U(1)-invariant special Lagrangian 3-folds in \mathbb{C}^3 and special Lagrangian fibrations

Dominic Joyce Oxford University

based on math.DG/0011179 math.DG/0111324 math.DG/0111326 math.DG/0204343 math.DG/0206016

Calibrated geometry

Let (M,g) be a Riemannian manifold. A tangent k-plane V on M is a vector subspace V of some tangent space T_xM to M with dim V=k.

A calibration on M is a closed k-form φ with $|\varphi|_V|\leqslant 1$ for every k-plane V on M.

Let N be a submanifold of M with $\dim N = k$. We call N calibrated if $|\varphi|_{T_xN}| = 1$ for all $x \in N$. Then N is automatically a minimal submanifold of M. If N is compact, then $\operatorname{vol}(N) = [\varphi] \cdot [N]$, where $[\varphi] \in H^k(M,\mathbb{R})$ and $[N] \in H_k(M,\mathbb{Z})$.

SL m-folds in \mathbb{C}^m

Let \mathbb{C}^m have coordinates (z_1,\ldots,z_m) , Kähler metric $g = |dz_1|^2 + \cdots + |dz_m|^2$ Kähler form ω , and $\Omega = dz_1 \wedge \cdots \wedge dz_m$. Then Re Ω is a calibration. A real m-submanifold N in \mathbb{C}^m is called *special Lagrangian* if it is calibrated w.r.t. Re Ω . Equivalently, N is an SL m-fold iff $\omega|_N \equiv {
m Im} \ \Omega|_N \equiv 0$.

Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold (M,J,g,Ω) is a compact complex m-fold (M,J) with a Kähler metric g with Kähler form ω , and a nonvanishing holomorphic (m,0)-form Ω , the holomorphic volume form.

It is a *Calabi-Yau m-fold* if $|\Omega|^2 \equiv 2^m$. Then $\nabla\Omega = 0$ and g is Ricci-flat.

SL m-folds in ACY m-folds

Let (M, J, g, Ω) be an almost Calabi-Yau m-fold. Let N be a real m-submanifold of M. We call N $special\ Lagrangian$ if $\omega|_N \equiv \operatorname{Im} \Omega|_N \equiv 0$. If (M, J, g, Ω) is a Calabi-Yau m-fold then Re Ω is a *calibra*tion on (M,g), and N is an SL m-fold iff it is calibrated with respect to Re Ω .

Mirror Symmetry

String theorists believe that each Calabi-Yau 3-fold X has a quantization, a SCFT.

Calabi-Yau 3-folds X, \hat{X} are a mirror pair if their SCFT's are related by a certain involution of SCFT structure.

Then invariants of X, \hat{X} are related in surprising ways. For instance,

$$H^{1,1}(X) \cong H^{2,1}(\widehat{X})$$
 and $H^{2,1}(X) \cong H^{1,1}(\widehat{X}).$

Using physics, Strominger, Yau and Zaslow proposed:

The SYZ Conjecture. Let X, \widehat{X} be mirror Calabi-Yau 3-folds. There is a compact 3-manifold B and continuous, surjective f:X o B and $\widehat{f}:\widehat{X}\to B$, such that (i) For b in a dense $B_0 \subset B$, the fibres $f^{-1}(b), \hat{f}^{-1}(b)$ are dual SL 3-tori T^3 in X, \widehat{X} . (ii) For $b \notin B_0$, $f^{-1}(b)$ and $\hat{f}^{-1}(b)$ are singular SL 3-folds in X, \widehat{X} .

We call f, \hat{f} special Lagrangian fibrations, and $\Delta = B \backslash B_0$ the discriminant.

In (i), the nonsingular fibres T,\widehat{T} of f,\widehat{f} are supposed to be dual tori. Topologically, this means an isomorphism $H^1(T,\mathbb{Z}) \cong H_1(\widehat{T},\mathbb{Z})$. But the metrics on T, \widehat{T} should really be dual as well. This only makes sense in the 'large complex structure limit', when the fibres are small and nearly flat.

U(1)-invariant SL 3-folds

Let U(1) act on \mathbb{C}^3 by $(z_1, z_2, z_3) \mapsto (e^{i\theta}z_1, e^{-i\theta}z_2, z_3).$

Let N be a U(1)-invariant SL

3-fold. Then locally we can

write N in the form

$$\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a, \ z_1 z_2 = v(x, y) + iy, \ z_3 = x + iu(x, y), \ x, y \in \mathbb{R} \},$$

where $u, v : \mathbb{R}^2 \to \mathbb{R}$ satisfy

where $u,v:\mathbb{R}^2 \to \mathbb{R}$ satisfy

$$u_x = v_y$$
 and $v_x = -2(v^2 + y^2 + a^2)^{1/2}u_y$. (*)

Since $u_x = v_y$, there exists a potential function f with $u = f_y$ and $v = f_x$. The 2nd equation of (*) becomes

$$f_{xx} + 2(f_x^2 + y^2 + a^2)^{1/2} f_{yy} = 0.$$
 (+)

This is a second-order quasilinear equation. When $a \neq 0$ it is locally uniformly elliptic. When a = 0 it is non-uniformly elliptic, except at singular points $f_x = y = 0$.

