Singularities of
special Lagrangian
submanifolds and SYZ

Dominic Joyce
Oxford University

based on
math.DG/0310460
math.DG/0206016
math.DG/0011179
and references in these




Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold
(M, J, g,2) is a compact
complex m-fold (M, J) with a
Kahler metric g with Kahler
form w, and a nonvanishing
holomorphic(m, 0)-form €2, the
holomorphic volume form.

It iIs a Calabi-Yau m-fold if
Q2 = 2™. Then VQ = 0
and g is Ricci-flat.



Special Lagrangian m-folds

Let (M, J, g,2) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M.
We call N special Lagrangian
(SL) if wly =Im |y = 0.

If (M, J,g,2) is a Calabi-Yau
m-~fold then Re(2 is a calibra-
tion on (M,g), and N is an
SL m-fold iff it is calibrated
with respect to Re 2.



Singular SL m-folds
General singularities of SL m-
folds may be very bad, and
difficult to study. Would like
a class of singular SL m-folds
with nice, well-behaved sin-
gularities to study In depth.
Would like these to occur of-
ten in real life, i1.e. of finite
codimension in the space of
all SL m-folds. SL m-folds
with isolated conical singular-
ities (ICS) are such a class.

4



Let N be an SL m-fold in M
whose only singular points are
x1,...,Tn. Near x; we can iden-
tifty M with C™ = T, M, and
N near x; approximates an SL
m-~fold in C™ with singularity
at 0. We say N has isolated
conical singularities If near x;
it converges with order O(r#i)
for u; > 1 to an SL cone Cj in
C™ nonsingular except at O.



SL m-folds with ICS have a
rich theory.

e Examples. Many examples
of SL cones C); in C"™ have
been constructed. Rudiments
of classification for m = 3.

e Regularity near zq1,...,xn.
Let + : N — M be the inclu-
sion. If V¥, converges to C,
near x; with order O(rti—F)
for £k = 0,1 then it does so
for all k£ > 0.



e Deformation theory. The
moduli space M of defor-
mations of IV is locally home-
omorphic to ®~1(0), for
smooth & : 7 — O and fin.
dim. vector spaces 7, O with
7 the image of HL(N',R) in
HI(N' R), N=N\{z1,...,zn},
and dimO = X_;s-ind(C;).
Here s-ind(C;) € N is the sta-
bility index, the obstructions
from C;. If s-ind(C;) = 0 for
all = then My is smooth.



e Desingularization. Let C
be an SL cone in C™, non-
singular except at 0. A non-
singular SL m-fold L in C™ is
Asymptotically Conical (AC)
C'if L converges to C at infin-
ity with order O(r?) for A < 1.
Then tL converges to C as
t — O_|_. ThUS, AC SL m-
folds model how families of
nonsingular SL m-folds develop
singularities modelled on C'.
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If N is an SL m-fold with ICS
at z1,...,xn and cones C;, and
Lq,...,Ly are AC SL m-folds
in C'" with cones Cj;, then un-
der cohomological conditions
we can construct a family of
compact nonsingular SL m-
folds N; for small ¢t > 0 con-
verging to N ast — 0O, by glu-
ing tL; into N at z;, all 1.



e Generic codimension of
singularities. Given an SL
m~-fold N with ICS in M, we
have moduli spaces My of
deformations of N, and Mg
of desingularizations N of N
made by gluing in Lq,...,Ln.
Here My is part of the bound-
ary of Mg. If M is a generic
almost C-Y m-fold then My,
Mg are smooth with known

dimension.
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Call dim M g—dim My the in-
dex of the singularities of V.
It is the sum over ¢ of s-ind(C;)
and topological terms from L.
In a dim k family B of SL m-
folds in a generic almost C-
Y m-fold M, only singulari-
ties with index < k£ occur. For
SYZ in generic M we need to
know about singularities with
index 1,2,3 (and 4).
Problem: classify singulari-
ties with small index.
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Mirror Symmetry
String theorists believe that
each Calabi—Yau 3-fold X has
a quantization, a SCFT.
Calabi—Yau 3-folds X, X are
a mirror pair if their SCFT'’s
are related by a certain
iInvolution of SCF'T structure.
Then invariants of X, X are
related in surprising ways. For
Instance,

HL(X) =2 H21(X) and
H>1(X) =2 FLI(X).
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Using physics, Strominger, Yau
and Zaslow proposed:

The SYZ Conjecture. Let
X, X be mirror Calabi—Yau
3-folds. There is a compact
3-manifold B and continuous,
surjective f . X — B and

f: X — B, such that

(i) For b in a dense By C B,
the fibres f—1(b), F~1(b) are
dual SL 3-tori T3 in X, X.

(ii) Forb¢ By, f~4(b) and f—1(b)
are singular SL 3-folds in X, X.
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We call f, f special Lagrangian
fibrations, and A = B\ Bg the
discriminant.

