherent sheaf, and ϕ : V → H0(E ⊗
LN) a linear map. Now (10) implies that

PIα,N(, τ) = (−1)χ([L
−N ],α)χ([L−N ], α)D̄Tα(τ)+· · · ,

where the lower order terms ‘· · · ’ involve
only D̄Tβ(τ) with dimβ = dimα and
rankβ < rankα.
Also χ([L−N ], α) = dimH0(E ⊗ LN) > 0
for N ≫ 0. Thus, fixing dimα and arguing
by induction on rankα, since PIα,N(, τ) is
deformation-invariant, we see that D̄Tα(τ)
is deformation-invariant.
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Integrality properties of the invariants
Suppose E is stable and rigid in class α.
Then kE = E⊕· · ·⊕E is strictly semistable
in class kα, for k > 2. Calculations show
that E contributes 1 to D̄Tα(τ), and kE

contributes 1/k2 to D̄T kα(τ). So we do
not expect the D̄Tα(τ) to be integers.
Define new invariants D̂Tα(τ) ∈ Q by

D̄Tα(τ) =
∑

k>1:k divides α

1

k2
D̂Tα/k(τ).

Then the kE for k > 1 above contribute 1
to D̂Tα(τ) and 0 to D̂T kα(τ) for k > 1.

Conjecture. Suppose τ is generic, in the
sense that τ(α) = τ(β) implies χ(α, β) =
0. Then D̂Tα(τ) ∈ Z for all α ∈ K(X).

This is proved for invariants from quivers
without relations. The D̂Tα(τ) may agree
with invariants of Kontsevich–Soibelman,
and in String Theory should perhaps be
interpreted as ‘numbers of BPS states’.
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