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1. Introduction

I will describe a new class of geo-
metric objects I call d-manifolds —
‘derived’ smooth manifolds. Some
properties of d-manifolds:

e [hey form a strict 2-category
dMan. That is, we have objects X,
the d-manifolds, 1-morphisms £, g :
X — Y, the smooth maps, and also
2-morphisms n : f = g.

e Smooth manifolds embed into d-
manifolds as a full (2)-subcategory.
e There are also 2-categories dManP
of d-manifolds with boundary and
dMan® of d-manifolds with corners,
and orbifold versions dOrb, dOrbP,
dOrb® of these, d-orbifolds.
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e Many concepts of differential ge-
ometry extend nicely to d-manifolds:
submersions, immersions, orienta-
tions, submanifolds, transverse fi-
bre products, cotangent bundles, .. ..
e Almost any moduli space used

IN any enumerative invariant prob-

lem over R or C has a d-manifold

or d-orbifold structure, natural up

to equivalence. There are trunca-

tion functors to d-manifolds and d-

orbifolds from structures currently

used — C-schemes with obstruction

theories, Kuranishi spaces, polyfolds.
e Virtual classes/cycles/chains can

be constructed for compact oriented
d-manifolds and d-orbifolds.
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So, d-manifolds and d-orbifolds pro-
vide a unified framework for study-
INg enumerative invariants and mod-
uli spaces. They also have other
applications, and are interesting and
beautiful in their own right.
D-manifolds and d-orbifolds are
related to other classes of spaces
already studied, in particular to the
Kuranishi spaces of Fukaya—Oh—
Ohta—Ono in symplectic geometry,
and to David Spivak’s derived man-
ifolds, from Jacob Lurie's ‘derived
algebraic geometry’ programme.



2. D-spaces and d-manifolds
Algebraic geometry (based on alge-
bra and polynomials) has excellent
tools for studying singular spaces —
the theory of schemes.

In contrast, conventional differen-
tial geometry (based on smooth real
functions and calculus) deals well
with nonsingular spaces — manifolds
— but poorly with singular spaces.
There is a little-known theory of
schemes in differential geometry,
(C°°-schemes, going back to Law-
vere, Dubuc, Moerdijk and Reyes,
... In synthetic differential geome-
try in the 1960s-1980s. This will be
the foundation of our d-manifolds.
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2.1. C°°-rings

Let X be a manifold, and C°°(X)

the set of smooth functions c: X —

R. Then C*(X) is an R-algebra,

by adding and multiplying smooth

functions. But there are many more
operations on C°°(X), e.g. if ¢ :

X — Rissmooth then exp(c¢) : X —

R is smooth, giving exp : C*°(X) —

C°°(X), algebraically independent of
addition and multiplication.

Let f: R" — R be smooth. Define

b, C(X)" = C°(X) by

be(cla st Cn)(CL’) :f(C]_(ZL’), c e Cn(CU)>
for all x € X. Addition comes from

fiR2 =R, f:(c1,¢2) = c1+ co,

multiplication from (¢q,c») — c1co.
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Definition. A C°°-ring is a set ¢ together
with n-fold operations & : ¢ — & for all
smooth maps f : R" - R, n > 0, satisfying
the following conditions:

Let m,n > 0, and f; : R" — R for 1 =
1,...,m and g : R™ — R be smooth func-
tions. Define h: R™ — R by

h(CIZ]_,...,ZBn) :g(f1<3317°"7xn)7°"7fm(w1°"733n))7

for (x1,...,zp) € R™. Then forall ¢cq,...,cn
iIn € we have

dy(c1,...,cp) =

g(Pp(cr,-5en)y- o, Py (e1,--50n)).
Also defining 7; : (z1,...,zn) — x; for j =
1,...,n we have &g, : (c1,...,¢cn) = ¢j.

A morphism of C'°°-rings is ¢ . € — ® with
Prog" = gody: " =D for all smooth f:
R"™ — R. Write C°°Rings for the category
of C'°°-rings.



