
Axiomatic Set Theory: Problem sheet 1

1. Which of the ZF axioms (A1)–(A2), (A7) and (A8) hold in the structure 〈Q, <〉?
Also, find an instance of (A5) that is true in 〈Q, <〉 and one that is false.

2. Write the following as formulas of LST:
(a) x = 〈y, z〉;
(b) x = y × z;
(c) x = y ∪ {y};
(d) “x is a successor set”;
(e) x = ω.

3. Assuming ZF∗, show that there exists a transitive set M such that
(a) ∅ ∈M , and
(b) if x ∈M and y ∈M , then {x, y} ∈M , and
(c) every element of M contains at most two elements.
Show further that if σ is an axiom of ZF∗+AC other than (A8), (A4) or (A7), then

〈M,∈〉 � σ. (It follows that if ZF∗ is consistent then so is (ZF∗+AC\{(A8), (A4), (A7)}.)

4. Assuming ZF show that if a is a non-empty transitive set then ∅ ∈ a.

5. Deduce (A3) (pairing) from the other axioms of ZF∗.
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1. (a) Assuming ZF (ie. ZF∗+Foundation) prove that the following two definitions of
“ordinal” are equivalent:

(i) An ordinal is a transitive set well-ordered by ∈.
(ii) An ordinal is a transitive set totally ordered by ∈.
(b) Prove theorem 3.10—the principle of induction for On—using only ZF∗.

2. (ZF∗) Define a “natural” ordinal exponentiation using the recursion theorem for
ordinals, and show that for all ordinals α, β and γ, α(β+γ) = αβαγ , and α(β.γ) = (αβ)γ .
Show also that 2ω = ω.

3. (ZF∗) Suppose F : On→ On is a class term satisfying:
(1) α < β → F (α) < F (β) (for α, β ∈ On)
(2) F (δ) =

⋃
α<δ F (α) (for limit ordinals δ).

Prove that for all α ∈ On there exists β ∈ On such that β > α and F (β) = β (ie. F
has arbitrarily large fixed points). What is the smallest non-zero fixed point of the term
F : On→ On defined by F (x) = ω.x (for x ∈ On)?

4. (ZF) Let Hω denote the class of hereditarily finite sets, ie. Hω = {x : TC(x) is
finite}. Prove that Hω = Vω (and hence that Hω is a set). Prove that 〈Vω,∈〉 � the axiom
of foundation, and 〈Vω,∈〉 � ¬ the axiom of infinity.

[It is easy, but tedious, to check that 〈Vω,∈〉 � the other axioms of ZF. This shows
that the other axioms of ZF do not imply the axiom of infinity.]
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1. (ZF∗) Prove that (V,∈) � A4 (Union) and that (V,∈) � A8 (Infinity).

2. (ZF∗) Prove that the axiom of foundation is equivalent to ∀x(x ∈ V ).

3. (ZF∗) Let α ∈ On and suppose that a ∈ Vα and b ⊆ a. Prove that b ∈ Vα.

4. (ZF∗) Later in the course we shall be concerned with those formulas whose truth
does not depend on which transitive class they are interpreted in. More precisely, let A be
a transitive class. A formula φ(v1, . . . , vn) (without parameters) of LST is called A-absolute

if for any a1, . . . , an ∈ A, φ(a1, . . . , an) holds (ie. (V ∗,∈) � φ(a1, . . . , an)) iff φ(a1, . . . , an)
holds in A (ie. (A,∈) � φ(a1, . . . , an)). Prove that the following statements (or the natural
formulas of LST which these translate) are A-absolute, for any transitive class A:

(i) v1 ⊆ v2 (ii) v1 =
⋃
v2 (iii) v1 = {v2, v3} (iv) v1 = v2 ∪ {v2}.

Show that “v1 = Pv2” is not ω-absolute. (Note that ω is a transitive class.)
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1. Prove that ∀α, β ∈ On, (i) Vα ∩On = α, and (ii) if α ∈ Vβ , then Vα ∈ Vβ .

2. Complete the proof of Lévy’s Reflection Principle.

3. A club is, by definition, a closed, unbounded class of ordinals. Prove that if U1

and U2 are clubs then so is U1 ∩ U2. More generally, suppose that X is a class such that
X ⊆ ω ×On. For i ∈ ω, let Xi = {α ∈ On : 〈i, α〉 ∈ X}. Suppose that for all i ∈ ω, Xi is
a club. Prove that

⋂
i∈ω Xi is a club.

4. (i) It is known that there is a formula φ(x) of LST (without parameters) such that
(in ZF one can prove that) for any set a, φ(a) iff “〈a,∈〉 � ZF and a is transitive”. Further,
this formula is A-absolute for any transitive class A (see sheet 3, question 4). Show that
one cannot prove the sentence ∃xφ(x) from ZF. [Hint: Consider the least α ∈ On such
that ∃x ∈ Vα(φ(x)).]

