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Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold
(M, J, g,Ω) is a compact
complex m-fold (M, J) with a
Kähler metric g with Kähler
form ω, and a nonvanishing
holomorphic(m,0)-form Ω, the
holomorphic volume form.
It is a Calabi-Yau m-fold if
|Ω|2 ≡ 2m. Then ∇Ω = 0
and g is Ricci-flat.
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Special Lagrangian m-folds

Let (M, J, g,Ω) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M .
We call N special Lagrangian
(SL) if ω|N ≡ ImΩ|N ≡ 0.
If (M, J, g,Ω) is a Calabi-Yau
m-fold then ReΩ is a calibra-
tion on (M, g), and N is an
SL m-fold iff it is calibrated
with respect to ReΩ.
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Singular SL m-folds
General singularities of SL m-
folds may be very bad, and
difficult to study. Would like
a class of singular SL m-folds
with nice, well-behaved sin-
gularities to study in depth.
Would like these to occur of-
ten in real life, i.e. of finite
codimension in the space of
all SL m-folds. SL m-folds
with isolated conical singular-
ities (ICS) are such a class.
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Let N be an SL m-fold in M

whose only singular points are
x1, . . . , xn. Near xi we can iden-
tify M with Cm ∼= TxiM , and
N near xi approximates an SL
m-fold in Cm with singularity
at 0. We say N has isolated
conical singularities if near xi

it converges with order O(rµi)
for µi > 1 to an SL cone Ci in
Cm nonsingular except at 0.
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SL m-folds with ICS have a
rich theory.
• Examples. Many examples
of SL cones Ci in Cm have
been constructed. Rudiments
of classification for m = 3.
• Regularity near x1, . . . , xn.
Let ι : N → M be the inclu-
sion. If ∇kι converges to Ci

near xi with order O(rµi−k)
for k = 0,1 then it does so
for all k > 0.
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• Deformation theory. The
moduli space MN of defor-
mations of N is locally home-
omorphic to Φ−1(0), for
smooth Φ : I → O and fin.
dim. vector spaces I,O with
I the image of H1

cs(N
′,R) in

H1(N ′,R), N ′=N\{x1, . . . , xn},
and dimO = Σn

i=1s-ind(Ci).
Here s-ind(Ci) ∈ N is the sta-
bility index, the obstructions
from Ci. If s-ind(Ci) = 0 for
all i then MN is smooth.
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• Desingularization. Let C

be an SL cone in Cm, non-
singular except at 0. A non-
singular SL m-fold L in Cm is
Asymptotically Conical (AC)
C if L converges to C at infin-
ity with order O(rλ) for λ < 1.
Then tL converges to C as
t → 0+. Thus, AC SL m-
folds model how families of
nonsingular SL m-folds develop
singularities modelled on C.
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If N is an SL m-fold with ICS
at x1, . . . , xn and cones Ci, and
L1, . . . , Ln are AC SL m-folds
in Cm with cones Ci, then un-
der cohomological conditions
we can construct a family of
compact nonsingular SL m-
folds Ñt for small t > 0 con-
verging to N as t → 0, by glu-
ing tLi into N at xi, all i.

9



• Generic codimension of
singularities. Given an SL
m-fold N with ICS in M , we
have moduli spaces MN of
deformations of N , and MÑ
of desingularizations Ñ of N

made by gluing in L1, . . . , Ln.
HereMN is part of the bound-
ary of MÑ. If M is a generic
almost C-Y m-fold then MN,
MÑ are smooth with known
dimension.
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Call dimMÑ−dimMN the in-
dex of the singularities of N .
It is the sum over i of s-ind(Ci)
and topological terms from Li.
In a dim k family B of SL m-
folds in a generic almost C-
Y m-fold M , only singulari-
ties with index 6 k occur. For
SYZ in generic M we need to
know about singularities with
index 1,2,3 (and 4).
Problem: classify singulari-
ties with small index.
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Mirror Symmetry
String theorists believe that
each Calabi–Yau 3-fold X has
a quantization, a SCFT.
Calabi–Yau 3-folds X, X̂ are
a mirror pair if their SCFT’s
are related by a certain
involution of SCFT structure.
Then invariants of X, X̂ are
related in surprising ways. For
instance,
H1,1(X) ∼= H2,1(X̂) and
H2,1(X) ∼= H1,1(X̂).
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Using physics, Strominger, Yau
and Zaslow proposed:
The SYZ Conjecture. Let
X, X̂ be mirror Calabi–Yau
3-folds. There is a compact
3-manifold B and continuous,
surjective f : X → B and
f̂ : X̂ → B, such that
(i) For b in a dense B0 ⊂ B,
the fibres f−1(b), f̂−1(b) are
dual SL 3-tori T3 in X, X̂.
(ii) For b /∈B0, f−1(b) and f̂−1(b)
are singular SL 3-folds in X, X̂.
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We call f, f̂ special Lagrangian
fibrations, and ∆ = B\B0 the
discriminant.
In (i), the nonsingular fibres
T, T̂ of f, f̂ are supposed to
be dual tori. Topologically,
this means an isomorphism
H1(T,Z) ∼= H1(T̂ ,Z). But the
metrics on T, T̂ should really
be dual as well. This only
makes sense in the ‘large com-
plex structure limit’, when the
fibres are small and nearly flat.
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U(1)-invariant SL 3-folds
Let U(1) act on C3 by
(z1, z2, z3) 7→ (eiθz1, e−iθz2, z3).
Let N be a U(1)-invariant SL
3-fold. Then locally we can
write N in the form
{
(z1, z2, z3) : |z1|2−|z2|2=2a,

