1. Which of the ZF axioms (A1)–(A2), (A7) and (A8) hold in the structure $\langle \mathbb{Q}, \langle \rangle$? Also, find an instance of (A5) that is true in $\langle \mathbb{Q}, \langle \rangle$ and one that is false.

2. Write the following as formulas of LST:

(a) $x = \langle y, z \rangle;$

- (b) $x = y \times z;$
- (c) $x = y \cup \{y\};$
- (d) "x is a successor set";
- (e) $x = \omega$.

3. Assuming ZF^* , show that there exists a *transitive* set M such that

(a) $\emptyset \in M$, and

(b) if $x \in M$ and $y \in M$, then $\{x, y\} \in M$, and

(c) every element of M contains at most two elements.

Show further that if σ is an axiom of ZF*+AC other than (A8), (A4) or (A7), then $\langle M, \in \rangle \vDash \sigma$. (It follows that if ZF* is consistent then so is (ZF*+AC\{(A8), (A4), (A7)\}.)

4. Assuming ZF show that if a is a non-empty transitive set then $\emptyset \in a$.

5. Deduce (A3) (pairing) from the other axioms of ZF^* .

1. (a) Assuming ZF (ie. ZF^* +Foundation) prove that the following two definitions of "ordinal" are equivalent:

(i) An ordinal is a transitive set well-ordered by \in .

(ii) An ordinal is a transitive set totally ordered by \in .

(b) Prove theorem 3.10—the principle of induction for On—using only ZF^{*}.

2. (ZF*) Define a "natural" ordinal exponentiation using the recursion theorem for ordinals, and show that for all ordinals α , β and γ , $\alpha^{(\beta+\gamma)} = \alpha^{\beta}\alpha^{\gamma}$, and $\alpha^{(\beta\cdot\gamma)} = (\alpha^{\beta})^{\gamma}$. Show also that $2^{\omega} = \omega$.

3. (ZF^{*}) Suppose $F : On \to On$ is a class term satisfying:

(1) $\alpha < \beta \rightarrow F(\alpha) < F(\beta)$ (for $\alpha, \beta \in On$)

(2) $F(\delta) = \bigcup_{\alpha < \delta} F(\alpha)$ (for limit ordinals δ).

Prove that for all $\alpha \in On$ there exists $\beta \in On$ such that $\beta > \alpha$ and $F(\beta) = \beta$ (ie. F has arbitrarily large fixed points). What is the smallest non-zero fixed point of the term $F: On \to On$ defined by $F(x) = \omega x$ (for $x \in On$)?

4. (ZF) Let H_{ω} denote the class of *hereditarily finite sets*, i.e. $H_{\omega} = \{x : TC(x) \text{ is finite}\}$. Prove that $H_{\omega} = V_{\omega}$ (and hence that H_{ω} is a set). Prove that $\langle V_{\omega}, \in \rangle \vDash$ the axiom of foundation, and $\langle V_{\omega}, \in \rangle \vDash \neg$ the axiom of infinity.

[It is easy, but tedious, to check that $\langle V_{\omega}, \in \rangle \vDash$ the other axioms of ZF. This shows that the other axioms of ZF do not imply the axiom of infinity.]

1. (ZF^{*}) Prove that $(V, \in) \vDash$ A4 (Union) and that $(V, \in) \vDash$ A8 (Infinity).

2. (ZF^{*}) Prove that the axiom of foundation is equivalent to $\forall x (x \in V)$.

3. (ZF^{*}) Let $\alpha \in On$ and suppose that $a \in V_{\alpha}$ and $b \subseteq a$. Prove that $b \in V_{\alpha}$.

