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1. Calabi–Yau manifolds

A Calabi–Yau m-fold is a compact 2m-

dimensional manifold X equipped with four

geometric structures:

• a Riemannian metric g;

• a complex structure J;

• a symplectic form (Kähler form) ω; and

• a complex volume form Ω.

These satisfy pointwise compatibility con-

ditions: ω(u, v) = g(Ju, v), |Ω|g ≡ 2m/2, Ω

is of type (m,0) w.r.t. J, and p.d.e.s: J is

integrable, and dω ≡ dΩ ≡ 0. Usually we

also require H1(X;R) = 0.

This is a rich geometric structure, and

very interesting from several points of view.
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Complex algebraic geometry: (X, J) is

a projective complex manifold. That is,

we can embed X as a complex submani-

fold of CPN for some N À 0, and then X

is the zero set of finitely many homoge-

neous polynomials on CN+1. Also Ω is a

holomorphic section of the canonical bun-

dle KX, so KX is trivial, and c1(X)=0.

Analysis: For fixed (X, J), Yau’s solution

of the Calabi Conjecture by solving a non-

linear elliptic p.d.e. shows that there exists

a family of Kähler metrics g on X making

X Calabi–Yau.

Combining complex algebraic geometry and

analysis proves the existence of huge num-

bers of examples of Calabi–Yau m-folds.
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Riemannian geometry: (X, g) is a Ricci-

flat Riemannian manifold with holonomy

group Hol(g) ⊆ SU(m).

Symplectic geometry: (X, ω) is a sym-

plectic manifold with c1(X) = 0.

Calibrated geometry: there is a distin-

guished class of minimal submanifolds in

(X, g) called special Lagrangian m-folds.

String Theory: a branch of theoretical

physics aiming to combine Quantum The-

ory and General Relativity. String Theo-

rists believe that space-time is not 4 di-

mensional, but 10-dimensional, and is lo-

cally modelled on R3,1 × X, where R3,1 is

Minkowski space, our observed universe,

and X is a Calabi–Yau 3-fold with radius

of order 10−33cm, the Planck length.
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String Theorists believe that each Calabi–
Yau 3-fold X has a quantization, a Super
Conformal Field Theory (SCFT), not yet
rigorously defined. Invariants of X such
as the Dolbeault groups Hp,q(X) and the
Gromov–Witten invariants of X translate
to properties of the SCFT. Using physical
reasoning they made amazing predictions
about Calabi–Yau 3-folds, an area known
as Mirror Symmetry, conjectures which are
slowly turning into theorems.
Part of the picture is that Calabi–Yau 3-
folds should occur in pairs X, X̂, such that
Hp,q(X) ∼= H3−p,q(X̂), and the complex
geometry of X is somehow equivalent to
the symplectic geometry of X̂, and vice
versa. This is very strange. It is an excit-
ing area in which to work.
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2. Invariants in Geometry

When geometers talk about invariants, they

tend to have a particular, quite complex

set-up in mind:

• Let X be a manifold (usually compact).

• Let G be a geometric structure on X

that we are interested in.

• Let A be some auxiliary geometric struc-

ture on X.

• Let α be some topological invariant, e.g.

a homology class on X.

We define a moduli spaceM(G,A, α) which

parametrizes isomorphism classes of some

kind of geometric object on X (e.g. sub-

manifolds, or bundles with connection) which

satisfy a p.d.e. depending on G and A, and

have topological invariant α.
6



Then we define I(G, α) in Z or Q or H∗(X;Q)

which ‘counts’ the number of points in

M(G,A, α). The ‘counting’ often has to

be done in a complicated way. Usually we

need M(G,A, α) to be compact.