Then C*°(X) is a C*°-ring for any
manifold X, and from C°(X) we
can recover X up to isomorphism.
If f: X — Y is smooth then f* .
C*®(Y) — C°°(X) is a morphism
of C°°-rings. This gives a full and
faithful functor F' : Man — C°Rings®P
by F': X — C®(X), F: fw— f*.
Thus, we think of manifolds as ex-
amples of C'°°-rings, and C°°-rings
as generalizations of manifolds. But
there are many more C'°°-rings than
manifolds, e.g. CO(X) is a C*®-ring
for any topological space X.



2.2. C°°-schemes

We can now develop the whole ma-
chinery of scheme theory in alge-
braic geometry, replacing rings or
algebras by C°°-rings throughout —
see my arXiv:1001.0023.

We obtain a category C*°Sch of (°°-
schemes X = (X,0Oyx), which are
topological spaces X equipped with
a sheaf of C"*“-rings O x locally mod-
elled on the spectrum of a C°°-ring.
If X is a manifold, define a (C°°-
scheme X = (X,0x) by Ox(U) =
C>°(U) for all open U C X. This
defines a full and faithful embed-
ding Man <> C°°Sch.



We also define vector bundles, co-
herent sheaves coh(X) and quasi-
coherent sheaves qcoh(X), and the
cotangent sheaf T*X on X. Then
gcoh(X) is an abelian category.
Some differences with conventional
algebraic geometry:

e affine schemes are Hausdorff. No
need to introduce étale topology.
e partitions of unity exist subordi-
nate to any open cover of a (nice)
C°°-scheme X.

e C°°-rings such as C*°(R"™) are not
noetherian as R-algebras. Causes
problems with coherent sheaves:
coh(X) is not closed under kernels,
SO Nnot an abelian category.
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2.3. The 2-category of d-spaces

We define d-manifolds as a 2-subcategory
of a larger 2-category of d-spaces. These
are ‘derived’ versions of (/°°-schemes.
Definition. A d-space is a is a quintu-
ple X = (Xaof)(agXazXan) where X =
(X,0Ox) is a separated, second countable,
locally fair C°°-scheme, O’X IS a second
sheaf of C"*°-rings on X, and £x is a qua-
sicoherent sheaf on X, and 1x : O — Ox
IS a surjective morphism of sheaves of C°°-
rings whose kernel Zy is a sheaf of square
zero ideals in O, and jx : Ex — Ix is
a surjective morphism in gcoh(X), so we
have an exact sequence of sheaves on X:
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A 1-morphism f : X — Y is a triple f =
(f, f', ), where f = (f,fH) : X - Yis a
morphism of C*-schemes and f’: f~1(0%)
— O, f": f*(Ey) — Ex are sheaf mor-
phisms such that the following commutes:

fHEy) o fTHOy) T Oy) 0
T ey
gX JX OfX (D¢ OX 0.

Let f,g : X — Y be 1-morphisms with
f=r1m, F="(4d,9"). Suppose f =

g. A 2-morphism n: f = g is a morphism
Cp—1
N Qo) @p-101) Ox — €x
in gcoh(X), where QO/Y is the sheaf of

cotangent modules of Oy, such that ¢’ =

f'+axonoNxy and ¢" = f"+no f*(¢y),
for natural morphisms [lxy, ¢y .

Theorem 1. This defines a strict 2-category
dSpa. All fibre products exist in dSpa.
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We can map C*Sch into dSpa by tak-
ing a C°°-scheme X = (X,0x) to the d-
space X = (X,0x,0,idp,,0), with exact
sequence

ido

0 2.0y Ox—0.

This embeds C*Sch, and hence manifolds
Man, as discrete 2-subcategories of dSpa.
For transverse fibre products of manifolds,
the fibre products in Man and dSpa agree.
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2.4. The 2-subcategory of d-manifolds
Definition. A d-space X is a d-manifold
of dimension n € Z if X may be covered by
open d-subspaces Y equivalent in dSpa to
a fibre product UxwV, where U,V , W are
manifolds without boundary and dimU +
dimV —dimW =n. We allow n < 0.
Think of a d-manifold X =(X, 0%, Ex,1x,7x)
as a ‘classical’ C°°-scheme X, with extra
‘derived’ data O%,Ex,1x,Jx.

