Donaldson—T homas
invariants of
Calabi—Yau 3-folds.

Dominic Joyce, Oxford, UK.
British-Nordic Congress,
Oslo, June, 2009.

Based on
arXiv:0810.5645v3,
June 2009, 181 pages.

Joint work with Yinan Song.

T hese slides available at

www.maths.ox.ac.uk/~joyce/talks.html

1



1. Calabi—Yau manifolds
A Calabi—yYau m-fold is a compact 2m-
dimensional manifold X equipped with four
geometric structures:
e 2 Riemannian metric g;
e a complex structure J,
e a symplectic form (Kahler form) w; and
e a complex volume form €2.
T hese satisfy pointwise compatibility con-
ditions: w(u,v) = g(Ju,v), |Q2]g = om/2 Q)
is of type (m,0) w.r.t. J, and p.d.e.s: J is
integrable, and dw = d€2 = 0. Usually we
also require HY(X;R) = 0.
This is a rich geometric structure, and
very interesting from several points of view.
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Complex algebraic geometry: (X,J) is
a projective complex manifold. That is,
we can embed X as a complex submani-
fold of CPY for some N > 0, and then X
IS the zero set of finitely many homoge-
neous polynomials on CNT1, Also Q is a
holomorphic section of the canonical bun-
dle Ky, so Ky is trivial, and ¢1(X)=0.

Analysis: For fixed (X, J), Yau's solution
of the Calabi Conjecture by solving a non-
linear elliptic p.d.e. shows that there exists
a family of Kahler metrics g on X making
X Calabi—Yau.

Combining complex algebraic geometry and
analysis proves the existence of huge num-
bers of examples of Calabi—Yau m-folds.
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Riemannian geometry: (X, g) is a Ricci-
flat Riemannian manifold with holonomy
group Hol(g) C SU(m).

Symplectic geometry: (X,w) is a sym-
plectic manifold with ¢1(X) = 0.
Calibrated geometry: there is a distin-
guished class of minimal submanifolds in
(X, g) called special Lagrangian m-folds.

String Theory: a branch of theoretical
physics aiming to combine Quantum T he-
ory and General Relativity. String Theo-
rists believe that space-time is not 4 di-
mensional, but 10-dimensional, and is lo-
cally modelled on R3! x X. where R3:1 is
Minkowski space, our observed universe,
and X is a Calabi—Yau 3-fold with radius

of order 10—33cm, the Planck length.
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String Theorists believe that each Calabi—
Yau 3-fold X has a quantization, a Super
Conformal Field Theory (SCFT), not yet
rigorously defined. Invariants of X such
as the Dolbeault groups HP9(X) and the
Gromov—Witten invariants of X translate
to properties of the SCFT. Using physical
reasoning they made amazing predictions
about Calabi—Yau 3-folds, an area known
as Mirror Symmetry, conjectures which are
slowly turning into theorems.

Part of the picture is that Calabi—Yau 3-
folds should occur in pairs X, X, such that
HPY(X) = H37P4(X), and the complex
geometry of X is somehow equivalent to
the symplectic geometry of X, and vice
versa. This is very strange. It is an excit-
ing area in which to work.



2. Invariants in Geometry

When geometers talk about invariants, they
tend to have a particular, quite complex
set-up in mind:

e Let X be a manifold (usually compact).
o Let G be a geometric structure on X
that we are interested In.

e Let A be some auxiliary geometric struc-
ture on X.

o Let o be some topological invariant, e.g.
a homology class on X.
We define a moduli space M(G, A, o) which
parametrizes isomorphism classes of some
kind of geometric object on X (e.g. sub-
manifolds, or bundles with connection) which
satisfy a p.d.e. depending on G and A, and
have topological invariant «.



Then we define I(G,«) in Z or Q or Hy(X; Q)
which ‘counts’ the number of points in
M(G, A, o). The ‘counting’ often has to
be done in a complicated way. Usually we
need M(G, A, «) to be compact.

The important thing is this: sometimes
one can prove that I(G,«) is independent
of the choice of auxiliary geometric struc-
ture A, even though M(G, A, a) depends
very strongly on A, and even though we
usually have no way to define I(G, o) with-
out choosing A. Then we call I(G,«) an
invariant. Invariants are interesting as they
may be part of some deep underlying struc-
ture which we don't yet understand,
perhaps some kind of Quantum Geome-
try coming from String T heory.



Examples of invariants:

Donaldson invariants and Seiberg—Witten
invariants of 4-manifolds ‘count’ self-dual
connections. They are independent of the
Riemannian metric used to define them,
and depend only on the underlying ori-
ented smooth 4-manifold. They can dis-
tinguish homeomorphic, non-diffeomorphic
4-manifolds.

