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7. Comparing d-manifolds and
d-orbifolds with other spaces

In enumerative invariant problems
in differential and symplectic geom-
etry, and algebraic geometry over
C, there are several classes of geo-
metric structure one puts on mod-
uli spaces, in order to define virtual
cycles/virtual chains, and ‘count’
the points in the moduli space.
There are truncation functors from
essentially all these structures to d-
manifolds or d-orbifolds. This in-
cludes Kuranishi spaces, polyfolds,
and C-schemes or Deligne–Mumford
C-stacks with obstruction theories.
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7.1. Nonlinear elliptic equations
Theorem 9. Let V be a Banach
manifold, E → V a Banach vector
bundle, and s : V → E a smooth
Fredholm section, with constant
Fredholm index n ∈ Z. Then there
is a d-manifold X, unique up to eq-
uivalence in dMan, with topological
space X = s−1(0) and vdim X = n.
Nonlinear elliptic equations on com-
pact manifolds induce nonlinear
Fredholm maps on Hölder or Sobolev
spaces of sections. We deduce:
Corollary. LetM be a moduli space
of solutions of a nonlinear elliptic
equation on a compact manifold,
with fixed topological invariants.
Then M extends to a d-manifold.
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7.2. Kuranishi spaces
Kuranishi spaces (both without
boundary, and with corners) appear
in the work of Fukaya–Oh–Ohta–
Ono as the geometric structure on
moduli spaces of J-holomorphic
curves in symplectic geometry.
They do not define morphisms be-
tween Kuranishi spaces, so Kuran-
ishi spaces are not a category. But
they do define morphisms f : X →
Z from Kuranishi spaces X to mani-
folds or orbifolds Z, and ‘fibre prod-
ucts’ X ×Z Y of Kuranishi spaces
over manifolds or orbifolds.
I began this project to find a better
definition of Kuranishi space, with
well-behaved morphisms.
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Theorem 10(a) Suppose X is a d-
orbifold with corners. Then (after
many choices) one can construct a
Kuranishi space X′ with the same
topological space and dimension.
(b) Let X′ be a Kuranishi space.
Then one can construct a d-orbifold
with corners X ′′, unique up to equiv-
alence in dOrbc, with the same topo-
logical space and dimension.
(c) Doing (a) then (b), X and X ′′
are equivalent in dOrbc.
(d) The constructions of (a),(b)
identify orientations, morphisms f :
X → Y to manifolds or orbifolds Y,
and fibre products over manifolds
and orbifolds, for d-orbifolds with
corners and Kuranishi spaces.
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Roughly speaking, Theorem 10 says
that d-orbifolds with corners dOrbc

and Kuranishi spaces are equivalent
categories, except that Kuranishi
spaces are not a category as mor-
phisms are not defined.
The moral is (I claim): the ‘correct’
way to define Kuranishi spaces is as
d-orbifolds with corners.
I prove Theorem 10 using ‘good co-
ordinate systems’ (families of Ku-
ranishi neighbourhoods with nicely
compatible coordinate changes).
Given a good coordinate system
(Vi, Ei, si, ψi), i ∈ I on a Kuranishi
space X′, make corresponding
d-orbifold X ′′ by gluing ‘standard
models’ SVi,Ei,si by equivalences.
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7.3. Polyfolds
Polyfolds, due to Hofer, Wysocki
and Zehnder, are a rival theory to
Kuranishi spaces. They do form a
category. Polyfolds remember much
more information than Kuranishi
spaces or d-orbifolds, so the trun-
cation functor goes only one way.
Theorem 11. There is a functor
ΠdOrbc

PolFS : PolFS → Ho(dOrbc), where
PolFS is a category whose objects
are triples (V, E, s) of a polyfold with
corners V, a fillable strong polyfold
bundle E over V, and an sc-smooth
Fredholm section s of E with con-
stant Fredholm index.
Here Ho(dOrbc) is the homotopy 1-
category of the 2-category dOrbc.
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7.4. C-schemes and C-stacks
with obstruction theories

Theorem 12. There is a func-
tor ΠdMan

SchObs : SchCObs → Ho(dMan),
where SchCObs is a category whose
objects are triples (X,E•, φ), for X
a separated, second countable C-
scheme and φ : E• → τ>−1(LX)
a perfect obstruction theory on X
with constant virtual dimension. We
may define a natural orientation on
ΠdMan

SchObs(X,E
•, φ) for each (X,E•, φ).