The important thing is this: sometimes

one can prove that I(G, α) is independent

of the choice of auxiliary geometric struc-

ture A, even though M(G,A, α) depends

very strongly on A, and even though we

usually have no way to define I(G, α) with-

out choosing A. Then we call I(G, α) an

invariant. Invariants are interesting as they

may be part of some deep underlying struc-

ture which we don’t yet understand,

perhaps some kind of Quantum Geome-

try coming from String Theory.
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Examples of invariants:

Donaldson invariants and Seiberg–Witten

invariants of 4-manifolds ‘count’ self-dual

connections. They are independent of the

Riemannian metric used to define them,

and depend only on the underlying ori-

ented smooth 4-manifold. They can dis-

tinguish homeomorphic, non-diffeomorphic

4-manifolds.

Gromov–Witten invariants of a compact

symplectic manifold (X, ω) ‘count’

J-holomorphic curves in X for an almost

complex structure J compatible with ω,

but are independent of J.

Donaldson–Thomas invariants of a Calabi–

Yau 3-fold (X, J, g,Ω) ‘count’ coherent

sheaves on X, and are independent of the

complex structure J up to deformation.
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3. Donaldson–Thomas invariants

Let X be a Calabi–Yau 3-fold. A holo-

morphic vector bundle π : E → X of rank

r is a complex manifold E with a holo-

morphic map π : E → X whose fibres are

complex vector spaces Cr. A morphism

φ : E → F of holomorphic vector bundles

π : E → X, π′ : F → X is a holomorphic

map φ : E → F with π′ ◦ φ ≡ π, that is

linear on the vector space fibres. Then

Hom(E, F ) is a finite-dimensional vector

space. Holomorphic vector bundles form

an exact category Vect(X).

A holomorphic vector bundle E has

topological invariants, the Chern character

ch∗(E) in Heven(X,Q), with ch0(E) = r,

the rank of E. Holomorphic vector bun-

dles are very natural objects to study.
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Roughly speaking, D–T invariants are in-
tegers which ‘count’ (semi)stable holomor-
phic vector bundles. But we actually con-
sider a larger category, the coherent sheaves
coh(X) on X. A coherent sheaf is a (pos-
sibly singular) vector bundle E → Y on a
complex submanifold (subscheme) Y in X.
We need coherent sheaves for two reasons:
Firstly, moduli spaces of semistable holo-
morphic vector bundles are generally non-
compact; to get compact moduli spaces,
we have to allow singular vector bundles,
that is, coherent sheaves.
Secondly, if φ : E → F is a morphism
of vector bundles then Ker φ and Cokerφ
are generally coherent sheaves, not vec-
tor bundles. The category coh(X) is bet-
ter behaved than Vect(X) (it is an abelian
category, has kernels and cokernels).
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One cannot define invariants ‘counting’ all

coherent sheaves with a fixed Chern char-

acter α, as the number would be infinite

(the moduli spaces are not of finite type).

Instead, one restricts to (semi)stable co-

herent sheaves. A coherent sheaf E is

Gieseker (semi)stable if all subsheaves F ⊂
E satisfy some numerical conditions. These

conditions depend on an ample line bundle

on X; essentially, on the cohomology class

[ω] ∈ H2(X;R) of the Kähler form ω of X.

We will write τ for Gieseker stability.

Every coherent sheaf can be decomposed

into τ-semistable sheaves in a unique way,

the Harder–Narasimhan filtration. So count-

ing τ-semistable sheaves is related to count-

ing all sheaves.
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Let X be a Calabi–Yau 3-fold. The

Donaldson–Thomas invariants DTα(τ) of

X were defined by Richard Thomas in 1998.

Fix a Chern character α in Heven(X;Q).

Then one can define coarse moduli schemes

Mα
st(τ), Mα

ss(τ) parametrizing equivalence

classes of τ-(semi)stable sheaves with Chern

character α. They are not manifolds, but

schemes which may have bad singularities.

Two good properties:

• Mα
ss(τ) is a projective C-scheme, so in

particular it is compact and Hausdorff.