Write dMan for the full 2-subcategory of
d-manifolds in dSpa. It is not closed under
fibre products in dSpa, but we can say:
Theorem 2. All fibre products of the form
X Xz Y with X,Y d-manifolds and Z a
manifold exist in the 2-category dMan.
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2.5. Gluing by equivalences
Theorem3. Let X,Y be d-manifolds,
VAU CX,0#~V CY beopen, and
f U — V an equivalence. Sup-
pose Z = X Uy=y Y Is Hausdorff.
T hen there exists a d-manifold Z,
unique up to equivalence in dMan,
open X, Y C Z with Z = X UY,
equivalencesg: X - X andh:Y —
Y, and a 2-morphism n : gl = hof.
Theorem 3 extends to gluing fam-
ilies of d-manifolds X; : = € I by
equivalences on overlaps X; N X,
with (weak) conditions on overlaps
X; N X;NXg. This is very useful
for proving existence of d-manifold
structures on moduli spaces.

15



2.6. D-manifold bordism

Let Y be a manifold. Define the
bordism group Bi(Y ) to have ele-
ments ~-equivalence classes [X, f]
of pairs (X, f), where X is a com-
pact oriented k-manifold and f
X — Y is smooth, and (X, f) ~
(X', ) if there exists a compact
oriented (k+1)-manifold with bound-
ary W and a smooth map e : W —
Y with oW £ X 11 — X’ and e|gy =
f1II f/. It is an abelian group, with
[X, 1+ X 1 = [X T X, f1T f].
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Similarly, define the derived bordism
group dBi(Y) to have elements =-
equivalence classes [X, f] of pairs
(X, f), where X is a compact ori-
ented d-manifold with vdimX = k
and f: X — v = FdMay) s a
1-morphism in dMan, and (X, f) &~
(X', ) if there exists a compact
oriented d-manifold with boundary
w with vdimw = k+ 1 and a 1-
morphism e : W — Y in dManP with
oW ~ X1I—X' and e|5xW = f]_[f/ It
1S an abelian group, with
(X, 1+ X, fl=[x1OX rIIf].
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There is a natural morphism MNgRo :
Bi(Y) — dBr(Y) mapping [X, f] —
[FOpaan (X)), Fypan( f)].

Theorem 4. NdR°: B, (V) —dBL(Y)
Is an isomorphism for all k, with
dB,.(Y) =0 for k < 0.

T his holds because every d-manifold
can be perturbed to a manifold.
Composing (MZg8°)~1 with the pro-
jection B(Y) — Hy(Y,Z) gives a
morphism NNOM:adB..(Y) — H(Y,Z).
We can interpret this as a virtual
class map for compact oriented
d-manifolds. Virtual classes (in ho-
mology over Q) also exist for com-
pact oriented d-orbifolds.
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2.7. Why is a 2-category enough?
Usually in derived algebraic geome-
try, one considers an oco-category of
objects (derived stacks, etc.). But
we work in a 2-category, effectively
a truncation of Spivak’s co-category
of derived manifolds.

Here are two reasons why this trun-
cation does not lose important in-
formation. Firstly, d-manifolds cor-
respond to quasi-smooth derived
schemes X, whose cotangent com-
plex Ly lies in degrees [—1,0]. So
Lx liesin a 2-category of complexes,
not an oo-category. Note that f :
X — Y is étale in dMan iff Qf :
f*(Ly) — Lx is an equivalence.
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Secondly, the existence of partitions
of unity in differential geometry
means that our structure sheaves
O x are ‘fine’ or ‘'soft’, which simpli-
fies behaviour. Partitions of unity
are also essential in gluing by equiv-
alences in dMan, as in Theorem 3.
Our ‘2-category style derived ge-
ometry' probably would not work
very well in a conventional algebro-
geometric context, rather than a
differential-geometric one.
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