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1. Introduction

Let X be a Calabi—Yau 3-fold, and coh(X)
the abelian category of coherent sheaves
on X. Write K(X) for the numerical

Grothendieck group of coh(X). If F is a
coherent sheaf on X, write [E] for its class
in K(X). The Chern character ch(FE) lies
in HVeN(X;Q). It descends to a group
morphism ch | K(X) — H®®"(X;Q). So
K(X) is a finite rank lattice Z™, a sub-
group of HEVEN(X:Q). The Euler form is
x . K(X) x K(X) — Z, antisymmetric and
biadditive. Using Serre duality gives

dim Hom(E, F) — dim Ext!(E, F)

—dimHom(F, E)+dim Ext (F, E) =x([E], [F]). (1)



Choose an ample line bundle £ on X. This
induces a notion of Gieseker stability on
coh(X). Write 7 for the stability condi-
tion coming from L. It depends on L, sO
a different ample line bundle £ induces a
different stability condition T.

Given o € K(X), we can form the moduli
spaces Mg (1), M&(7) of 7-(semi)stable
sheaves F in coh(X) with [E] = ain K(X).
We can regard these as schemes, with points
of MZ(7) being S-equivalence classes of
T-semistable sheaves, rather than isomor-
phism classes. Alternatively, we can re-
gard them as Artin stacks, as open con-
structible subsets in the moduli stack 9N
of all coherent sheaves.



Donaldson—Thomas invariants DT%(r) are
integer-valued invariants ‘counting’ 7-(semi)
stable sheaves in class o« € K(X). They
are defined only in the case when Mg (1) =
ME(7), that is, when there are no strictly
semistable sheaves in class a.

The interesting property of Donaldson—
Thomas invariants is that they are un-
changed by continuous deformations of the
underlying Calabi—Yau 3-fold X, that is,
they are independent of the complex struc-
ture J of X up to deformation. This is
a strong statement, as deforming X can
change coh(X) and Mg (7) radically.

Until our work, it was not known how DT%(7)
depends on 7, that is, on the choice of am-
ple line bundle L.



Kai Behrend showed that DT%(7r) can be

written as a weighted Euler characteristic

DTY(7) = /Ma v dy, (2)

(1)
where v is the ‘microlocal function’, a Z-
valued constructible function on Mg (1)
depending only on the scheme structure
of M& (7). We think of v as a multiplic-
ity function. If Mg(r) is a k-fold point
SpecCl[z]/(z¥) then v = k. If M&(7) is

smooth of dimension d then v = (—1)<.



In a series of previous papers, I defined a
different set of invariants J%(7) € Q ‘count-
INg' 7-semistable sheaves in class a. They
are defined for all « € K(X), including
classes with strictly semistables. If Mg (1)
ME(7) then JY(r) is the (unwe|ghted)
Euler characteristic x(M% (7)) € Z.
The important property of the J%(7) is
that their transformation law under change
of stability condition is known: we can
write J%(7) as a sum of products of J?(7),
with combinatorial coefficients.
However, the J%(7) are not invariant under
deformations of the underlying Calabi-Yau
3-fold. This is because they do not count
points in M%(7) with multiplicity, so a k-
fold point SpeC(C[z]/(zk) in M& (1) would
contribute 1 to J%(7r), for mstance.



The goal of the project

We will define a family of generalized D—
T invariants DT(t) € Q defined for all
a € K(X), combining the good properties
of both the D—T invariants DT%(7), and
my invariants J%(7r). That is:

e DTY(7) is unchanged by deformations of
the underlying Calabi—Yau 3-fold.

¢ If ME(T)=MZZ(7) then DT (7)=DT(1).
e The DTY(r) transform according to a
known transformation law under change of
stability condition. (As for the J%(7), but
with sign changes).

The general method is fairly obvious: we
define DT“(7) by inserting Behrend's mi-
crolocal function v as a weight in the def-
inition of my J%(7r), so that the DT%(7)
count sheaves with the correct multiplic-
ity. But the details are complex.



2. A sketch of the J%(7) set up

The invariants J%(7), and other invariants,
are defined and studied in 7 papers (four
on ‘Configurations in abelian categories’).
Here is an oversimplified sketch:

Write 91 for the moduli stack of sheaves
in coh(X), an Artin stack. We define a Q-
vector space of ‘stack functions’ SF(9),
a generalization of Q-valued constructible
functions on M. Loosely, SF(OM) is the
Grothendieck ring of the (2-)category of
Artin stacks over 91, tensored with Q.
Then SF(M) has an associative, noncom-
mutative product x making it into a Q-
algebra, a kind of universal Ringel—Hall al-
gebra. For f,g € SF(M), think of (f*g)(F)
as the ‘integral’ of f(FE)g(G) over all exact
sequences O—F—F—G—0.