• Mα
st(τ) is an open subset in Mα

ss(τ),

and has an extra structure, a symmetric

obstruction theory, which does not extend

to Mα
ss(τ) in general.
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If Mα
ss(τ) = Mα

st(τ), that is, there are
no strictly τ-semistable sheaves in class α,
then Mα

st(τ) is compact with a symmetric
obstruction theory. Thomas used the vir-
tual class of Behrend and Fantechi to de-
fine the ‘number’ DTα(τ) ∈ Z of points in
Mα

st(τ), and showed DTα(τ) is unchanged
under deformations of the complex struc-
ture of X.
Virtual classes are non-local. But Behrend
(2005) showed that DTα(τ) can be written
as a weighted Euler characteristic

DTα(τ) =
∫

Mα
st(τ)

ν dχ, (1)

where ν is the ‘Behrend function’, a Z-
valued constructible function on Mα

st(τ)
depending only on Mα

st(τ) as a C-scheme.
We think of ν as a multiplicity function,
so (1) counts points with multiplicity.
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D–T invariants are of interest in String

Theory. The MNOP Conjecture, an im-

portant problem, relates the rank 1 D–T

invariants to the Gromov–Witten invari-

ants counting holomorphic curves in X.

Thomas’ definition of DTα(τ) has two

disadvantages:

• DTα(τ) is undefined if Mα
ss(τ) 6= Mα

st(τ).

• It was not understood until now how

DTα(τ) depends on the choice of stabil-

ity condition τ (effectively, on the Kähler

class [ω] of X).

I will explain a theory which solves these

two problems (joint work with Yinan Song).
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We will define generalized Donaldson–

Thomas invariants D̄Tα(τ) ∈ Q for all Chern

characters α, such that:

• D̄Tα(τ) is unchanged by deformations of

the underlying Calabi–Yau 3-fold.

• IfMα
st(τ)=Mα

ss(τ) thenD̄Tα(τ)=DTα(τ).

• The D̄Tα(τ) transform according to a

known transformation law under change of

stability condition.

• For ‘generic’ τ , we have a conjecture

rewriting the D̄Tα(τ) in terms of Z-valued

‘BPS invariants’ D̂Tα(τ). (Cf. Gromov–

Witten and Gopakumar–Vafa invariants).

• The theory generalizes to invariants count-

ing representations of a quiver with rela-

tions coming from a superpotential. (Cf.

‘noncommutative D–T invariants’).
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On the face of it, the problem is just to

decide how to ‘count’ strictly τ-semistable

sheaves with the correct multiplicity, which

sounds simple. But the solution turns out

to be very long and very complex, and in-

volves a lot of interesting mathematics.

As the details are unsuitable for a general

talk, I will just explain a few of the key

ideas involved.
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Key idea 1: work with Artin stacks
Kinds of space used in complex algebraic
geometry, in decreasing order of ‘niceness’:
• complex manifolds (very nice)
• varieties (nice)
• schemes (not bad): Thomas’ DTα(τ).
• algebraic spaces (getting worse)
• Deligne–Mumford stacks (not nice)
• Artin stacks (horrible): our D̄Tα(τ).
• higher/derived stacks (deeply horrible)
• derived Artin (k, l)-stacks (yuck . . . )
We need to work with moduli spaces which
are Artin stacks, rather than coarse moduli
schemes as Thomas does.
One reason is that strictly τ-semistable
sheaves can have nontrivial automorphism
groups, and Artin stacks keep track of au-
tomorphism groups, but schemes do not.
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Key idea 2: Ringel–Hall algebras

Write M for the moduli stack of coher-

ent sheaves on X. The ‘stack functions’

SF(M) is the Q-vector space generated by

isomorphism classes [(R, ρ)] of morphisms

ρ : R → M for R a finite type Artin C-stack,

with the relation

[(R, ρ)] = [(S, ρ)] + [(R \S, ρ)]

for S a closed substack of R.

There is an interesting associative, non-

commutative product ∗ on SF(M) defined

using short exact sequences in coh(X); for

f, g ∈ SF(M), think of (f ∗ g)(F ) as the

‘integral’ of f(E)g(G) over all exact se-

quences 0→E→F→G→0 in coh(X).
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The substack Mα
ss(τ) of M of τ-semistable

sheaves with Chern character α has finite

type, so δ̄α
ss(τ) = [(Mα

ss(τ), inc)] ∈ SF(M).