4. (ZF^{*}) Later in the course we shall be concerned with those formulas whose truth does not depend on which transitive class they are interpreted in. More precisely, let A be a transitive class. A formula $\phi(v_1, \ldots, v_n)$ (without parameters) of LST is called A-absolute if for any $a_1, \ldots, a_n \in A$, $\phi(a_1, \ldots, a_n)$ holds (i.e. $(V^*, \in) \models \phi(a_1, \ldots, a_n)$) iff $\phi(a_1, \ldots, a_n)$ holds in A (i.e. $(A, \in) \models \phi(a_1, \ldots, a_n)$). Prove that the following statements (or the natural formulas of LST which these translate) are A-absolute, for any transitive class A:

(i) $v_1 \subseteq v_2$ (ii) $v_1 = \bigcup v_2$ (iii) $v_1 = \{v_2, v_3\}$ (iv) $v_1 = v_2 \cup \{v_2\}$. Show that " $v_1 = \mathbb{P}v_2$ " is not ω -absolute. (Note that ω is a transitive class.)

1. Prove that $\forall \alpha, \beta \in On$, (i) $V_{\alpha} \cap On = \alpha$, and (ii) if $\alpha \in V_{\beta}$, then $V_{\alpha} \in V_{\beta}$.

2. Complete the proof of Lévy's Reflection Principle.

3. A *club* is, by definition, a closed, unbounded class of ordinals. Prove that if U_1 and U_2 are clubs then so is $U_1 \cap U_2$. More generally, suppose that X is a class such that $X \subseteq \omega \times On$. For $i \in \omega$, let $X_i = \{\alpha \in On : \langle i, \alpha \rangle \in X\}$. Suppose that for all $i \in \omega$, X_i is a club. Prove that $\bigcap_{i \in \omega} X_i$ is a club.

4. (i) It is known that there is a formula $\phi(x)$ of LST (without parameters) such that (in ZF one can prove that) for any set $a, \phi(a)$ iff " $\langle a, \in \rangle \vDash$ ZF and a is transitive". Further, this formula is A-absolute for any transitive class A (see sheet 3, question 4). Show that one cannot prove the sentence $\exists x \phi(x)$ from ZF. [Hint: Consider the least $\alpha \in On$ such that $\exists x \in V_{\alpha}(\phi(x))$.]

(ii) As formulated in the lectures, ZF is a countably infinite collection of axioms (since there is one separation and replacement axiom for each formula of LST, and there are clearly a countably infinite number of such formulas). Prove that there is no finite subcollection, T, say, of ZF, such that $T \vdash ZF$.

5. * What is wrong with the following argument:

Let $\{\sigma_i : i \in \omega\}$ be an enumeration of all the axioms of ZF. By Lévy's Reflection Principle, for each $i \in \omega$, the class $\{\alpha \in On : \langle V_{\alpha}, \in \rangle \models \sigma_i\}$ (call it X_i) is a club (since $(V, \in) \models \sigma_i$). By question (3) above, $\bigcap_{i \in \omega} X_i$ is a club (we are using question (3) by setting $X = \{\langle i, \alpha \rangle : \alpha \in X_i\}$). In particular, $\bigcap_{i \in \omega} X_i$ is non-empty. Let $\beta \in \bigcap_{i \in \omega} X_i$. Then $\beta \in X_i$ for all $i \in \omega$, so $\langle V_{\beta}, \in \rangle \models \sigma_i$ for all $i \in \omega$, so $\langle V_{\beta}, \in \rangle \models$ ZF. Hence $\phi(V_{\beta})$ holds, so $\exists x \phi(x)$ (where $\phi(x)$ is the formula in (4)(i)). Since (V, \in) is an arbitrary model of ZF, we have ZF $\vdash \exists x \phi(x)!$

1. Assuming (as was shown in the lectures), that $a \in L \to \bigcup a \in L$ and $a \in L \to \mathbb{P}a \cap L \in L$, verify carefully that $\langle L, \in \rangle \vDash$ union, powerset.

2. The rank of a set A, rk(A), is defined to be the least $\alpha \in On$ such that $A \subseteq V_{\alpha}$. Prove that $\forall \alpha \in On(rk(L_{\alpha}) = \alpha)$.