This = induces a Lie bracket [, ] on SF(O)
by [f,g] = fxg—g=*f. Thereis a vector sub-
space SF'NI(M) of SF(M), the stack func-
tions ‘supported on (virtual) indecompos-
ables’, which is closed under [, ] (though
not under x). Thus SFNAd(9M) is a Lie sub-
algebra of SF(IM).

Given a stability condition 7 on coh(X),
we define elements do.(7) for a € K(X) to
be the ‘characteristic function’ of M&(7),
regarded as a substack of 9.

We prove a universal transformation law
for the dc<(7) under change of stability
condition. Thatis, given two stability con-
ditions 7,7 on coh(X), we can write de(7)
as a sum of products of 5?5(7) using x,
with combinatorial coefficients in Z.



If M&(T) #= MZ(7) then dgs(r) does not
lie in the Lie subalgebra SFMd(9m). Us-
ing the do.(7) we define elements €*(r) for
a € K(X) which do lie in SFMA(om). We
have €¥(1) = dgs(7) if MEA(1) = ME(7).
Think of €¥(r) as a vvelghted version of
de<(7), where stables have weight 1, inde-
composable semistables have weights in Q,
and decomposables have weight O.

The €*(7) also satisfy a universal transfor-
mation law under change of stability con-
dition, with coefficients in Q. It can be
written solely using the Lie bracket [, ] on
SFNd(9Mm), rather than x on SF(M).

All the above works for very general abelian
categories, e.g. coh(P) for P a smooth
projective variety over K algebraically closed
of characteristic zero.

10



Now we use the Calabi—Yau 3-fold assump-
tion. Define a Lie algebra L(X) to have
basis, as a Q-vector space, symbols A\ for
a € K(X), and Lie bracket

2% M) = x(a, B) A4 TP, (4)

where x is the Euler form. As x is anti-
symmetric this satisfies the Jacobi identity.
We define a linear map W : SF'Nd(m) —
L(X) by W(f) = Saecxx)X(flma)r®,
where INM® is the substack of sheaves in
class a in 9, and x is a kind of stack-
theoretic Euler characteristic.

Here x is not easy to define. The natu-
ral Euler characteristic of a quotient stack
[Y/G] should be x([Y/G]) = x(Y)/x(G),
but x(G) = 0 for any algebraic group of
positive rank, so we have to divide by zero.
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The point about SF"Y(9M) is that we can
write f € SFNAd(M) using only [Y/G] with
rank(G) = 1, and then set x([Y/G]) =
x(Y)/x(G/C*), where C* is the maximal
torus of G, and x(G/C*) # 0.

Using the Calabi—Yau 3-fold property, equa-
tion (1), we can show that W : SF'Nd(om)
— L(X) is a Lie algebra morphism.

We then define invariants J%(r) € Q by
W(e*(7)) = JY7)A\* for all o € K(X).
Since the €*(7) satisfy a universal trans-
formation law in the Lie algebra SFNd(9)
under change of stability condition, and
WV is a Lie algebra morphism, the images
JY(T)A® satisfy the same transformation
law in the Lie algebra L(X).
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This yields a transformation law for the
J%(7) under change of stability condition,
of the form
JYT) = > + UM, I,5,7,7)-
ot Pt T1 J"D(r):
el (5)

II x(x(2),x(5)).

edges
1—g in [

Here I is a connected, simply-connected
undirected graph with vertices I, x : I —
K(X) has Sierk(i) =, and UM, I, k; 7,7T)
in Q are explicit combinatorial coefficients.
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3. A Lie algebra morphism
W SFINd(m) — L(X)

We can now explain our new work. We
want to modify the Lie algebra morphism
W by inserting Behrend’'s microlocal func-
tion v as a weight in its definition of W,
to get a new Lie algebra morphism W. As
v is a ‘multiplicity function’, the new gen-
eralized D—T invariants DT“(r) we define
using W will count sheaves with multiplic-
ity, and so they will be unchanged under
deformations of X.
Surprisingly, we also have to change the
signs in the Lie algebra L(X).
Define a Lie algebra L(X) to have basis,
as a Q-vector space, symbols X\ for a €
K(X), and Lie bracket

X, 3] = (—1)X @By (a,p) XoTE, (6)

which is (4) with an extra factor (—1)Xx(@8),
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Define a linear map W : SFNAd(9Mm) — L(X)
by \Tj(f) — zaEK(X)Y(fbﬁo‘ay)Aar where
x(---,v) is x¥ weighted by v.