There is a Lie subalgebra SFind(M) of

SF(M) of stack functions ‘supported on

virtual indecomposables’. Define elements

ε̄α(τ) =
∑

n>1, α1+···+αn=α, τ(αi)=τ(α), all i

(−1)n−1/n · δ̄α1
ss (τ)∗δ̄α2

ss (τ)∗· · ·∗δ̄αn
ss (τ).

Then ε̄α(τ) ∈ SFind(M).

There are many important universal iden-

tities in the Ringel–Hall algebra SF(M).

For instance, if τ, τ̃ are different stability

conditions, we have

δ̄α
ss(τ̃) =

∑

n>1, α1+···+αn=α

S(α1, . . . , αn; τ, τ̃) · δ̄α1
ss (τ) ∗ · · ·
∗δ̄αn

ss (τ),
(2)

ε̄α(τ̃) =
∑

n>1, α1+···+αn=α

U(α1, . . . , αn; τ, τ̃) · ε̄α1(τ) ∗ · · ·
∗ε̄αn(τ),

(3)

for combinatorial coefficients S, U(· · · ; τ, τ̃).
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Key idea 3: local structure of the

moduli stack of coherent sheaves

We prove that the moduli stack of coher-

ent sheaves M can be written locally in the

complex analytic topology as [Crit(f)/G],

where G is a complex Lie group, U a com-

plex manifold acted on by G, and f : U → C
a G-invariant holomorphic function.

This is a complex analytic analogue for M

of the fact that Mα
st(τ) has a symmetric

obstruction theory.

It requires X to be a Calabi–Yau 3-fold.

The proof is non-algebraic, using gauge

theory on complex vector bundles over X,

and works only over the field C.
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Key idea 4: Behrend function identities

For each Artin C-stack M we can define

a Behrend function νM, a Z-valued con-

structible function we interpret as a mul-

tiplicity function. If we can write M lo-

cally as [Crit(f)/G] for f : U → C holo-

morphic and U a complex manifold then

νM(uG) = (−1)dimU−dimG(1−χ(MFf(u)))

for u ∈ Crit(f), where MFf(u) is the Mil-

nor fibre of f at u.

Using Key idea 3 we prove two identities

on the Behrend function of the moduli

stack M:
νM(E1 ⊕ E2) = (−1)χ̄([E1],[E2])νM(E1)νM(E2), (4)∫

[λ]∈P(Ext1(E2,E1)):
λ ⇔ 0→E1→F→E2→0

νM(F )dχ−
∫
[λ′]∈P(Ext1(E1,E2)):
λ′ ⇔ 0→E2→F ′→E1→0

νM(F ′)dχ

=
(
dimExt1(E2, E1)− dimExt1(E1, E2)

)
νM(E1 ⊕ E2).

(5)
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Key idea 5: A Lie algebra morphism
from a Ringel–Hall Lie algebra
Let K(X) ⊂ Heven(X;Q) be the lattice
of Chern characters of coherent sheaves.
Then K(X) ∼= Zl, and there is an antisym-
metric Euler form χ̄ : K(X)×K(X) → Z.
Define a Lie algebra L(X) to have basis,
as a Q-vector space, symbols λα for α ∈
K(X), and Lie bracket

[λα, λβ] = (−1)χ̄(α,β)χ̄(α, β)λα+β. (6)

We define a Lie algebra morphism Ψ :
SFind(M) → L(X). Roughly speaking this
is given by

Ψ
(
[R, ρ]

)
=

∑

α∈K(X)
χstk(R×M Mα, ρ∗(νM))λα,

where χstk is a kind of stack-theoretic
weighted Euler characteristic.
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However, Euler characteristics of stacks

are not well-defined: we want χ([X/G]) =

χ(X)/χ(G) for X a scheme and G a Lie

group, but χ(G) = 0 whenever rankG > 0.

