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Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold
(M, J, g,2) is a compact
complex m-fold (M, J) with a
Kahler metric g with Kahler
form w, and a nonvanishing
holomorphic (m,0)-form €2,
the holomorphic volume form.
It is a Calabi-Yau m-fold if
Q|2 = 2™. Then VQ = 0,
the holonomy group Hol(g) C
SU(m), and g is Ricci-flat.
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Special Lagrangian m-folds

Let (M, J, g,2) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M.
We call N special Lagrangian
(SL) Ifw\N =Im Q‘N = 0, and
SL with phase €Y if w|y =
(cosfIm Q2—sind Re )|y = 0.
If (M, J,qg,2) is a Calabi-Yau
m-fold then Re 2 is a calibra-
tion on (M,qg), and N is an
SL m-fold iff it is calibrated
with respect to Re (2.




Deformations of compact
SL m-folds

Robert McLean proved the
following result.

Theorem. Let (M, J, g,2) be
an almost Calabi—Yau m-fold,
and N a compact SL m-fold
in M. Then the moduli space
M of SL deformations of N
Is a smooth manifold of
dimension b1 (N), the first
Betti number of N.



Here is a sketch of the proof.
Let v — N be the normal bun-
dle of N in M. Then J iden-
tifies v = T'N and g identifies
TN =T*N. Sov=T*N. We
can identify a small tubular
neighbourhood 1T of N in M
with a neighbourhood of the
zero section in v, identifying
w on M with the symplectic
structure on T*N.

Let 7 :T' — N be the obvious
projection.



Then graphs of small 1-forms
a on N are identified with sub-
manifolds N’ in T C M close
to N. Which o correspond to
SL m-folds N'?

Well, N’ is special Lagrangian
T w\N/ = Im Q‘N’ = 0.

Now x| N7 : N' — N is a diffeo-
morphism, so this holds iff
W*(w‘N/) — W*(Im QlN’) = 0.
We regard m«(w|pr) and
m+(Im €| 5v) @s functions of a.
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Calculation shows that
7T*<W‘N/) — da and

m+(Im Q| nv) = F(e, Va),
where F' I1s nonlinear. Thus,
My is locally the set of small
1-forms o« on N with da=0
and F'(a,Va) = 0. Now
F(a,Va) ~ d(x«a) for small a.
So My is locally approximately
the set of 1-forms a with da=
d(xa) =0. But by Hodge the-
ory this is the de Rham group
HI(N,R), of dimension b1 (N).
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Obstructions to existence
of SL m-folds

Let M be an almost C-Y m-
fold. An m-fold N in M is
SL iff wy = ImQ|y = 0, so
only if [wlny] = [ImMQ|y] = 0
in H*(N,R). Thus we have:
Lemma. Let M be an al-
most Calabi—Yau m-fold, and
N a compact m-fold in M.
Then N is isotopic to an SL
m-~fold N’ in M only if [w|n] =
0 and [ImQ|n]=0in H*(N,R).
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The Lemma Is a necessary

condition for an almost C-Y
m-fold to have an SL m-fold
IN a given deformation class.
Locally, it is also sufficient.

Theorem. Let M; :t € (—¢,¢)
be a family of almost C-Y m-
folds, and Ng a compact SL
m-fold of Mg. If [wt‘NO] =
[Im Qt\NO] = 0 in H*(Ng,R)
for all t, then Ng extends to
a family Ny .t € (=6,0) of SL
m-~folds in M, for O < ¢ < e.
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Singular SL m-folds
Two main approaches so far:
e Geometric Measure Theory
(Harvey, Lawson, Schoen,
Wolfson). Study SL integral
currents N, measure-theoretic
generalizations of submanifolds
with good compactness prop-
erties: in compact M, set of
N with vol(N) < C is com-
pact. Singularities may be very
bad, not well understood. De-
formation theory very bad.
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e S| m-folds with isolated con-
ical singularities (ICS) (Joyce).
Study SL m-folds N in M with
only singularities x1,...,xn,

N modelled on SL cone (] in
Tx:M near x;, for C;\ {0} non-
singular. Good deformation-
obstruction theory. Can
desingularize them by gluing
iIn Asymptotically Conical SL
m-folds in C"™ at z1,...,xzn.
Problem: generalize to other
classes of SL singularities, e.g.
nonisolated conical, m > 4.
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Generic codimension

of singularities

Given an SL m-fold N with
ICS in M, we have moduli
spaces M of deformations
of N, and Mg of desingu-
larizations N of N made by
gluing in Asymptotically Con-
ical L1,...,Lp. Here My is
part of the boundary of Mg.
When M is a generic almost
C-Y m-fold My, Mg are
smooth of known dimension.
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Call dim M g—dim My the in-
dex of the singularities of V.
It is the sum over ¢ of s-ind(C;)
and topological terms from L.
In a dim k family B of SL m-
folds in a generic almost C-
Y m-fold M, only singulari-
ties with index < k£ occur. For
SYZ in generic M we need to
know about singularities with
index 1,2,3 (and 4).
Problem: classify singulari-
ties with small index.
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Mirror Symmetry
String theorists believe that
each Calabi—Yau 3-fold M has
a quantization, a SCFT.
Calabi—Yau 3-folds M, M are
a mirror pair if their SCFT'’s
are related by a certain
involution of SCFT structure.
Then invariants of M, M are
related in surprising ways. For
Instance,

