Chapter 2

Basics

See D. Goldrei Classic Set Theory, Chapman and Hall 1996, or H.B. Enderton
Elements of Set Theory, Academic Press, 1977.

The material for this course is contained in K. Kunen Set Theory, North-
Holland 1980, or K. Devlin Constructibility.

The language of set theory, LST, is first-order predicate calculus with equal-
ity having the membership relation € (which is binary) as its only non-logical

symbol.

Thus the basic symbols of LST are: =, €, V, =, V, ( and ), and an infi-
nite list vg,v1,...,Un,... of variables (although for clarity we shall often use
z,Y,2,t,...,u,0,... etc. as variables).

The well-formed formulas, or just formulas, of LST are those expressions
that can be built up from the atomic formulas: v; = vj, v; € v;, using the rules:
(1) if ¢ is a formula, so is ¢, (2) if ¢ and 9 are formulas, so is (¢ V ¥), and (3)
if ¢ is a formula, so is Yv;¢.

2.1 Some standard abbreviations

We write (6 A ) for ~(~p v ~); (6 = ¥) for (<6 V ¥); (6 ¢ 9) for (6 —
VYA (Y — ¢)); dzd for —Vz—¢; Tz for IzVy(¢p <> =z = y); Jz € y¢ for
dz(z € y A @); Vz € y ¢ for Vz(z € y — ¢); Vz,y ¢ (etc.) for VaVyep; = ¢ y for
-z € y.

We shall also often write ¢ as ¢(z) to indicate free occurrences of a variable
z in ¢. The formula ¢(z) (say) then denotes the result of substituting every free
occurrence of z in ¢ by z. Similarly for ¢(z,y), ¢(z,y, 2),.. ., etc.

2.2 The Axioms

(A1l.) Exztensionality

Vz,ylx =y < Vit ez <t €y))
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Two sets are equal iff they have the same members.

(A2.) Empty set
JaVyy ¢ z

There is a set with no members, the empty set, denoted @.

(A3.) Pairing
Ve, yd2Vt(t €z (t=2zVi=1y))

For any sets z,y there is a set, denoted {z,y}, whose only elements are z and
y.

(A4.) Union
VeIyvt(t € y « Jw(w € z Nt € w))

For any set z, there is a set, denoted | Jz, whose members are the members of
the members of z.

(A5.) Separation Scheme If ¢(x,y) is a formula of LST, the following is an
axiom:
VxVudVy(y € z < (y € u A ¢(x,9))

For given sets x, u there is a set, denoted {y € u : ¢(x,y)}, whose elements are
those elements y of u which satisfy the formula ¢(x,y).

(A6.) Replacement Scheme If ¢(z,y) is a formula of LST (possibly with other
free variables u, say) then the following is an axiom:

Vulvz,y,y' (6(z,y) A d(z,9)) =y =y') = VsT2Vy(y € 2 & Tz € 5 ¢(z,9))]
The set z is denoted {y : z¢(z,y) Az € s}.
(A7.) Power Set
VeIyvt(t ey <> Vz(z €t — 2z € x))

For any set x there is a set, denoted P(z), whose members are exactly the subsets
of z.

(A8.) Infinity
x[Fy(y ez AVz(z ¢ y) AVy(y ez - Fz(z €z AVt(t ez (teyViE=1y))))]

There is a set z such that & € z and whenever y € z, they y U {y} € z. (Such
a set is called a successor set. The set w of natural numbers is a successor set.)

(A9.) Foundation

Vz(3z(z €z) > Jz(z €z AVy € zy ¢ x))



2.3. PROOFS IN PRINCIPLE AND PROOFS IN PRACTICE 7

If the set x is non-empty, then for some z € z, z has no members in common
with z.

(A10.) Aziom of Choice

Vu[[Vz € uJy(y € z) AVz,y((x Euhy Eunz #y) > V(2 ¢ 2V ¢ y))]
— JoVz € udly(y € z Ay € v)]

If u is a non-empty set of non-empty sets, then there is a set v which contains
exactly one element of each set in u.

We write ZF* for the collection of axioms A1-A8; ZF for A1-A9; ZFC for
A1-A10.

2.3 Proofs in principle and proofs in practice

Suppose that T is one of the above collections of axioms. If o is a sentence of
LST (ie. a formula without free variables), we say that o is a theorem of T,
or that o can be proved from T, and write T - o, if there is a finite sequence
01y...,0p of LST formulas such that o, is o, and each o; is either in T or else
follows from earlier formulas in the sequence by a rule of logic. Clearly every
theorem of ZF is a theorem of ZFC and every theorem of ZF* is a theorem of
ZF. To say that T is consistent means that for no sentence ¢ of LST is (¢ A —¢)
a theorem of T' (which is in fact equivalent to saying that there is some sentence
which is not provable from T'). This now makes theorem 1.1 precise: we must
show that if ZF is consistent, then so is ZFC.

