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Introduction

Given a (trivial) G-bundle over an oriented 3-manifold      we have the Chern-Simons functional 
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k

4π

∫

M
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If               are closed oriented curves and       are representations of G, then the correlation functions

WR[γ] = TrR Pexp
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famously[Witten] compute link invariants such as the Jones and HOMFLY polynomials.
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Z(M ; γi, Ri) ≡
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It has long been the twistor theorist’s ambition[Penrose; Atiyah] that by trading topological invariance for 
holomorphic invariance in twistor space, one would be able to use linking ideas to encode the dynamics of 
interacting QFTs purely in terms of twistor geometry. This is what we will investigate today.

e.g. lk(γ1, γ2) =
∫

γ1×γ2

〈A(x)A(y)〉

=
∫
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∑
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Holomorphic Chern-Simons & holomorphic linking

The natural complex analogue of an oriented 3-manifold is a Calabi-Yau threefold    , where we can define 

the holomorphic Chern-Simons functional[Witten; Donaldson, Thomas; ...]

S[A] =
∫

X
Ω ∧ Tr

(
A ∂̄A+
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3
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)

X

where      is a connection (0,1)-form on a complex bundle               (assumed trivial).E → XA
!The eom say                   , so that      becomes holomorphic on-shell.

! In place of the real Wilson Loop, in the Abelian case we pick an algebraic curve              with      
           , together with                             and define

F (0,2) = 0

g ≥ 1

E

ω ∈ H0(C,KC)

(gauge invariant since              ).∂̄ω = 0W [C;ω] ≡ exp
∫

C
ω ∧A

C ⊂ X

Expectation values of Abelian holomorphic Wilson Loops are then given in terms of the holomorphic 

linking[Frenkel, Todorov; Thomas; Khesin, Rosly]

The holomorphic linking depends holomorphically on the curves, with poles where they intersect. Frenkel & 
Todorov interpret this homologically in terms of Serre classes[Atiyah] and analytically in terms of a complexified 
version of the Gauss integral[Penrose]

hlk({Ci,ωi}) ≡
∫

C1×C2

ω1 ∧ ω2 ∧ 〈A1 ∧A2〉 =
∑

z∈S1∩C2

µ1 ∧ ω2

Ω
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Twistors and            SYM

!Homogeneous coordinates

!                            a nowhere vanishing holomorphic section of BerezinianΩ ≡ Zd3Z d4ψ

N = 4

While twistor space is not CY, with              supersymmetry it becomes a CY supermanifoldN = 4

CP3|4 :=
C4|4 − C0|4

C∗
(Za,ψA)

!Linearised eom                mod gauge give              multiplet with helicities

!Non-linearly, have asd background together with susy completion (1/2 BPS background).

∂̄A = 0 N = 4
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We promote     to a twistor superfield[Ferber; Pilato]A

S[A] =
∫

CP3|4

Ω ∧ Tr
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A∂̄A+

2
3
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)

=
∫

CP3

Zd3Z ∧ Tr
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g ∧ F (0,2)
a + Γ̃A ∧ D̄ΓA +

εABCD

4
φAB ∧ D̄φCD +

εABCD

2
ΓAΓBφCD

)

A(Z,ψ) = a(Z) + ψAΓA(Z) +
1
2
ψAψBφAB(Z) +

εABCD

3!
ψAψBψc Γ̃D(Z) +

εABCD

4!
ψAψBψCψD g(Z)

and consider same holomorphic Chern-Simons action as before[Witten]



Which curve?

We will actually make a rather degenerate choice, motivated by a conjecture of Alday & Maldacena 

involving scattering amplitudes. 

p2
i = m2

i

∑

i

pi = 0and

!Scattering amplitudes are among the most important objects in a QFT, both encoding its dynamics 
and being closely related to objects that experimentalists actually measure.

! In the idealized case that the scattering process involves some definite number                           of 
particles, each with definite momentum     , the amplitudes are subject to the constraintspi

n = nin + nout

!Even for small numbers of particles, Feynman diagrams rapidly become horribly complicated

Need for new ideas

Examples of Clever Ideas

Consider the five-gluon tree-level amplitude of QCD. Enters in
calculation of multi-jet production at hadron colliders.

Described by following Feynman diagrams:

+ + + · · ·

If you follow the textbooks you discover a disgusting mess.

22

Result of a brute force calculation:

k1 · k4 ε2 · k1 ε1 · ε3 ε4 · ε5

23

+ · · · =



Which curve?

Given an ordering of the external states, the momentum conservation constraint provides us with a 
closed polygon in momentum space. If the external states are massless, the polygon is piecewise null:

x1

x2
xn

     are coordinates on affine momentum 
space, with xi − xi+1 = pi

xi

According to the conjecture, certain (MHV) scattering amplitudes in planar              SYM are determined by 

the expectation value of a fundamental Wilson Loop around this polygon, treated as a curve in space-time

N = 4

!Much supporting evidence has now been found, both at strong[Alday, Gaiotto, Maldacena, Sever, Vieira] and 
weak[Drummond, Henn, Korchemsky, Sokatchev; Anastasiou, Brandhuber, Heslop, Khoze, Spence, Travaglini; Del Duca, Duhr, Smirnov] coupling.