(ii) As formulated in the lectures, ZF is a countably infinite collection of axioms
(since there is one separation and replacement axiom for each formula of LST, and there
are clearly a countably infinite number of such formulas). Prove that there is no finite
subcollection, T , say, of ZF, such that T ⊢ ZF.

5. ∗ What is wrong with the following argument:
Let {σi : i ∈ ω} be an enumeration of all the axioms of ZF. By Lévy’s Reflection

Principle, for each i ∈ ω, the class {α ∈ On : 〈Vα,∈〉 � σi} (call it Xi) is a club (since
(V,∈) � σi). By question (3) above,

⋂
i∈ω Xi is a club (we are using question (3) by setting

X = {〈i, α〉 : α ∈ Xi}). In particular,
⋂

i∈ω Xi is non-empty. Let β ∈
⋂

i∈ω Xi. Then
β ∈ Xi for all i ∈ ω, so 〈Vβ ,∈〉 � σi for all i ∈ ω, so 〈Vβ ,∈〉 � ZF. Hence φ(Vβ) holds, so
∃xφ(x) (where φ(x) is the formula in (4)(i)). Since (V,∈) is an arbitrary model of ZF, we
have ZF ⊢ ∃xφ(x)!
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1. Assuming (as was shown in the lectures), that a ∈ L →
⋃
a ∈ L and a ∈ L →

Pa ∩ L ∈ L, verify carefully that 〈L,∈〉 � union, powerset.

2. The rank of a set A, rk(A), is defined to be the least α ∈ On such that A ⊆ Vα.
Prove that ∀α ∈ On(rk(Lα) = α).

3. Suppose F : V → V is a term definable without parameters (ie. the formula
defining “F (x) = y” has no parameters). Suppose further that it is an elementary map,
ie. for any formula φ(v0, . . . , vn−1) of LST (without parameters), and any a0, . . . , an−1 ∈ V ,

φ(a0, . . . , an−1) ⇔ φ(F (a0), . . . , F (an−1)).

Prove that F is the identity. [Hint: first show that for all ordinals α, F (α) = α, by
considering the first β for which F (β) 6= β.]

[Remark: Assuming only ZF, it is not known whether such an elementary map defin-
able with parameters can exist other than the identity, although if ZFC is assumed it is
known that there is no such.]

4. Let E denote the set of even natural numbers. Prove that E ∈ Lω+1.

5. For φ(v) a formula of LST (without parameters) and a any set, let φa(v) denote
the formula (with parameter a) obtained by relativizing φ(v) to the class a. Prove that
for any transitive class A and a,b ∈ A, (A,∈) � φa(b) iff φa(b) (ie. φa(v) is A-absolute).
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1. Prove lemmas 7.2, 7.3 and 7.4.

2. Prove 7.11 (30), ie. that “x is a finite sequence of elements of y” (ie. x ∈ <ωy) is
ΣZF

0 , assuming that (1)–(29) of 7.11 are all ΣZF
0 .

3. Prove that “x is a well-ordering of y” is ∆ZF
1 .

4. Show that for every Σ1 formula φ(x1, . . . , xn), there exists a corresponding Σ0

formula ψ(x1, . . . , xn, y1, . . . , ym) such that

ZF ⊢ ∀x1, . . . xn(φ(x1, . . . , xn) ↔ ∃y1, . . . , ymψ(x1, . . . , xn, y1, . . . , ym)).

5. Prove that ordinal addition, multiplication and exponentiation are ∆ZF
1 .
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1. Prove that for any infinite cardinal κ, cf(κ) is a regular cardinal.

2. Suppose κ, λ are infinite cardinals such that κ ≥ λ. Prove that if λ ≥ cf(κ), then
κλ > κ. Suppose now that λ < cf(κ), and that κ has the property that for any cardinal
µ, if µ < κ then 2µ ≤ κ. Prove that κλ = κ. Hence show that if GCH is assumed, then for
any infinite cardinals κ, λ with κ ≥ λ, we have κλ = κ or κ+.

3. Suppose κ is an uncountable regular cardinal. Let g : κ → κ be any function.
Prove that for any α < κ, there exists β < κ, with α ≤ β, such that β is closed under g
(ie. for all γ < β, g(γ) < β).

4. (Optional) Let κ be an uncountable regular cardinal with the property that for
any cardinal µ < κ, we have 2µ < κ. . . (*).

Prove that (i) if α is any cardinal and α < κ, then |Vα| < κ, (ii) |Vκ| = κ, (iii) if κ is
regular, then 〈Vκ,∈〉 � ZFC.

(For (iii) you need consider only the replacement scheme, since we essentially showed
that if α is a limit ordinal and α > ω, then 〈Vα,∈〉 satisfies all the axioms of ZFC except,
possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies (*).


