Axiomatic Set Theory: Problem sheet 1

1. Which of the ZF axioms (A1)-(A2), (A7) and (A8) hold in the structure $\langle\mathbb{Q},<\rangle$? Also, find an instance of (A5) that is true in $\langle\mathbb{Q},<\rangle$ and one that is false.
2. Write the following as formulas of LST:
(a) $x=\langle y, z\rangle$;
(b) $x=y \times z$;
(c) $x=y \cup\{y\}$;
(d) " x is a successor set";
(e) $x=\omega$.
3. Assuming ZF^{*}, show that there exists a transitive set M such that
(a) $\varnothing \in M$, and
(b) if $x \in M$ and $y \in M$, then $\{x, y\} \in M$, and
(c) every element of M contains at most two elements.

Show further that if σ is an axiom of $\mathrm{ZF}^{*}+\mathrm{AC}$ other than (A8), (A4) or (A7), then $\langle M, \in\rangle \vDash \sigma$. (It follows that if ZF^{*} is consistent then so is (ZF* $+\mathrm{AC} \backslash\{(\mathrm{A} 8)$, (A4), (A7) $\}$.)
4. Assuming ZF show that if a is a non-empty transitive set then $\varnothing \in a$.
5. Deduce (A3) (pairing) from the other axioms of ZF^{*}.

Axiomatic Set Theory: Problem sheet 2

1. (a) Assuming ZF (ie. $\mathrm{ZF}^{*}+$ Foundation) prove that the following two definitions of "ordinal" are equivalent:
(i) An ordinal is a transitive set well-ordered by \in.
(ii) An ordinal is a transitive set totally ordered by \in.
(b) Prove theorem 3.10-the principle of induction for $O n$-using only ZF*.
2. (ZF*) Define a "natural" ordinal exponentiation using the recursion theorem for ordinals, and show that for all ordinals α, β and $\gamma, \alpha^{(\beta+\gamma)}=\alpha^{\beta} \alpha^{\gamma}$, and $\alpha^{(\beta \cdot \gamma)}=\left(\alpha^{\beta}\right)^{\gamma}$. Show also that $2^{\omega}=\omega$.
3. (ZF*) Suppose $F: O n \rightarrow O n$ is a class term satisfying:
(1) $\alpha<\beta \rightarrow F(\alpha)<F(\beta)($ for $\alpha, \beta \in O n$)
(2) $F(\delta)=\bigcup_{\alpha<\delta} F(\alpha)$ (for limit ordinals δ).

Prove that for all $\alpha \in O n$ there exists $\beta \in O n$ such that $\beta>\alpha$ and $F(\beta)=\beta$ (ie. F has arbitrarily large fixed points). What is the smallest non-zero fixed point of the term $F: O n \rightarrow O n$ defined by $F(x)=\omega \cdot x$ (for $x \in O n$)?
4. (ZF) Let H_{ω} denote the class of hereditarily finite sets, ie. $H_{\omega}=\{x: T C(x)$ is finite $\}$. Prove that $H_{\omega}=V_{\omega}$ (and hence that H_{ω} is a set). Prove that $\left\langle V_{\omega}, \in\right\rangle \vDash$ the axiom of foundation, and $\left\langle V_{\omega}, \in\right\rangle \vDash \neg$ the axiom of infinity.
[It is easy, but tedious, to check that $\left\langle V_{\omega}, \in\right\rangle \vDash$ the other axioms of ZF. This shows that the other axioms of ZF do not imply the axiom of infinity.]

Axiomatic Set Theory: Problem sheet 3

1. $\left(\mathrm{ZF}^{*}\right)$ Prove that $(V, \in) \vDash \mathrm{A} 4$ (Union) and that $(V, \in) \vDash \mathrm{A} 8$ (Infinity).
2. $\left(\mathrm{ZF}^{*}\right)$ Prove that the axiom of foundation is equivalent to $\forall x(x \in V)$.
3. $\left(\mathrm{ZF}^{*}\right)$ Let $\alpha \in O n$ and suppose that $a \in V_{\alpha}$ and $b \subseteq a$. Prove that $b \in V_{\alpha}$.
4. $\left(\mathrm{ZF}^{*}\right)$ Later in the course we shall be concerned with those formulas whose truth does not depend on which transitive class they are interpreted in. More precisely, let A be a transitive class. A formula $\phi\left(v_{1}, \ldots, v_{n}\right)$ (without parameters) of LST is called A-absolute if for any $a_{1}, \ldots, a_{n} \in A, \phi\left(a_{1}, \ldots, a_{n}\right)$ holds (ie. $\left.\left(V^{*}, \in\right) \vDash \phi\left(a_{1}, \ldots, a_{n}\right)\right)$ iff $\phi\left(a_{1}, \ldots, a_{n}\right)$ holds in A (ie. $(A, \in) \vDash \phi\left(a_{1}, \ldots, a_{n}\right)$). Prove that the following statements (or the natural formulas of LST which these translate) are A-absolute, for any transitive class A :
(i) $v_{1} \subseteq v_{2}$
(ii) $v_{1}=\bigcup v_{2}$
(iii) $v_{1}=\left\{v_{2}, v_{3}\right\}$
(iv) $v_{1}=v_{2} \cup\left\{v_{2}\right\}$.