z1z2=v(x, y)+iy,
z3=x + iu(x, y), x, y ∈ R }

,
where u, v : R2 → R satisfy

ux = vy and

vx=−2(v2+y2+a2)1/2uy.
(∗)
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Since ux = vy, there exists
a potential function f with
u = fy and v = fx. The
2nd equation of (∗) becomes

fxx+2(f2
x+y2+a2)1/2fyy = 0.

(+)
This is a second-order quasi-
linear equation. When a 6= 0
it is locally uniformly elliptic.
When a=0 it is non-uniformly
elliptic, except at singular
points fx = y = 0.
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Theorem A. Let S be a com-
pact domain in R2 satisfying
some convexity conditions.
Let φ ∈ C3,α(∂S).
If a 6= 0 there exists a unique
f ∈ C3,α(S) satisfying (+) with
f |∂S = φ. If a = 0 there ex-
ists a unique f ∈ C1(S) sat-
isfying (+) with weak second
derivatives, with f |∂S = φ.
Also f depends continuously
in C1(S) on a, φ.
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Theorem A shows that the
Dirichlet problem for (+) is
uniquely solvable in certain con-
vex domains. The induced
solutions u, v ∈ C0(S) of (∗)
yield U(1)-invariant SL 3-folds
in C3 satisfying certain bound-
ary conditions over ∂S. When
a 6= 0 these SL 3-folds are
nonsingular, when a = 0 they
are singular when v = y = 0.
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Theorem B.
Let φ, φ′∈C3,α(∂S), let a∈R
and let f, f ′ ∈ C3,α(S) or C1(S)
be the solutions of (+) from
Theorem A with
f |∂S = φ, f ′|∂S = φ′. Let
u=fy, v=fx, u′=f ′y, v′=f ′x.
Suppose φ− φ′ has k+1 local
maxima and k+1 local minima
on ∂S. Then (u, v) − (u′, v′)
has no more than k zeroes in
S◦, counted with multiplicity.
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Theorem C.
Let u, v ∈ C0(S) be a singular
solution of (∗) with a = 0,
e.g. from Theorem A. Then
either u(x, y) ≡ u(x,−y) and
v(x, y) ≡ −v(x,−y), so that
u, v is singular on the x-axis,
or the singularities (x,0) of
u, v in S◦ are isolated, with a
multiplicity n>0. Multiplicity
n singularities occur in codi-
mension n of boundary data.
All multiplicities occur.
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Theorem D.
Let U ⊂ R3 be open, S as
above, and Φ : U → C3,α(∂S)
continuous such that if
(a, b, c) 6= (a, b′, c′) ∈ U

then Φ(a, b, c)−Φ(a, b′, c′)
has 1 local maximum
and 1 local minimum.
For α = (a, b, c) ∈ U , let
fα ∈ C1(S) be the solution
of (+) from Theorem A
with fα|∂S = Φ(α).
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Set uα = (fα)y and vα = (fα)x.
Let Nα be the SL 3-fold
{
(z1, z2, z3) : |z1|2−|z2|2=2a,
z1z2=vα(x, y)+iy,
z3=x+iuα(x, y), (x, y)∈S◦

}
.

Then there exists an open
V ⊂ C3 and a continuous map
F : V →U with F−1(α)=Nα.
This is a U(1)-invariant
special Lagrangian fibration.
It can include singular fibres,
of every multiplicity n > 0.

22



Example. Define f : C3 →
R× C by f(z1, z2, z3) = (a, b),
where 2a = |z1|2 − |z2|2 and

b=





z3, z1 = z2 = 0,

z3+z̄1z̄2/|z1|, a>0, z1 6=0,

z3+z̄1z̄2/|z2|, a < 0.

Then f is a piecewise-smooth
SL fibration of C3. It is not
smooth on |z1| = |z2|.
The fibres f−1(a, b) are T2-
cones when a = 0, and non-
singular S1 × R2 when a 6= 0.
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Conclusions
Using these SL fibrations as
local models, if X is a generic
ACY 3-fold and f : X → B an
SL fibration, I predict:
• f is only piecewise smooth.
• All fibres have finitely many
singular points.
• ∆ is codim 1 in B. Generic
singularities are modelled on
the example above.
• Some codim 2 singularities
are also locally U(1)-invariant.
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• Codim 3 singularities are not
locally U(1)-invariant.
• If f : X→B, f̂ : X̂→B are
dual SL fibrations of mirror
C-Y 3-folds, the discriminants
∆, ∆̂ have different topology
near codim 3 singular fibres,
so ∆ 6= ∆̂.
This contradicts some state-
ments of the SYZ Conjecture.
I regard SYZ as primarily a
limiting statement about the
‘large complex structure limit’.
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