In (i), the nonsingular fibres
T.T of f, f are supposed to
be dual tori. Topologically,
this means an isomorphism
HYT,7) =2 H{(T,Z). But the
metrics on T,7T should really
be dual as well. This only
makes sense in the ‘large com-
plex structure limit’, when the
fibres are small and nearly flat.
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U(1l)-invariant SL 3-folds
Let U(1) act on C3 by
(21,22, 23) — (e921,67 %25, 23).
Let N be a U(1)-invariant SL
3-fold. Then locally we can
write N in the form
{(21, 22, 23) 1 |71]%—|22|* =24,
z120 =v(z,y)+1y,
zz=z +iu(z,y), z,y € R},
where u, v : R? — R satisfy

*
Vyp = —2(1}2—|—y2 ——a2)1/2uy.
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Since uy = vy, there exists

a potential function f with
u= fy and v = fz. The

2nd equation of (x) becomes

fa:x‘|‘2(fq?‘|‘y2+a2)1/2fyy = 0.

(+)
This Is a second-order quasi-
linear equation. When a #= 0
it is locally uniformly elliptic.
When a=0 it iIs non-uniformly
elliptic, except at singular
points fr =y = 0.
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Theorem A. Let S beacom-
pact domain in R? satisfying
some convexity conditions.
Let ¢ € C32(989).

If a = 0 there exists a unique
f e C39%(9) satisfying (4) with
flag = ¢. If a = 0 there ex-
ists a unique f € C1(S) sat-
isfying (4+) with weak second
derivatives, with flgqg = ¢.
Also f depends continuously
in C1(S) on a, .
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Theorem A shows that the
Dirichlet problem for (4) is
uniquely solvable in certain con-
vex domains. The induced
solutions w,v € CO(S) of (x)
vield U(1)-invariant SL 3-folds
in C3 satisfying certain bound-
ary conditions over 05. When
a = 0 these SL 3-folds are
nonsingular, when a = 0 they
are singular when v =y = 0.
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T heorem B.

Let ¢, &' €C3%(S), let aeR
and let f, f' € C32(S) or C1(S)

be the solutions of (
Theorem A with

) from

floas = ¢, fllas = ¢'. Let

u=fy, v=fz, u’=fé, v

/:fa/j

Suppose ¢ — ¢’ has k+1 local
maxima and k+1 local minima
on 0S. Then (u,v) — (v, v")
has no more than k£ zeroes in
5S¢, counted with multiplicity.
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Theorem C.

Let u,v € CY(S) be a singular
solution of (%) with a = 0,
e.g. from Theorem A. Then
either u(z,y) = u(x, —y) and
v(xz,y) = —v(x,—y), SO that
u, v 1S singular on the x-axis,
or the singularities (z,0) of
w,v in S° are jsolated, with a
multiplicity n>0. Multiplicity
n singularities occur in codi-
mension n of boundary data.
All multiplicities occur.
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T heorem D.

Let U C R3 be open, S as
above, and & : U — C3%(95)
continuous such that if
(a,b,c) # (a,b,c) e U

then ®(a,b,c) — ®(a, b, )
has 1 local maximum

and 1 local minimum.

For a = (a,b,c) € U, let

fo € C1(S) be the solution
of (4) from Theorem A
with falps = P(a).
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Set uq = (fa)y and va = (fa)z-
Let N, be the SL 3-fold
{(21, 22, 23) 1 |71]%—|22|* =2a,
2120 =va(x,y)+1y,
zz=z+iua(z,y), (z,y)€S°.
T hen there exists an open
V c C3 and a continuous map
F:V—U with F~1(a)=N,.
This is a U(1)-invariant
special Lagrangian fibration.
It can include singular fibres,
of every multiplicity n > 0.
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Example. Define f : C3 —

R x C by f(z1,22,23) = (a,b),
where 2a = |z1]2 — |20]2 and

23 21 =22 =0,
b=1{234+2122/|21],a>0, z1 #0,
\23—-2122/ zol,a < 0.

Then f is a piecewise-smooth
SL fibration of C3. It is not
smooth on |z1| = |z2].

The fibres f~1(a,b) are T=-
cones when a = 0, and non-
singular S x R? when a # 0.
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Conclusions

Using these SL fibrations as
local models, if X Is a generic
ACY 3-fold and f : X — B an
SL fibration, I predict:

e f Is only piecewise smooth.
e All fibres have finitely many
singular points.

o N\ iscodim 1 in B. Generic
singularities are modelled on
the example above.

e Some codim 2 singularities
are also locally U(1)-invariant.
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e Codim 3 singularities are not
locally U(1)-invariant.

o If f: X—B, f: X—B are
dual SL fibrations of mirror
C-Y 3-folds, the discriminants
A, A have different topology
near codim 3 singular fibres,
so A #= A.

T his contradicts some state-
ments of the SY~Z Conjecture.
I regard SYZ as primarily a
limiting statement about the
‘large complex structure limit’.
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