Now in proving this theorem we shall need to build up a large stock of
theorems of ZF (and we shall discuss some theorems of ZFC as well) but to give
formal proofs of these would not only be tedious but also infeasible. We shall
therefore employ the standard short-cut of adopting a Platonic viewpoint. That
is, we shall think of the collection of all sets as being a clearly defined notion
and whenever we want to show a sentence, o, say, of LST has a formal proof
(from ZF say) we shall simply give an informal argument that the proposition
asserted by o about this collection is true. Indeed, we shall often not bother to
write out o as a formula of LST at all; we shall simply write down (in English
plus a few logical and mathematical symbols) “what it is saying”. Of course we
shall take care that, in our informal argument, we only use those propositions
about the collection of all sets asserted by the axioms of ZF. Thus, for example,
if T write:

Theorem 2.3.1 (ZF*) There is no set containing every set.

then I mean that from the axioms of ZF* there is a formal proof of the LST

sentence
VzIyy ¢ x.

Actually, it probably wouldn’t be too difficult to give a formal proof of this,
but we shall supply the following as a proof:
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Proof. Suppose A were a set containing every set. By A5 {z € A: z ¢ z} is
a set, call it B. Then B € Biff B€ Aand B¢ B. But B € Ais true (as A
contains every set), so B € B iff B ¢ B—a contradiction. [J

Of course in all such cases, the reader should convince him- or herself that
(a) the informal statement we are proving can be written as a sentence of LST,
and (b) the given proof can be converted, at least in principle, to a formal proof
from the specified collection of axioms.

2.4 Interpretations

The Completeness Theorem for first-order predicate calculus (also due to Godel)
states that a sentence o (of any first-order language) is provable from a collection
of sentences S (in the same language) if and only if every model of S is a model
of o. (Equivalently, S is consistent if and only if S has a model—just let o
be a contradiction, which by the Soundness Theorem is provable from S iff S
is inconsistent, and is logically implied by S only if S has no models.) Let us
examine this in our present context. Firstly, a structure for LST is specified
by a domain of discourse M over which the quantifiers Vz ... and Jx... range,
and a binary relation £ on M to interpret the membership relation €. If o is
a sentence of LST which is true under this interpretation we say that o is true
in (M, E) or (M, E) is a model of o, and write (M, E) EF o. If T is a collection
of sentences of LST we also write (M, E) E T iff (M, E) F o for each sentence o

inT. (If ¢(z1,-..,2y) is a formula of LST with free variables among z1,...,z,
and ajy,...,a, are in the domain M, we also write (M, E) F ¢(aq,...,a,) to
mean ¢(z1,...,Z,) is true of ai,...,a, in the interpretation (M, E).)

For example, suppose M contains just the two distinct elements a and b, and
E is specified by a — b, ie. E(a,b), not E(b,a), not E(a,a), not E(b,b). Then
(M, E)E A2, ie. M E JzVyy ¢ z, since it is true that there is an z in M (namely
a) such that for all y € M, not E(y,z). It is also easy to see that (M, E) F Al
and (M, E) E ~A3. Notice that, by the completeness theorem, this implies that
A3 is not provable from the axioms A1, A2 since we have found a model of the
latter two axioms which is not a model of the former.

Exercise 2.4.1 Let Q be the set of rational numbers and < the usual ordering
of Q. Which azioms of ZF are true in (Q,<)?

Note that the Platonic viewpoint adopted here amounts to regarding a sen-
tence, o, say, of LST as true, if and only if (V*, €) F o, where V* is the collection
of all sets, and € is the usual membership relation.

The completeness theorem provides a method for establishing theorem 1.1.
For we can rephrase that theorem as: If ZF has a model then so does ZFC. Indeed
we shall construct a subcollection L of V* such that if we assume (V*, €) F ZF,
then (L, €) F ZFC. (Actually our proof will yield somewhat more which ought to
be enough to satisfy any purist. Namely, it will produce an effective procedure
for converting any proof of a contradiction (ie. a sentence of the form (¢ A —¢))
from ZFC to a proof of a contradiction from ZF.)
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We now turn to the development of some basic set theory from the axioms
ZF*.