Theorem A. Let S be a compact domain in \mathbb{R}^2 satisfying some convexity conditions.

Let $\phi \in C^{3,\alpha}(\partial S)$.

If $a \neq 0$ there exists a unique $f \in C^{3,\alpha}(S)$ satisfying (+) with $f|_{\partial S} = \phi$. If a = 0 there exists a unique $f \in C^1(S)$ satisfying (+) with weak second derivatives, with $f|_{\partial S} = \phi$. Also f depends continuously in $C^1(S)$ on a, ϕ .

Theorem A shows that the Dirichlet problem for (+) is uniquely solvable in certain convex domains. The induced solutions $u,v\in C^0(S)$ of (*)yield U(1)-invariant SL 3-folds in \mathbb{C}^3 satisfying certain boundary conditions over ∂S . When $a \neq 0$ these SL 3-folds are nonsingular, when a = 0 they are singular when v = y = 0.

Theorem B.

Let $\phi, \phi' \in C^{3,\alpha}(\partial S)$, let $a \in \mathbb{R}$ and let $f, f' \in C^{3,\alpha}(S)$ or $C^1(S)$ be the solutions of (+) from Theorem A with $f|_{\partial S} = \phi$, $f'|_{\partial S} = \phi'$. Let $u = f_y$, $v = f_x$, $u' = f'_y$, $v' = f'_x$. Suppose $\phi - \phi'$ has k+1 local maxima and k+1 local minima on ∂S . Then (u,v)-(u',v')has no more than k zeroes in S° , counted with multiplicity.

Theorem C.

Let $u, v \in C^0(S)$ be a singular solution of (*) with a = 0, e.g. from Theorem A. Then either $u(x,y) \equiv u(x,-y)$ and $v(x,y) \equiv -v(x,-y)$, so that u,v is singular on the x-axis, or the singularities (x,0) of u,v in S° are *isolated*, with a multiplicity n > 0. Multiplicity n singularities occur in codimension n of boundary data. All multiplicities occur.

Theorem D.

Let $U \subset \mathbb{R}^3$ be open, S as above, and $\Phi:U\to C^{3,\alpha}(\partial S)$ continuous such that if $(a,b,c) \neq (a,b',c') \in U$ then $\Phi(a,b,c) - \Phi(a,b',c')$ has 1 local maximum and 1 local minimum. For $\alpha = (a, b, c) \in U$, let $f_{\alpha} \in C^1(S)$ be the solution of (+) from Theorem A with $f_{\alpha}|_{\partial S} = \Phi(\alpha)$.

Set $u_{\alpha}=(f_{\alpha})_{y}$ and $v_{\alpha}=(f_{\alpha})_{x}$. Let N_{α} be the SL 3-fold $\{(z_1, z_2, z_3) : |z_1|^2 - |z_2|^2 = 2a,$ $z_1 z_2 = v_{\alpha}(x, y) + iy$ $z_3 = x + iu_{\alpha}(x, y), (x, y) \in S^{\circ}$. Then there exists an open $V\subset\mathbb{C}^{\mathsf{3}}$ and a continuous map $F: V \to U$ with $F^{-1}(\alpha) = N_{\alpha}$. This is a U(1)-invariant special Lagrangian fibration. It can include *singular fibres*, of every multiplicity n > 0.

Example. Define $f: \mathbb{C}^3 \to \mathbb{R} \times \mathbb{C}$ by $f(z_1, z_2, z_3) = (a, b)$, where $2a = |z_1|^2 - |z_2|^2$ and

$$b = \begin{cases} z_3, & z_1 = z_2 = 0, \\ z_3 + \overline{z}_1 \overline{z}_2 / |z_1|, a \ge 0, \ z_1 \ne 0, \\ z_3 + \overline{z}_1 \overline{z}_2 / |z_2|, a < 0. \end{cases}$$

Then f is a piecewise-smooth SL fibration of \mathbb{C}^3 . It is not smooth on $|z_1|=|z_2|$. The fibres $f^{-1}(a,b)$ are T^2 -cones when a=0, and nonsingular $\mathcal{S}^1\times\mathbb{R}^2$ when $a\neq 0$.

Conclusions

Using these SL fibrations as local models, if X is a *generic* ACY 3-fold and $f: X \rightarrow B$ an SL fibration, I predict:

- f is only piecewise smooth.
- All fibres have finitely many singular points.
- ullet Δ is codim 1 in B. Generic singularities are modelled on the example above.
- Some codim 2 singularities are also locally U(1)-invariant.

- Codim 3 singularities are not locally U(1)-invariant.
- If $f: X \rightarrow B$, $\widehat{f}: \widehat{X} \rightarrow B$ are dual SL fibrations of mirror C-Y 3-folds, the discriminants $\Delta, \widehat{\Delta}$ have different topology near codim 3 singular fibres, so $\Delta \neq \widehat{\Delta}$.
- This contradicts some statements of the SYZ Conjecture. I regard SYZ as primarily a limiting statement about the 'large complex structure limit'.