Theorem. W : SFNI(M) — L(X) is a Lie
algebra morphism.

This follows from my previous proof that
WV is a Lie algebra morphism, together with
two multiplicative identities for the Behrend
function v, that is:

V(B @ Bp) = (—1)XUEBLED (B (Ey), (7)

/ y()dx — | v(F)dx =  (8)

cP(Ext}(Es,E7)) cP(ExtI(E{,E2))
<dim Extl(E5, E1)—dim Ext!(Eq, EQ))V(El D E>),

where in the first integral in (8), F' is de-
fined in terms of ¢ such that the exact
sequence 0 —+ £y — F — E> — 0 corre-
sponds to € € P(Extl(E», E1)), and simi-
larly for the second integral.
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4. Proving the Behrend

function identities (7),(8)
Let § be a C-scheme or Artin C-stack, lo-
cally of finite type. The Behrend function
vz IS a Z-valued constructible function on
§ which measures the ‘multiplicity’ of §
at each point. In general it is difficult to
compute. But there is a special case in
which we can give an explicit formula for
vz SUppose § is a C-scheme, U is a com-
plex manifold, f : U — C is holomorphic,
and § is locally isomorphic (in the analytic
topology) to Crit(f) as a complex analytic
space. Then

v3(2) = (—1)9MYV (1 — (M Fy())),

with M Fy(x) the Milnor fibre of f at =.
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Our proof of (7),(8) involves first showing
that we can write an atlas for the moduli
stack 9t of coherent sheaves on a Calabi—
Yau 3-fold X over C in the form Crit(f) lo-
cally in the analytic topology, for f a holo-
morphic function on a complex manifold
U. Note that f,U are not algebraic, they
are constructed by transcendental, gauge-
theoretic methods. Our proof works only
over C, not for more general fields K.
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The proof has three steps:

(a) Show that the moduli stack 9t of co-
herent sheaves on X is locally isomorphic
(in the Zariski topology) to the moduli
stack Uect of vector bundles on X. (This
works for Calabi—Yau m-folds X over K for
any m,K.)

(b) Show that an atlas for Uect near [F]
can be locally written in the form Crit(f)
for f : U — C, where f,U are invariant

under at least the maximal compact sub-
group of Aut(F).

(c) Prove (7),(8) using an atlas near £ =
E1® E>, and localizing under the action of
the U(1) group {idg, +Aidg, : A € U(1)}.
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For (a), one uses Seidel-Thomas twists to show
the local equivalence of moduli of sheaves and
vector bundles. Given an integer n, the Seidel—
Thomas twist Ty (_,) wWith Ox(—n) is the Fourier-
Mukai transform from D(X) to D(X) with kernel:

cone(Ox(n)XOx(—n) = OA).

Let E€M. Forn >0, Th(F) = TOX(_l)(E)[—l] is
a sheaf, not a more general complex, and we have:

0— Th(E) = Ox(—n) @ HY(E(n)) = E — 0.

As X is Calabi—Yau, 7}, induces local isomorphisms
of moduli spaces. We inductively define integers
ni,...,nm >0 and set F;, =Ty, 0Ty, ,...0Th(E).
We get an exact sequence:

0 — Fr — Ox(—nm) ® HO(Fm—l(nm)) —
L= Ox(—n1) @ HY(E(n1)) — E — 0.
Applying T, decreases the homological dimension
hd(E) of E by 1 until it is zero. As 0 < hd(E) <m
we have 0 < hd(F;) < m — 1, so hd(F,,) = 0, and
Fr is a vector bundle.
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For (b), we use an idea of Richard Thomas.
Let £ — X be a fixed complex (not holo-
morphic) vector bundle. The holomor-
phic structures on E are 0-operators Of :
C®(E) — C®(E @c A1T*X). The set of
such 9-operators is an infinite-dimensional
affine space A. A 0-operator 9 is a holo-
morphic structure iff the (0, 2)-curvature
0% is zero. Gauge transformations G =
C*®°(Aut(FE)) act on A. Thus, the mod-
uli space (stack) of holomorphic structures
on E up to isomorphisms is

Mg = {0 € A: 8% =0}/G.