2.5 New sets from old

The axioms of ZF are of three types: (a) those that assert that all sets have a
certain property (A1, A9), (b) those that sets with certain properties exist (A2,
A8), and (c) those that tell us how we may construct new sets out of given sets
(A3-A7). Our aim here is to combine the operations implicit in the axioms of
type (c) to obtain more ways of constructing sets and to introduce notations for
these constructions (just as, for example, we introduced the notation |J z for the
set y given by A4). It will be convenient to use the class notation {z : ¢(z)} for
the collection (or class) of sets z satisfying the LST formula ¢(z).! As we have
seen, such a class need not be a set. However, in the following definitions it can
be shown (from the axioms ZF*) that we always do get a set. This amounts to
showing that for some set a, if b is any set such that ¢(b) holds (ie. V* F ¢(b))
then b € a, so that {z: ¢(z)} = {z € a: ¢(z)} which is a set by A5. I leave all
the required proofs as exercises—they can also be found in the books.

In the following, A,B,...,a,b,c,...,f,9,a1,a2,...,an,... etc. all denote
sets.

1. {a1,...,a,} :={z:z2=a1 V...V =a,}.

2. aUb := J{a,b} ={z:z=aVz=>b}

3.anb :={z:x=aNz =0}

4. a\b:={z:zcanz¢b}

s Nas= { TSmO

6. (a,b) : = {{a},{a,b}}. (Lemma. (a,b) = (c,d) <> (a = cAb=d).)

7.axb :={z:3Jc€aid € bz = (c,d)}. (Remark: Of course the proof
that a x b is a set requires not only “bounding the z’s”, but also showing
that the expression “Jec € a3d € bz = (¢, d)” can be written as a formula
of LST (with parameters a,b).)

8. axbxc:=ax(bxc),...,etc.

3

9.a2 :=axa,a® :=axaxa,...,etc.

10. We write a C b for Vz € a(z € b).

L Actually, ¢(z) will be allowed to have parameters (ie. names for given sets), so is not
strictly a formula of LST. Notice, however, that parameters are allowed in A5 and A6 (the
“x” and “u77).
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c is a binary relation on a we take to mean ¢ C a2 (Similarly for

ternary,. .., n-ary, ...relations.)
If A is a binary relation on a we usually write zAy for (z,y) € A.

A is called a (strict) partial order on a iff
(a) Vz,y € a(zAy — ~yAz),
(b) Vz,y,z € a((zAy A yAz) — zAz).

If in addition we have (3) Vz,y € a(z =y V zAy V yAz), then A is called
a (strict) total (or linear) order of a.

Write f:a — b (f is a function with domain a and codomain b, or simply
f is a function from a to b) if f C ax b and Ve € a3ld € b(c,d) € f. Write
f(c) for this unique d.

If f:a— b, fis called injective (or one-to-one) if Ve,d € a(c # d —
f(c) # f(d)), surjective (or onto) if Vd € b3c € af(c) = d, and bijective if
it is both injective and surjective.

We write a ~ b if 3f(f : a = b A f bijective).
@ :={f:f:a— b}

A set a is called a successor set if

(a) @ €aand
(b) Vb(b€a—bU{b} €a).

Axiom A8 implies a successor set exists and it can be further shown that a
unique such set, denoted w, exists with the property that w C a for every
successor set a. The set w is called the set of natural numbers. If n,m € w
we often write n + 1 for nU {n} and n < m for n € m and 0 for @ (in
this context). The relation € (ie. <) is a total order of w (more precisely
{{z,y) 1z € w,y € wAx €y} is a total order of w).

The set w satisfies the principle of mathematical induction, ie. if ¥(x) is
any formula of LST such that ¥(0) AVn € w(¢(n) — ¥(n+1)) holds, then
Vn € wip(n) holds.

The set w also satisfies the well-ordering principle, ie. for any set a, if
a Cwand a# @ then 3b € aVec € a(c > bV e =b).
Definition by recursion

Suppose that f: A — A is a function and a € A. Then there is a unique
function g : w — A such that:

(a) 9(0) = a, and
(b) ¥n € wg(n+1) = f(g(n))-
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21.
22.
23.

(Thus, g(n) = f(f---(fa))---)).)
——
n times

More generally, if f: B Xw x A — A and h : B — A are functions, then
there is a unique function g : B x w — A such that

(a) Vb € Bg(b,0) = h(b), and

(b) Vb e BV¥n € wg(b,n+1) = f(b,n,g(b,n)).
Using this result one can define the addition, multiplication and exponen-
tiation functions.
(Remark I have adopted here the usual convention of writing g(b,n + 1)
for g((b,n + 1)). Similarly for f.)
A set a is called finite iff In € wa ~ n.
A set a is called countably infinite iff a ~ w.
A set a is called countable iff a is finite or countably infinite. (Equivalently:
iff 3f(f : @ = w A f injective).)

(Theorem Pw is not countable. In fact, for no set A do we have A ~ PA.
(Cantor))