The analogue holds for ΠdOrb
StaObs :

StaCObs → Ho(dOrb), replacing
C-schemes by Deligne–Mumford
C-stacks, and d-manifolds by
d-orbifolds.
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In algebraic geometry, the standard
method of forming virtual cycles is
to use a proper scheme or Deligne–
Mumford stack equipped with a per-
fect obstruction theory, in the sense
of Behrend–Fantechi. They are used
to define algebraic Gromov–Witten
invariants, Donaldson–Thomas in-
variants of Calabi–Yau 3-folds, . . . .
Note that we can make moduli of
J-holomorphic curves in projective
complex manifolds into d-orbifolds
either symplectically using Kuran-
ishi spaces/polyfolds in Theorems
10, 11, or algebro-geometrically us-
ing Theorem 12. So we can com-
pare symplectic and algebraic
Gromov–Witten invariants.
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7.5. Spivak’s derived manifolds
Using Jacob Lurie’s derived alge-
braic geometry, David Spivak
(in arXiv:0810.5174) defined an
∞-category of derived manifolds.
Theorem 13. (D. Borisov) Write
DerMan for the ∞-category of Spi-
vak’s derived manifolds of pure di-
mension, and π1(DerMan) for its
2-category truncation. There is a
2-functor ΠdMan

DerMan : π1(DerMan) →
dMan which is almost an equiva-
lence of 2-categories.
That is, ΠdMan

DerMan induces bijections
on equivalence classes of objects,
and on 2-isomorphism classes of 1-
morphisms. On 2-morphisms it is
surjective, but may not be injective.
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Combining the truncation functors
of Theorems 9–13 with results in
the literature on existence of geo-
metric structures like Kuranishi
spaces, . . . on moduli spaces, proves
existence of d-manifold or d-orbifold
structures on many important mod-
uli spaces in geometry. So we can
apply virtual cycle/virtual chain con-
structions for d-manifolds and d-
orbifolds to get alternative defini-
tions of G–W invariants, D–T in-
variants, Lagrangian Floer cohomol-
ogy, etc. We may also be able to
define new, finer invariants using
d-manifold or d-orbifold bordism.
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8. *** Work in progress ***
8.1. D-manifold and d-orbifold

homology and cohomology
Based on my old unpublished work
arXiv:0707.3572, arXiv:0710.5634
on ‘Kuranishi homology’, for Y a
manifold and R a ring or Q-algebra,
I hope to define ‘d-manifold homol-
ogy’ dH∗(Y ;R) and ‘d-manifold
cohomology’ dH∗(Y ;R), which are
isomorphic to ordinary (singular) ho-
mology Hsing

∗ (Y ;R) and cohomol-
ogy H∗(Y ;R). Here dH∗(Y ;R) is
the cohomology of a complex of R-
modules

(
dC∗(Y ;R); ∂

)
.

There will also be orbifold/d-orbifold
versions of the theories.
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A bit like the definition of d-manifold
bordism, chains in dCk(Y ;R) for k
in Z will be R-linear combinations of
equivalence classes [X, f ,G], where
X is a compact, oriented d-manifold
with corners, f : X → Y = FdMan

Man (Y )
is a 1-morphism in dManc, and G is
some extra ‘gauge-fixing data’ as-
sociated to X, for which there will
be many possible choices. If we
did not include G then chains (X, f)
might have infinite automorphism
groups, leading to bad behaviour
(dH∗(Y ;R) = 0). We define G to
ensure Aut(X, f ,G) is finite.

13



The boundary operator
∂ : dCk(Y ;R)→ dCk−1(Y ;R) maps

∂ :
[
X, f ,G

]
7−→

[
∂X, f ◦ iX,G|∂X

]
.

Note that ∂2X has a free, orientation-
reversing involution σ : ∂2X → ∂2X.
Using this we show that ∂2 = 0 :
dCk(Y ;R)→ dCk−2(Y ;R).
Singular homology Hsing

∗ (Y ;R) may
be defined using

(
Csing
∗ (Y ;R); ∂

)
,

where Csing
k (Y ;R) is spanned by

smooth maps f : ∆k → Y , for ∆k
the standard k-simplex, thought of
as a manifold with corners.
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We define an R-linear map F dMan
sing :

Csing
k (Y ;R)→ dCk(Y ;R) by

F dMan
sing : f 7−→[
F dManc

Manc (∆k), F dManc

Manc (f),G∆k

]
,

for G∆k
some standard choice of

gauge-fixing data for ∆k. We can
arrange that F dMan

sing ◦ ∂ = ∂ ◦ F dMan
sing ,

so that F dMan
sing induces morphisms

F dMan
sing : Hsing

k (Y ;R) → dHk(Y ;R),
and we will (I hope) prove these are
isomorphisms.
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What is the point of d-manifold
and d-orbifold (co)homology?
These (co)homology theories have
two special features:
(a) they are very well adapted for
forming virtual cycles and virtual
chains in moduli problems. They
are particularly powerful for mod-
uli spaces ‘with corners’, as in La-
grangian Floer homology and Sym-
plectic Field Theory.
(b) issues to do with transversality
— for instance, defining intersec-
tion products on transverse chains
— often disappear in d-manifold
and d-orbifold (co)homology,
because of Theorem 2.
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Current methods for forming vir-
tual cycles and virtual chains in sym-
plectic geometry (Kuranishi spaces
FOOO, polyfolds HWZ) involve
making a (multi-valued) perturba-
tion of the moduli space, and then
triangulating the perturbed moduli
space by simplices to get a singu-
lar chain. When the moduli spaces
have boundary and corners, one
must choose perturbations compat-
ible with other previously-chosen
perturbations at the boundary, and
insertions of singular chains. This
gets very complicated and messy.
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In d-orbifold (co)homology, given
a moduli space M with evaluation
maps ev : M → L for L a mani-
fold, we make M into an oriented
d-orbifold with corners M with eval-
uation 1-morphism ev : M → Y =
F dOrbc