Show that " $v_{1}=\mathbb{P} v_{2}$ " is not ω-absolute. (Note that ω is a transitive class.)

Axiomatic Set Theory: Problem sheet 4

1. Prove that $\forall \alpha, \beta \in O n$, (i) $V_{\alpha} \cap O n=\alpha$, and (ii) if $\alpha \in V_{\beta}$, then $V_{\alpha} \in V_{\beta}$.
2. Complete the proof of Lévy's Reflection Principle.
3. A club is, by definition, a closed, unbounded class of ordinals. Prove that if U_{1} and U_{2} are clubs then so is $U_{1} \cap U_{2}$. More generally, suppose that X is a class such that $X \subseteq \omega \times$ On. For $i \in \omega$, let $X_{i}=\{\alpha \in O n:\langle i, \alpha\rangle \in X\}$. Suppose that for all $i \in \omega, X_{i}$ is a club. Prove that $\bigcap_{i \in \omega} X_{i}$ is a club.
4. (i) It is known that there is a formula $\phi(x)$ of LST (without parameters) such that (in ZF one can prove that) for any set $a, \phi(a)$ iff " $\langle a, \in\rangle \vDash$ ZF and a is transitive". Further, this formula is A-absolute for any transitive class A (see sheet 3 , question 4). Show that one cannot prove the sentence $\exists x \phi(x)$ from ZF. [Hint: Consider the least $\alpha \in O n$ such that $\exists x \in V_{\alpha}(\phi(x))$.]
(ii) As formulated in the lectures, ZF is a countably infinite collection of axioms (since there is one separation and replacement axiom for each formula of LST, and there are clearly a countably infinite number of such formulas). Prove that there is no finite subcollection, T, say, of ZF , such that $T \vdash \mathrm{ZF}$.
5. * What is wrong with the following argument:

Let $\left\{\sigma_{i}: i \in \omega\right\}$ be an enumeration of all the axioms of ZF. By Lévy's Reflection Principle, for each $i \in \omega$, the class $\left\{\alpha \in O n:\left\langle V_{\alpha}, \in\right\rangle \vDash \sigma_{i}\right\}$ (call it X_{i}) is a club (since $(V, \in) \vDash \sigma_{i}$). By question (3) above, $\bigcap_{i \in \omega} X_{i}$ is a club (we are using question (3) by setting $\left.X=\left\{\langle i, \alpha\rangle: \alpha \in X_{i}\right\}\right)$. In particular, $\bigcap_{i \in \omega} X_{i}$ is non-empty. Let $\beta \in \bigcap_{i \in \omega} X_{i}$. Then $\beta \in X_{i}$ for all $i \in \omega$, so $\left\langle V_{\beta}, \in\right\rangle \vDash \sigma_{i}$ for all $i \in \omega$, so $\left\langle V_{\beta}, \in\right\rangle \vDash$ ZF. Hence $\phi\left(V_{\beta}\right)$ holds, so $\exists x \phi(x)$ (where $\phi(x)$ is the formula in (4)(i)). Since (V, \in) is an arbitrary model of ZF, we have ZF $\vdash \exists x \phi(x)$!