HLI(M) 2 H21(M) and
H>1 (M) = HLI(D.
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Using physics, Strominger,
Yau and Zaslow proposed:
The SYZ Conjecture. Let
M, M be mirror Calabi—Yau
3-folds. There is a compact
3-manifold B and continuous,
surjective fibrations f . M —
B and f: M — B, such that
(i) For b in a dense By C B,
the fibres f—1(b), F7~1(b) are
‘dual’ SL 3-tori T3 in M, M.
(i) For b¢ Bo, f~1b), [ 1(b)
are singular SL 3-folds in M, M .
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Hard problem: construct SL
fibration f : M — B, with
singular fibres, of a compact,
holonomy SU(3) Calabi—Yau
3-fold M.

[Lagrangian fibrations are fairly
well understood globally

(Gross, Ruan). U(1)-invariant
local models in C3 known for
singularities of f (Joyce), ex-
pected to be generic. N.B. f
not smooth, only continuous.
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Let N be a Lagrangian in a
Calabi—Yau m-fold M. Then
the Mean Curvature Flow
(MCF) applied to N decreases
vol(IV), and stays within Hamil-
tonian equivalent Lagrangians
Ny. Smooth N fixed by MCF
are Lagrangian and minimal
(among all submanifolds), so
SL m-folds.

Hard problem: study blow
up of Lagrangian MCF in C-Y
3-folds. Does generic N flow
to union of SL 3-folds?
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If NV is a smooth Lagrangian
in a C-Y m-fold M, then N is
Mminimal among Lagrangians
IfF minimal among all subman-
ifolds iff SL m-fold. Suggests
Schoen—Wolfson programme:
take a class of Lagrangians L
In M, e.g. those in a homol-
ogy class a in Hy,(M,7Z).

Minimize volume in L to get
limit Lagrangian integral cur-
rent N. Prove N is SL cur-
rent, or sum of SL currents
with different phases e®.
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S-W programme suggests SL
m-folds are very abundant!
Problems with S-W:

e Must choose L large enough
sO good |limit N exists.

e If V singular, minimal among
Lagrangians does not imply
minimal, only Hamiltonian sta-
tionary. S0, need to under-
stand Hamiltonian stationary,
non SL singularities. Progress
only when m = 2 so far.
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T he Fukaya category.
Homological Mirror Symme-
try (Kontsevich) says M, M
mirror means DY(F(M)) equiv-
alent to D%(coh(M)) as trian-
gulated categories. Here
DY(F(M)) is the (derived)
Fukaya category. Objects are
(complexes of) graded
Lagrangians N in M with
unobstructed Floer homology.
Morphisms Hom(Nq7, N»>) are
Floer homology HFY(Ny, N»).
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Conjecture: complex struc-
ture on M Iinduces a stabil-
ity condition Z on DY(F(M))
(Bridgeland). Lagrangian N
IS Z-stable iff N Hamiltonian
equivalent to SL 3-fold N’.

Compare: holomorphic vec-
tor bundles on Kahler mani-
fold polystable (algebraic con-
dition) iff have a Hermitian—
Einstein connection (existence
of solution of nonlinear p.d.e.).
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Theorem (Thomas). A
Hamiltonian equivalence class
of Lagrangians N in M with
unobstructed HF™ contains at
most one SL m-fold.

Every object in D(F(M))
decomposes uniquely into
Z-(semi)stable objects. So,
conjecture implies there are
enough SL m-folds to gener-
ate DY(F(M)); again, SL m-
folds are very abundant.
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Principle: for many problems
(SYZ, S-W, ...), should
restrict to SL m-folds N with
unobstructed HEF™.
Question: does this simplify
the singular behaviour of N,
or limits of such N7
Problem: Fix the definition
of DP(F(M)), to include im-
mersed and some kKinds of sin-
gular Lagrangians. Otherwise
conjecture cannot be true.
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Conjecture (Joyce). There
should exist interesting invari-
ants I1%(M) of almost Calabi—
Yau 3-folds M ‘counting’ SL
homology 3-spheres N in M
with class a € H3(M,7Z) with
flat U(1)-connections. Should
be independent of Kahler class
of M, and transform by known
law under deformation of
complex structure of M.
Expected to be mirror to
extension of Donaldson—
Thomas invariants.
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Conclusions. All these con-
jectures assert some deep ex-
Istence, unigueness and sta-
bility properties of SL m-folds.
SL m-folds (with unobstructed
HF*) cannot pop in and out
of existence in a chaotic way;
rather, they do so by very or-
dered, algebraic criteria.

It may be possible to classify
the most common singulari-
ties of SL 3-folds in generic
almost C-Y 3-folds, and so
understand these properties.
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