Man (Y ). Then we choose some
gauge-fixing data G and define the
virtual chain to be [M, ev,G] in
dC∗(Y ; Q). Thus, the moduli space
is its own virtual chain. There is
no need for perturbation. Instead,
we need only choose gauge-fixing
data, which is easier and can be
done compatibly with infinitely many
choices. This leads to big simplifi-
cations in Fukaya–Oh–Ohta–Ono’s
Lagrangian Floer cohomology.
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8.2. An application:
String Topology

(In progress, joint with L. Amorim.)
Let M be an n-manifold. The loop
space LM of M is the infinite-
dimensional manifold of smooth
maps γ : S1 → M . Can also con-
sider LM/S1. String Topology,
introduced by Chas and Sullivan,
studies new algebraic operations on
the homology H∗(LM ; Q). They are
defined using transversely intersect-
ing families of loops in M .
Now d-manifold homology deals very
nicely with issues of transversality.
So it may be a good tool for study-
ing String Topology.
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I propose to define a chain model(
dC∗(LM,Q),d

)
for H∗(LM ; Q) such

that the String Topology operations
can be defined at the chain level,
not just at the homology level, and
satisfy the expected identities on
the nose at the chain level, not just
up to homotopy.
The basic idea is this: let X be a
d-manifold with corners. Then a
smooth map f : X → LM is the
same as a 1-morphism f : X×S1→
M = FdManc

Man (M) in dManc. Thus,
to deal with loop spaces we don’t
need to extend theory to infinite di-
mensions, we can just work in dManc.
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The first version of
(
dC∗(LM,Q),d

)
has chains [X, f ,G] where X is a
compact, oriented d-manifold with
corners, f : X × S1 → M is a 1-
morphism in dManc, and G is gauge-
fixing data for X. I claim this com-
plex computes H∗(LM ; Q); the
proof should be basically the same
as F dMan

sing an isomorphism in 8.1.
Will need a more complicated def-
inition of

(
dC∗(LM,Q),d

)
to define

String Topology operations on (in
progress).
Note: I hope to apply this String
Topology model to prove conjec-
tures/partial proofs of Fukaya on
topology of Lagrangians.
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8.3. Donaldson–Thomas type
invariants for Calabi–Yau 4-folds

*** Work in progress ***
Let X be a projective complex man-
ifold of dimension m, and M be a
moduli scheme of stable coherent
sheaves on X. Then M has an ob-
struction theory φ : E•→ LM which
is perfect of amplitude in [1−m,0],
and for each coherent sheaf F in
M encodes the groups Exti(F, F )
for i = 1, . . . ,m.
If X is a Calabi–Yau m-fold then
we can make E•, φ perfect of ampli-
tude in [2−m,0], and get a duality
θ : E•→ (E•)∨[m− 2].
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The cases corresponding to d-
manifolds (the ‘quasi-smooth’ case)
is when E•, φ has amplitude in [−1,0],
i.e. sheaves on surfaces when m =
2 (Donaldson theory) or Calabi–Yau
3-folds when m = 3 (Donaldson–
Thomas invariants). In these cases
we can make moduli schemes M
into d-manifolds, and define virtual
cycles and invariants.
I believe there is a third case: Calabi–
Yau 4-folds. Then E•, φ has ampli-
tude in [−2,0], and E• has a duality
taking degree i to degree −2− i.
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I claim that I can define a d-manifold
structure on moduli schemes M of
stable coherent sheaves on Calabi–
Yau 4-folds. This encodes ‘half’ of
E•, φ: all of Ext1(F, F )∗ in degree 0,
the ‘real part’ of the complex vec-
tor space Ext2(F, F )∗ in degree −1,
andnoneofExt3(F, F )∗ indegree−2.
The real virtual dimension of the
d-manifold M is the complex vir-
tual dimension (i.e. half of the real
virtual dimension) of the obstruc-
tion theory E•, φ. So, for strictly
complex-algebraic input, I use d-
manifolds to define a virtual cycle
which can have odd real dimension.
This is very weird. I know of no way
to do this using algebraic geometry.
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Question for the audience:

Can you think of your own
applications for d-manifolds and
d-orbifolds?
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