U(1)-invariant special
Lagrangian 3-folds
in C3 and special
Lagrangian fibrations

Dominic Joyce
Oxford University

pbased on

.DG/0011179
.DG/0111324
.DG/0111326
.DG/0204343
.DG/0206016

mat
mat
mat
mat
mat

D D D D B



Calibrated geometry

Let (M,g) be a Riemannian
manifold. A tangent k-plane
V on M is a vector subspace
V of some tangent space T, M
to M with dimV = k.

A calibration on M is a closed
k-form ¢ with |p|y/| < 1 for
every k-plane V on M.



Let N be a submanifold of M
with dimN = k. We call N
calibrated if (p|p n| = 1 for all
r € N. Then N Is automat-
ically a minimal submanifold
of M. If N Is compact, then
VOI(N) = [p]-[N], where [¢] €
H*(M,R) and [N] € H,.(M,Z).



SL m-folds in C™

Let C™ have coordinates
(21,...,2m), Kahler metric

g = |dz1]2 4+ - + |dzm|?,
Kahler form w, and
Q=dzqy A--- ANdzm.

Then Ref(2 is a calibration.
A real m-submanifold N in C™
IS called special Lagrangian if
It Is calibrated w.r.t. Re(2.
Equivalently, N is an SL
m-~fold iff w\N =Im Q|N = 0.
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Almost Calabi-Yau m-folds

An almost Calabi-Yau m-fold
(M, J, g,2) is a compact
complex m-fold (M, J) with a
Kahler metric g with Kahler
form w, and a nonvanishing
holomorphic (m, 0)-form €2, the
holomorphic volume form.

It iIs a Calabi-Yau m-fold if
Q2 = 2™. Then VQ = 0
and g is Ricci-flat.



SL m-folds in ACY m-folds

Let (M, J, g,2) be an almost
Calabi-Yau m-fold. Let N be
a real m-submanifold of M.
We call N special Lagrangian
If (M, J, g, Q2) is a Calabi-Yau
m-fold then Re(2 is a calibra-
tion on (M,g), and N is an
SL m-fold iff it is calibrated
with respect to ReX(2.



Mirror Symmetry
String theorists believe that
each Calabi—Yau 3-fold X has
a quantization, a SCFTT.
Calabi—Yau 3-folds X, X are
a mirror pair if their SCFT'’s
are related by a certain
involution of SCFT structure.
Then invariants of X, X are
related in surprising ways. For
Instance,

HLI(X) =2 F21(X) and
H>1(X) =2 gb1(X).



Using physics, Strominger, Yau
and Zaslow proposed:

The SYZ Conjecture. Let
X, X be mirror Calabi—Yau
3-folds. There is a compact
3-manifold B and continuous,
surjective f - X — B and

f: X — B, such that

(i) For b in a dense By C B,
the fibres f~1(®), f~1(b) are
dual SL 3-tori T3 in X, X.

(ii) Forb¢ By, f~4(b) and f~1(b)
are singular SL 3-folds in X, X.
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We call f, f special Lagrangian
fibrations, and A = B\ Bg the
discriminant.

In (i), the nonsingular fibres
T, T of f,f are supposed to
be dual tori. Topologically,
this means an isomorphism
HY(T,7) =2 H{(T,7Z). But the
metrics on T,7T should really
be dual as well. This only
makes sense in the ‘large com-
plex structure limit’, when the
fibres are small and nearly flat.
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U(1)-invariant SL 3-folds
Let U(1) act on C3 by
(21, 20, 23) — (€21, e 025 23).
Let N be a U(1)-invariant SL
3-fold. Then locally we can
write N in the form
{(21,22,23) : |21]°—|22]* =24,
z1z0=v(z,y)+1y,
zz=z + iu(z,y), z,y € R,
where u,v : R?2 — R satisfy

%
vp = —2(v°+y? ——a2)1/2uy.
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Since ugz = vy, there exists

a potential function f with
u = fy and v = fp. The

2nd equation of (x) becomes

fmx+2(fx2+yz+a2)l/2fyy = 0.