Gromov—Witten invariants of a compact
symplectic manifold (X,w) ‘count’
J-holomorphic curves in X for an almost
complex structure J compatible with w,
but are independent of J.

Donaldson—Thomas invariants of a Calabi—
Yau 3-fold (X, J,g,2) ‘count’ coherent
sheaves on X, and are independent of the

complex structure J up to deformation.
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3. Donaldson—Thomas invariants

Let X be a Calabi—Yau 3-fold. A holo-
morphic vector bundle = : E — X of rank
r is a complex manifold E with a holo-
morphic map = : £ — X whose fibres are
complex vector spaces C". A morphism
¢ . E — F of holomorphic vector bundles
. E — X, n' : F — X is a holomorphic
map ¢ : E — F with 7/ o ¢ = 7w, that is
linear on the vector space fibres. Then
Hom(E, F') is a finite-dimensional vector
space. Holomorphic vector bundles form
an exact category Vect(X).
A holomorphic vector bundle E has
topological invariants, the Chern character
ch«(F) in H®VEN(X, Q), with chg(E) = r,
the rank of E. Holomorphic vector bun-
dles are very natural objects to study.
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Roughly speaking, D—T invariants are in-
tegers which ‘count’ (semi)stable holomor-
phic vector bundles. But we actually con-
sider a larger category, the coherent sheaves
coh(X) on X. A coherent sheaf is a (pos-
sibly singular) vector bundle £ — Y on a
complex submanifold (subscheme) Y in X.
We need coherent sheaves for two reasons:
Firstly, moduli spaces of semistable holo-
morphic vector bundles are generally non-
compact; to get compact moduli spaces,
we have to allow singular vector bundles,
that is, coherent sheaves.

Secondly, if ¢ : EF — F is a morphism
of vector bundles then Ker¢ and Cokerg
are generally coherent sheaves, not vec-
tor bundles. The category coh(X) is bet-
ter behaved than Vect(X) (it is an abelian

category, has kernels and cokernels).
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One cannot define invariants ‘counting’ all
coherent sheaves with a fixed Chern char-
acter «, as the number would be infinite
(the moduli spaces are not of finite type).
Instead, one restricts to (semi)stable co-
herent sheaves. A coherent sheaf E is
Gieseker (semi)stable if all subsheaves F C
E satisfy some numerical conditions. These
conditions depend on an ample line bundle
on X, essentially, on the cohomology class
[w] € H2(X;R) of the Kihler form w of X.
We will write 7 for Gieseker stability.
Every coherent sheaf can be decomposed
iInNto 7-semistable sheaves in a unique way,
the Harder—Narasimhan filtration. So count-
INg 7-semistable sheaves is related to count-
ing all sheaves.
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Let X be a Calabi—Yau 3-fold. The
Donaldson—Thomas invariants DT%(r) of
X were defined by Richard Thomasin 1998.
Fix a Chern character a in HV"(X:; Q).
Then one can define coarse moduli schemes
MG (1), ME(T) parametrizing equivalence
classes of 7-(semi)stable sheaves with Chern
character «. They are not manifolds, but
schemes which may have bad singularities.
Two good properties:

o MZ(7) is a projective C-scheme, so in
particular it is compact and Hausdorff.

o MZ(7) is an open subset in ME(1),
and has an extra structure, a symmetric
obstruction theory, which does not extend
to MZ(7) in general.
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If M&(r) = M(7), that is, there are
no strictly m-semistable sheaves in class «,
then Mg (1) is compact with a symmetric
obstructlon theory. Thomas used the vir-
tual class of Behrend and Fantechi to de-
fine the ‘number’ DT%(7) € Z of points in
(1), and showed DT“(7) is unchanged
under deformations of the complex struc-
ture of X.
Virtual classes are non-local. But Behrend
(2005) showed that DT“(7) can be written
as a weighted Euler characteristic

DT*(7) = /Ma NP (1)

where v is the ‘Behrend function’, a Z-
valued constructible function on /\/l +(7)
depending only on Mg(7) as a C- scheme
We think of v as a mu/t/p//C/ty function,
so (1) counts points with multiplicity.
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D—T invariants are of interest in String
Theory. The MNOP Conjecture, an im-
portant problem, relates the rank 1 D—T
invariants to the Gromov—Witten invari-
ants counting holomorphic curves in X.
Thomas' definition of DT%(r) has two
disadvantages:

o DT(7) is undefined if MZ(1) #= M (7).
e It was not understood until nhow how
DT*(7) depends on the choice of stabil-
ity condition 7 (effectively, on the Kahler
class [w] of X).