Axiomatic Set Theory: Problem sheet 5

1. Assuming (as was shown in the lectures), that $a \in L \rightarrow \bigcup a \in L$ and $a \in L \rightarrow$ $\mathbb{P} a \cap L \in L$, verify carefully that $\langle L, \in\rangle \vDash$ union, powerset.
2. The rank of a set $A, \operatorname{rk}(A)$, is defined to be the least $\alpha \in O n$ such that $A \subseteq V_{\alpha}$. Prove that $\forall \alpha \in \operatorname{On}\left(r k\left(L_{\alpha}\right)=\alpha\right)$.
3. Suppose $F: V \rightarrow V$ is a term definable without parameters (ie. the formula defining " $F(x)=y$ " has no parameters). Suppose further that it is an elementary map, ie. for any formula $\phi\left(v_{0}, \ldots, v_{n-1}\right)$ of LST (without parameters), and any $a_{0}, \ldots, a_{n-1} \in V$,

$$
\phi\left(a_{0}, \ldots, a_{n-1}\right) \Leftrightarrow \phi\left(F\left(a_{0}\right), \ldots, F\left(a_{n-1}\right)\right) .
$$

Prove that F is the identity. [Hint: first show that for all ordinals $\alpha, F(\alpha)=\alpha$, by considering the first β for which $F(\beta) \neq \beta$.]
[Remark: Assuming only ZF, it is not known whether such an elementary map definable with parameters can exist other than the identity, although if ZFC is assumed it is known that there is no such.]
4. Let E denote the set of even natural numbers. Prove that $E \in L_{\omega+1}$.
5. For $\phi(\mathbf{v})$ a formula of LST (without parameters) and a any set, let $\phi_{a}(\mathbf{v})$ denote the formula (with parameter a) obtained by relativizing $\phi(\mathbf{v})$ to the class a. Prove that for any transitive class A and $a, \mathbf{b} \in A,(A, \in) \vDash \phi_{a}(\mathbf{b})$ iff $\phi_{a}(\mathbf{b})$ (ie. $\phi_{a}(\mathbf{v})$ is A-absolute).

Axiomatic Set Theory: Problem sheet 6

1. Prove lemmas 7.2, 7.3 and 7.4.
2. Prove 7.11 (30), ie. that " x is a finite sequence of elements of y " (ie. $x \in{ }^{<\omega} y$) is $\Sigma_{0}^{Z F}$, assuming that (1)-(29) of 7.11 are all $\Sigma_{0}^{Z F}$.
3. Prove that " x is a well-ordering of y " is $\Delta_{1}^{Z F}$.
4. Show that for every Σ_{1} formula $\phi\left(x_{1}, \ldots, x_{n}\right)$, there exists a corresponding Σ_{0} formula $\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ such that

$$
Z F \vdash \forall x_{1}, \ldots x_{n}\left(\phi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \exists y_{1}, \ldots, y_{m} \psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right) .
$$

5. Prove that ordinal addition, multiplication and exponentiation are $\Delta_{1}^{Z F}$.

Axiomatic Set Theory: Problem sheet 7

1. Prove that for any infinite cardinal $\kappa, c f(\kappa)$ is a regular cardinal.
2. Suppose κ, λ are infinite cardinals such that $\kappa \geq \lambda$. Prove that if $\lambda \geq c f(\kappa)$, then $\kappa^{\lambda}>\kappa$. Suppose now that $\lambda<c f(\kappa)$, and that κ has the property that for any cardinal μ, if $\mu<\kappa$ then $2^{\mu} \leq \kappa$. Prove that $\kappa^{\lambda}=\kappa$. Hence show that if GCH is assumed, then for any infinite cardinals κ, λ with $\kappa \geq \lambda$, we have $\kappa^{\lambda}=\kappa$ or κ^{+}.
3. Suppose κ is an uncountable regular cardinal. Let $g: \kappa \rightarrow \kappa$ be any function. Prove that for any $\alpha<\kappa$, there exists $\beta<\kappa$, with $\alpha \leq \beta$, such that β is closed under g (ie. for all $\gamma<\beta, g(\gamma)<\beta$).
4. (Optional) Let κ be an uncountable regular cardinal with the property that for any cardinal $\mu<\kappa$, we have $2^{\mu}<\kappa \ldots\left(^{*}\right)$.

Prove that (i) if α is any cardinal and $\alpha<\kappa$, then $\left|V_{\alpha}\right|<\kappa$, (ii) $\left|V_{\kappa}\right|=\kappa$, (iii) if κ is regular, then $\left\langle V_{\kappa}, \in\right\rangle \vDash$ ZFC.
(For (iii) you need consider only the replacement scheme, since we essentially showed that if α is a limit ordinal and $\alpha>\omega$, then $\left\langle V_{\alpha}, \in\right\rangle$ satisfies all the axioms of ZFC except, possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies $\left(^{*}\right)$.