(+)
This Is a second-order quasi-
linear equation. When a = 0O
it i1s locally uniformly elliptic.
When a=0 it is non-uniformly
elliptic, except at singular
points f =y = 0.
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Theorem A. Let S beacom-
pact domain in R? satisfying
some convexity conditions.
Let ¢ € C32(9S).

If a = O there exists a unique
f e C32(S) satisfying (4) with
flag = ¢. If a = O there ex-
ists a unique f € C1(9) sat-
isfying (4+) with weak second
derivatives, with flgqg = ¢.
Also f depends continuously
in C1(S) on a, ¢.
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Theorem A shows that the
Dirichlet problem for (4) is
uniquely solvable in certain con-
vex domains. The induced
solutions u,v € CO(S) of (%)
vield U(1)-invariant SL 3-folds
in C3 satisfying certain bound-
ary conditions over 0S. When
a = 0 these SL 3-folds are
nonsingular, when a = O they
are singular when v =y = 0.
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Theorem B.

Let ¢, ¢/ €C3(DS), let a€R
and let f, f' € C32(S) or C1(S)
be the solutions of (4) from
Theorem A with

flas = ¢, f'los = ¢'. Let
u=fy, v=fz, u'=f,, V=1
Suppose ¢ — ¢’ has k+1 local
maxima and k41 local minima
on 0S. Then (u,v) — (¢, v")
has no more than k£ zeroes in
S°, counted with multiplicity.
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T heorem C.

Let u,v € CO(S) be a singular
solution of (x) with a = 0O,
e.g. from Theorem A. Then
either u(z,y) = u(xz, —y) and
v(z,y) = —v(x,—y), SO that
uw,v IS singular on the z-axis,
or the singularities (x,0) of
u,v in S° are isolated, with a
multiplicity n>0. Multiplicity
n Singularities occur in codi-
mension n of boundary data.
All multiplicities occur.
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Theorem D.

Let U C R3 be open, S as
above, and & : U — C3%(95)
continuous such that if
(a,b,c) £« (a,b/,c) €U

then ®(a,b,c) — ®(a,b’, )
has 1 local maximum

and 1 local minimum.

For o« = (a,b,c) € U, let

fo € CL(S) be the solution
of (4) from Theorem A
with falgs = P(a).
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Set uq = (fa)y and va = (fa)z-
Let N, be the SL 3-fold
{(21,22,23) @ |21]?—|22|*=2a,
z120 =val(x,y)t+1y,
zz=z+iua(z,y), (z,y)€S°.
Then there exists an open
V c C3 and a continuous map
F:V—=U with F~1(a)=N,.
This is a U(1)-invariant
special Lagrangian fibration.
[t can include singular fibres,
of every multiplicity n > 0.

17



Example. Define f : C3 —

R x C by f(Zl,ZQ,Z:g) — (a,b),
where 2a = |z1]2 — |25|? and

23, z1 = 22 =0,
b=1iz23+z122/|21|,a>0, z1 #0,
\Z3—-5152/ zol,a < 0.

Then f is a piecewise-smooth
SL fibration of C3. It is not
smooth on |z1| = |zp].

The fibres f~1(a,b) are T=-
cones when a = 0, and non-
singular ST x R2 when a # 0.
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Conclusions

Using these SL fibrations as
local models, if X Is a generic
ACY 3-fold and f: X — B an
SL fibration, I predict:

e f IS only piecewise smooth.
e All fibres have finitely many
singular points.

o A iscodim 1 in B. Generic
singularities are modelled on
the example above.

e SOme codim 2 singularities
are also locally U(1)-invariant.
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e Codim 3 singularities are not
locally U(1)-invariant.

o If f: X—B, f: X—B are
dual SL fibrations of mirror
C-Y 3-folds, the discriminants
A, A have different topology
near codim 3 singular fibres,
so A #= A.

T his contradicts some state-
ments of the SY~Z Conjecture.
I regard SYZ as primarily a
limiting statement about the
‘large complex structure limit’.
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