I will explain a theory which solves these
two problems (joint work with Yinan Song).
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We will define generalized Donaldson—
Thomas invariants DT%(t) € Q for all Chern
characters «, such that:

e DT%(7) is unchanged by deformations of
the underlying Calabi—Yau 3-fold.

o IF M (7)=ME(7) then DT (r) = DT(7).
e The DT%(r) transform according to a
known transformation law under change of
stability condition.

e For ‘generic’ 7, we have a conjecture
rewriting the DT%(7) in terms of Z-valued
‘BPS invariants’ DT%(r). (Cf. Gromov—
Witten and Gopakumar—Vafa invariants).
e T he theory generalizes to invariants count-
ing representations of a quiver with rela-
tions coming from a superpotential. (Cf.

‘noncommutative D—T invariants’).
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On the face of it, the problem is just to
decide how to ‘count’ strictly m-semistable
sheaves with the correct multiplicity, which
sounds simple. But the solution turns out
to be very long and very complex, and in-
volves a lot of interesting mathematics.
As the details are unsuitable for a general
talk, T will just explain a few of the key
ideas involved.
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Key idea 1: work with Artin stacks
Kinds of space used in complex algebraic
geometry, in decreasing order of ‘niceness’:
complex manifolds (very nice)

varieties (nice)

schemes (not bad): Thomas' DT%(7).
algebraic spaces (getting worse)
Deligne—Mumford stacks (not nice)
Artin stacks (horrible): our DT<(1).
higher/derived stacks (deeply horrible)
derived Artin (k,l)-stacks (yuck ...)
We need to work with moduli spaces which
are Artin stacks, rather than coarse moduli
schemes as Thomas does.

One reason is that strictly 7-semistable
sheaves can have nontrivial automorphism
groups, and Artin stacks keep track of au-
tomorphism groups, but schemes do not.
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Key idea 2: Ringel—Hall algebras
Write 9t for the moduli stack of coher-
ent sheaves on X. The ‘stack functions’
SF(OM) is the Q-vector space generated by
isomorphism classes [(2R, p)] of morphisms
p R — M for ‘R a finite type Artin C-stack,
with the relation

[(R, )] = [(&,p)] + [(R\ &, p)]

for G a closed substack of ‘R.

There is an interesting associative, non-
commutative product x on SF(9t) defined
using short exact sequences in coh(X); for
f,g € SF(MN), think of (f x¢g)(F) as the
‘integral’ of f(FE)g(G) over all exact se-
quences 0—-F—F—G—0 in coh(X).
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The substack M (7) of M of 7-semistable
sheaves with Chern character o has finite
type, so 8% (7) = [(ME(7),inc)] € SF(M).
There is a Lie subalgebra SFNd(9) of
SF(M) of stack functions ‘supported on
virtual indecomposables’. Define elements
(1) = Z (—1)n_1/n‘5251(7')*5_?52(7')*‘“*Sgsn(T)-
n>1, ay+-+ap=a, 7(e;)=7(a), all i
Then €X(7) € SFNd(m).
There are many important universal iden-
tities in the Ringel—Hall algebra SF(OM).
For instance, if 7,7 are different stability
conditions, we have

bec(T) = Z S(oq,...,on, T,7) - 6ea () * - -

nzl, a1 +-Fan=a 5Oén(7_) (2)
T) = Z U(at,...,0m; 7,7T) - €L(1) * - (3)
n>1, art-tan=a *EO‘”(T),

for combinatorial coefficients S,U(--- ; 7, T).

19



Key idea 3: local structure of the
moduli stack of coherent sheaves

We prove that the moduli stack of coher-
ent sheaves 9t can be written locally in the
complex analytic topology as [Crit(f)/G],
where G is a complex Lie group, U a com-
plex manifold acted on by GG, and f : U — C
a G-invariant holomorphic function.

This is a complex analytic analogue for 91
of the fact that Mg (7) has a symmetric
obstruction theory.

It requires X to be a Calabi—Yau 3-fold.
The proof is non-algebraic, using gauge
theory on complex vector bundles over X,
and works only over the field C.
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Key idea 4: Behrend function identities
For each Artin C-stack 91 we can define
a Behrend function vgy, a Z-valued con-
structible function we interpret as a mul-
tiplicity function. If we can write 9t lo-
cally as [Crit(f)/G] for f : U — C holo-
morphic and U a complex manifold then
v (uG) = (—1)AIMU=AdIMG (1 (MFy(u)))
for uw € Crit(f), where M F;(u) is the Mil-
nor fibre of f at w.