3. Suppose $F: V \to V$ is a term definable without parameters (i.e. the formula defining "F(x) = y" has no parameters). Suppose further that it is an *elementary map*, i.e. for any formula $\phi(v_0, \ldots, v_{n-1})$ of LST (without parameters), and any $a_0, \ldots, a_{n-1} \in V$,

$$\phi(a_0,\ldots,a_{n-1}) \Leftrightarrow \phi(F(a_0),\ldots,F(a_{n-1})).$$

Prove that F is the identity. [Hint: first show that for all ordinals α , $F(\alpha) = \alpha$, by considering the first β for which $F(\beta) \neq \beta$.]

[Remark: Assuming only ZF, it is not known whether such an elementary map definable *with* parameters can exist other than the identity, although if ZFC is assumed it is known that there is no such.]

4. Let *E* denote the set of even natural numbers. Prove that $E \in L_{\omega+1}$.

5. For $\phi(\mathbf{v})$ a formula of LST (without parameters) and a any set, let $\phi_a(\mathbf{v})$ denote the formula (with parameter a) obtained by relativizing $\phi(\mathbf{v})$ to the class a. Prove that for any transitive class A and $a, \mathbf{b} \in A$, $(A, \in) \models \phi_a(\mathbf{b})$ iff $\phi_a(\mathbf{b})$ (ie. $\phi_a(\mathbf{v})$ is A-absolute).

1. Prove lemmas 7.2, 7.3 and 7.4.

2. Prove 7.11 (30), i.e. that "x is a finite sequence of elements of y" (i.e. $x \in {}^{<\omega}y$) is Σ_0^{ZF} , assuming that (1)–(29) of 7.11 are all Σ_0^{ZF} .

3. Prove that "x is a well-ordering of y" is Δ_1^{ZF} .

4. Show that for every Σ_1 formula $\phi(x_1, \ldots, x_n)$, there exists a corresponding Σ_0 formula $\psi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ such that

$$ZF \vdash \forall x_1, \dots, x_n (\phi(x_1, \dots, x_n) \leftrightarrow \exists y_1, \dots, y_m \psi(x_1, \dots, x_n, y_1, \dots, y_m)).$$

5. Prove that ordinal addition, multiplication and exponentiation are Δ_1^{ZF} .

1. Prove that for any infinite cardinal κ , $cf(\kappa)$ is a regular cardinal.

2. Suppose κ, λ are infinite cardinals such that $\kappa \geq \lambda$. Prove that if $\lambda \geq cf(\kappa)$, then $\kappa^{\lambda} > \kappa$. Suppose now that $\lambda < cf(\kappa)$, and that κ has the property that for any cardinal μ , if $\mu < \kappa$ then $2^{\mu} \leq \kappa$. Prove that $\kappa^{\lambda} = \kappa$. Hence show that if GCH is assumed, then for any infinite cardinals κ, λ with $\kappa \geq \lambda$, we have $\kappa^{\lambda} = \kappa$ or κ^+ .

3. Suppose κ is an *uncountable regular* cardinal. Let $g : \kappa \to \kappa$ be any function. Prove that for any $\alpha < \kappa$, there exists $\beta < \kappa$, with $\alpha \leq \beta$, such that β is closed under g (ie. for all $\gamma < \beta$, $g(\gamma) < \beta$).

4. (Optional) Let κ be an uncountable regular cardinal with the property that for any cardinal $\mu < \kappa$, we have $2^{\mu} < \kappa \dots (*)$.

Prove that (i) if α is any cardinal and $\alpha < \kappa$, then $|V_{\alpha}| < \kappa$, (ii) $|V_{\kappa}| = \kappa$, (iii) if κ is regular, then $\langle V_{\kappa}, \in \rangle \models$ ZFC.

(For (iii) you need consider only the replacement scheme, since we essentially showed that if α is a limit ordinal and $\alpha > \omega$, then $\langle V_{\alpha}, \in \rangle$ satisfies all the axioms of ZFC except, possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies (*).