The point of using SFind(M) is that it is

generated by elements [(U×[SpecC/C∗], ρ)]
for U a C-variety, and we set

Ψ
(
[(U × [SpecC/C∗], ρ)]

)

=
∑

α∈K(X) χ(U ×M Mα, ρ∗(νM))λα,

which is well-defined as U ×M Mα is a vari-

ety. We do not yet know how to extend Ψ

from SFind(M) to SF(M). To prove Ψ is a

Lie algebra morphism we use the Behrend

function identities (4)-(5).
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We can now define generalized Donaldson–

Thomas invariants D̄Tα(τ) ∈ Q: we set

Ψ(ε̄α(τ)) = D̄Tα(τ)λα for all α ∈ K(A).

The transformation law (3) for the ε̄α(τ)

under change of stability condition can be

written as a Lie algebra identity in SFind(M).

So applying the Lie algebra morphism Ψ

yields a transformation law for the D̄Tα(τ):

D̄Tα(τ̃) =
∑

iso. classes
of Γ, I, κ

± U(Γ, I, κ; τ, τ̃)·
∏

i∈I
D̄Tκ(i)(τ)·

∏

edges
i− j in Γ

χ̄(κ(i), κ(j)).
(7)

Here Γ is a connected, simply-connected

undirected graph with vertices I, κ : I →
K(A) has

∑
i∈I κ(i) = α, and U(Γ, I, κ; τ, τ̃)

in Q are explicit combinatorial coefficients.
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Key idea 6: pair invariants PIα,N(τ ′)
We define an auxiliary invariant PIα,N(τ ′) ∈
Z counting ‘stable pairs’ (E, s) with E a

semistable sheaf in class α and s ∈ H0(E(N)),

for N À 0. The moduli space of stable

pairs is a projective C-scheme with a sym-

metric obstruction theory, so PIα,N(τ ′) is

unchanged by deformations of X.

By a similar proof to (7) we show that

PIα,N(τ ′) can be written in terms of the

D̄Tβ(τ) by

PIα,N(τ ′) =
∑

α1,...,αn∈K(A):
α1+···+αn=α,
τ(αi)=τ(α) ∀i

(−1)n

n!

n∏

i=1

(−1)χ̄([OX(−N)]−α1−···−αi−1,αi)·
χ̄([OX(−N)]− α1 − · · · − αi−1, αi)D̄Tαi(τ).

(8)
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Since the PIα,N(τ ′) are deformation-

invariant, we use (8) and induction on

rankα to prove that D̄Tα(τ) is unchanged

under deformations of X for all α ∈ K(X).

The PIα,N(τ ′) are similar to Pandharipande

–Thomas invariants.

Note that D̄Tα(τ) counts strictly semista-

bles E in a complicated way: there are

Q-valued contributions from every filtra-

tion 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E with Ei

τ-semistable and τ(Ei) = τ(E), weighted

by νM(E). One can show by example that

more obvious, simpler definitions of D̄Tα(τ)

do not give deformation-invariant answers.
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Integrality properties of the invariants
Suppose E is stable and rigid in class α.
Then kE = E⊕· · ·⊕E is strictly semistable
in class kα, for k > 2. Calculations show
that E contributes 1 to D̄Tα(τ), and kE

contributes 1/k2 to D̄T kα(τ). So we do
not expect the D̄Tα(τ) to be integers, in
general.
Define new invariants D̂Tα(τ) ∈ Q by

D̄Tα(τ) =
∑

k>1:k divides α

1

k2
D̂Tα/k(τ).

Then the kE for k > 1 above contribute 1
to D̂Tα(τ) and 0 to D̂T kα(τ) for k > 1.

Conjecture. Suppose τ is generic, in the
sense that τ(α) = τ(β) implies χ̄(α, β) =
0. Then D̂Tα(τ) ∈ Z for all α ∈ K(X).

These D̂Tα(τ) may coincide with invari-
ants conjectured by Kontsevich–Soibelman,
and in String Theory should perhaps be in-
terpreted as ‘numbers of BPS states’.
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