Using Key idea 3 we prove two identities
on the Behrend function of the moduli

stack I: ]
von(E1 @ Eo) = (—1)XUBLED o (B v (B2), (4)
F)dy — FHd
//\]EP(Extl(EQ,El))iyim( )dx [X]EP(Extl(El,Ez)):VM( )dx (5)
A& 0—-FE,—-F—FE,—0 N <& 0—E,—-F—FE,—0

= (dim Ext!(E», E1) — dim Ext'(E1, E2) )vsm(E1 @ E»).
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Key idea 5: A Lie algebra morphism
from a Ringel—Hall Lie algebra

Let K(X) C H®®"'(X;Q) be the lattice
of Chern characters of coherent sheaves.
Then K(X) = 7!, and there is an antisym-
metric Euler form x : K(X) x K(X) — Z.
Define a Lie algebra L(X) to have basis,
as a Q-vector space, symbols \* for a &
K(X), and Lie bracket

2 A = (—1)X( @B 3 (o, B) A2TE. (6)

We define a Lie algebra morphism W

SF'Nd(m) — L(X). Roughly speaking this

IS given by

W([R,p]) = 3 xR xoq M*, p*(vam)) A%,
acK(X)

where xStk is a kind of stack-theoretic
weighted Euler characteristic.
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However, Euler characteristics of stacks
are not well-defined: we want x([X/G]) =
x(X)/x(G) for X a scheme and G a Lie
group, but x(G) = 0 whenever rank G > 0.
The point of using SFNY4(9M) is that it is
generated by elements [(U x[Spec C/C*], p)]
for U a C-variety, and we set

W([(U x [SpecC/C*], p)])
= Zaek(x) XU X MY, p*(von)) A%,
which is well-defined as U Xgp < is a vari-
ety. We do not yet know how to extend W
from SF'NI(M) to SF(IM). To prove WV is a

Lie algebra morphism we use the Behrend
function identities (4)-(5).
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We can now define generalized Donaldson—
Thomas invariants DT%(t) € Q: we set
W (e¥(7)) = DTY(T))\™ for all a € K(A).

The transformation law (3) for the €*(7)
under change of stability condition can be
written as a Lie algebra identity in SF'N9(m).
So applying the Lie algebra morphism W
yields a transformation law for the DT%(7):

Dre(F = ¥ FULETF):
o ETR T D10 (7).
icl (7)

II Xx(x(2),x(5)).

edges
1—7g in [

Here [ is a connected, simply-connected
undirected graph with vertices I, x : I —
K(A) has Scrk(i) =, and U(IN, I, k; 1, 7T)
in Q are explicit combinatorial coefficients.
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Key idea 6: pair invariants PI%Y (1)
We define an auxiliary invariant PI%N () e
7, counting ‘stable pairs’ (E,s) with E a
semistable sheafin class « and s € HO(E(N)),
for N > 0. The moduli space of stable
pairs is a projective C-scheme with a sym-
metric obstruction theory, so PI*N () is
unchanged by deformations of X.

By a similar proof to (7) we show that
PI%N (") can be written in terms of the
DT” (1) by

proN(r) = S (—1)"
a1+ +tan=qa,
7(a;)=7(cx) Vi (8)

no (—1)XUOx(=N)]—ag = —ay_1,04),
=1 X([Ox(=N)] — a1 — -+ — aj—1, ;) DT (7).

25



Since the PI®N(#/) are deformation-
invariant, we use (8) and induction on
rank o to prove that DT%(r) is unchanged
under deformations of X for all « € K(X).
The PI%N (/) are similar to Pandharipande
—Thomas invariants.

Note that DT%(r) counts strictly semista-
bles £ in a complicated way: there are
Q-valued contributions from every filtra-
tion 0 =Eqg C E1 C --- C B = E with E;
r-semistable and 7(F;) = 7(F), weighted
by vys(E). One can show by example that
more obvious, simpler definitions of DT%(7)
do not give deformation-invariant answers.
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Integrality properties of the invariants
Suppose E is stable and rigid in class «.
Then kE = E®---@FE is strictly semistable
in class ka, for k > 2. Calculations show
that E contributes 1 to DT%(7), and kE

contributes 1/k? to DT (r). So we do
not expect the DT%(r) to be integers, in
general.

Define new invariants DT%(7) € Q by

DT*(1) = Y iz DT k().

k>1:k divides «
Theg the kE for k > 1Aabove contribute 1
to DT%(r) and 0 to DT*%(r) for k > 1.

Conjecture. Suppose T is generic, in the
sense that 7(a) = 7(3) implies x(a,8) =
0. Then DT%(t) € Z for all o € K(X).

These DT%(7) may coincide with invari-
ants conjectured by Kontsevich—Soibelman,
and in String T heory should perhaps be in-
terpreted as ‘numbers of BPS states’.
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