Richard observed that {0 € A : 9% = 0}
is Crit(CS), in some infinite-dimensional
manifold sense, where CS : A — C is the
holomorphic Chern—Simons functional.
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To prove (b), we show that an atlas for
Vect near (E,0r) can be written locally as
Crit(CS|y), where U is a finite-dimensional
complex submanifold of A, which is roughly
speaking transverse to the orbit of G through
EE. We use results of Miyajima and others
which locally identify the moduli spaces of
holomorphic structures on E, and of ana-
lytic vector bundles on X, and of algebraic
vector bundles on X.
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To prove (C): let E = FE{® E> be a co-
herent sheaf on X. Then (a),(b) show
that we can write an atlas for 9t near E
as Crit(f) near 0, where f is a holomor-
phic function defined near 0 on Extl(E; @
FE>, E1 ® E»), and f is invariant under the
action of T'={idg, +Xidg, : A€ U(1)} on
Extl(E{ ® E», E1 ® E>) by conjugation.
The fixed points of T on Extl(E{®E>, E1®
E5) are Extl(Eq, E1) ® Extl(E5, E5), and
that the restriction of f to these fixed
points is f1 + f2, where f; is defined near
0 in Ext(E;, E;), and Crit(f;) is an atlas
for 9 near L.
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The Milnor fibre M F¢(0) is invariant under
T, so by localization we have

X(MF(0)) =x(MF;(0)")=x(MFy, 4 +,(0)).

The Thom—Sebastiani theorem gives

1 —x(MFf4£,(0)) = (1 —x(MFf,(0))
(1 = x(MFy,(0)).

Equation (7) then follows easily from

von(E) = (—1)dim Ext!(E,E)—dim Hom(E,E)
(1 — x(MF(0)),

and the analogues for Eq,E>. Equation
(8) uses a more involved argument to do
with Milnor fibres of f at non-fixed points
of the U(1)-action.
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5. Generalized D—T invariants
We then define invariants DT%(7) € Q by
W(e*(1)) = DT*(r)X\ for all a € K(X).
Since W is a Lie algebra morphism, and
the €*(7) satisfy a universal transformation
law under change of stability condition, it
follows that the DT“(r) satisfy a known
transformation law under change of sta-
bility condition. When Mg (1) = ME(T1)
we have €*(1) = dsc(7), giving

DTH(1) = /Mo‘t(T) vdy =DT% ) (9)

by (2). Thus, the DT%(r) are generaliza-
tions of Donaldson—Thomas invariants.

It remains to show that the DT“(r) are
unchanged under deformations of the
underlying Calabi—Yau 3-fold X.
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To do this we define an auxiliary invari-
ant PI*N( 7) € Z counting ‘stable pairs’
(E,s) with E a semistable sheaf in class
a and s € HY(E @ £), for N > 0, where
L is the ample line bundle used to define
7. By a similar proof to Pandharipande—
Thomas invariants, the moduli space of
stable pairs has a symmetric obstruction
theory, so PI*Y(,7) is unchanged by de-
formations of X.

We then prove that PI%Y(,r) can be writ-
ten in terms of the DTP(7) by

pPI*N(m)y = Y (=1)"
at,...,an€K(X): n|
a1t tan=aq,
7(a;)=7(ax) Vi (10)
n (_1)X([£_N]—041—'"—0%—1,0%).

11

i—=1 x([LN] —ay — - —a;_1, ) DT (7).
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We prove (10) using a change of stability
condition formula in an auxiliary abelian
category B, whose objects are triples (V, E, ¢)
for V a finite-dimensional C-vector space,
E a coherent sheaf, and ¢ : V —» HYE ®
£NY) a linear map. Now (10) implies that

pProN( ) = (—1)XUET L)y (27N, ) DT () +- - -,

where the lower order terms involve
only DTP(r) with dimB = dima and
rank 8 < rank a.

Also y([£7N],a) = dmHY(E @ £V) > 0
for N > 0. Thus, fixing dima and arguing
by induction on ranka, since PI%N( ) is
deformation-invariant, we see that DT%(r)
Is deformation-invariant.
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Integrality properties of the invariants
Suppose FE is stable and rigid in class «.
Then kE = E®---@FE is strictly semistable
in class ka, for k > 2. Calculations show
that E contributes 1 to DT%(7), and kE

contributes 1/k? to DT*(r). So we do
not expect the DT™(7) to be integers.
Define new invariants DT%(7) € Q by

DT*(1) = 3 L pra k).

k>1:k divides « kz
Theg the kE for k > 1Aabove contribute 1
to DT%(r) and 0 to DT*%(r) for k > 1.

Conjecture. Suppose T is generic, in the
sense that t(a) = 7(B) implies x(«a,B3) =
0. Then DT*(t) € Z for all « € K(X).

This is proved for invariants from quivers
without relations. The DT%(7) may agree
with invariants of Kontsevich—Soibelman,
and in String Theory should perhaps be
interpreted as ‘numbers of BPS states’.
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