!Was not known how to extend the Wilson Loop / amplitude correspondence beyond the MHV sector.



!We take this to be our curve. Since nodal,     is allowed to have simple poles at the nodes. 

Which curve?

In twistor space, this piecewise null polygon becomes a set of intersecting twistor lines, or an elliptic curve 
that has been pinched     times.

x1

x2
xn

Z1Zn

!The twistor data is unconstrained: given arbitrary      , the twistor lines intersect by construction, so the 
corresponding space-time vertices are inevitably null separated. 
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The Abelian case

To define the self holomorphic linking, pick a framing - a nowhere vanishing holomorphic section of the 
normal bundle to     . Then, as before                                                  C 〈W [C;ω]〉 = exp(hlk(C,C ′))

∫

(Zi,Zi+1)

ωi ∧Ai =
∫

CP3|4

Ω ∧ δ̄2|4(Z,Zi, Zi+1) ∧Ai
Easily computable: introduce currents for 
the line                   and plane(Zi, Zi+1) (Zj , Zj+1, Z∗)

Zi

Zi+1

Zj+1

Zj

Z∗

∫

(Zj ,Zj+1,Z∗)

µj ∧ Fj =
∫

CP3|4

Ω ∧ δ̄1|4(Z,Zj , Zj+1, Z∗) ∧ Fj

hlk(C,C ′) =
1
2

∑

i,j

∫
Ω ∧ δ̄1|4(Z,Zj , Zj+1, Z∗) ∧ δ̄2|4(Z,Zi, Zi+1)

=:
1
2

∑

i,j

[∗, i, i+1, j, j+1]

δ0|4(ψ∗ε(i, i+1, j, j+1) + cyclic)
ε(i, i+1, j, j+1) ε(i+1, j, j+1, ∗) ε(j, j+1, ∗, i) ε(j+1, ∗, i, i+1)(∗, i, i+1, j)
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!Spurious poles cancel in sum, as shared by previous / subsequent plane.
!Remarkably, can take framing to zero; consequence of supersymmetry.

The resulting linking gives exactly the NMHV tree super-amplitude! (The corresponding 
space-time calculation is considerably more difficult[Caron-Huot; Belitsky, Korchemsky, Sokatchev].)



Non-Abelian holomorphic Wilson lines

For general curves, difficult to consider non-Abelian case (non-trivial moduli space of semi-stable bundles). 
However, for our degenerate curves, it is straightforward.

U(Z,Zi) = exp(−∂̄−1A)

!On each rational component, we have a unique holomorphic frame                 obeyingU(Z,Zi)
(∂̄ +A)

∣∣
Xi

U(Z,Zi) = 0 U(Zi, Zi) = id

! In Abelian case                                             so

                                                                                   is the holomorphic Wilson Loop
∏

i

U(Zi+1, Zi) = exp
(
−

∫

C
ωi ∧Ai

)

W [C] =
1
N

Tr!Pexp
(
−

∫

C
ω ∧A

)
For the            theory, we define the fundamental Wilson Loop asU(N)

an ordered product of holomorphic frames around the curve.

!For non-Abelian case, solve perturbatively by Born series

U(Z,Zi) = id− ∂̄−1A + ∂̄−1
(
A∂̄−1A

)
+ · · ·

= P exp
(
−

∫
ω ∧A

)
with the standard concatenation and inversion properties

and
U(Z2, Z1)−1 = U(Z1, Z2)
U(Z2, Z1)U(Z1, Z0) = U(Z2, Z0)



Varying the Wilson Loop

Similarly, the holomorphic Wilson Loop obeys

under a holomorphic change in    . This says that, if                   , then            varies holomorphically over this
holomorphic family of curves.

!The Loop Equations[Migdal, Makeenko; Polyakov] tell us how the correlation 
function, rather than the trace of the classical holonomy, behaves.

! In real Chern-Simons theory, the loop equations give (poor man’s) 

derivation of the skein relations - i.e. recursion relations for the knot
  polynomial[Cotta-Rasmusino, Guadagnini, Martellini, Mintchev].

saying (e.g.) that the Wilson Loop is unchanged if     varies only in a region where the field-strength vanishes. 

To compute the non-Abelian correlator, we can either work perturbatively[Mason, DS] or else consider how the 
correlator changes as we vary the curve[Bullimore, DS]. 

Recall that under a smooth change in the curve, a real Wilson Loop obeys

γ

δW [γ] = −
∫

γ
dxµ ∧ δxν Tr

[
Fµν(x) P exp

(
−
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x
A

)]



Loop equations & BCFW recursion

Beginning in the pure holomorphic Chern-Simons theory, integration by parts in the path integral gives

for            theoryU(N)
ensures only get contribution if 
         self-intersects as we deformC(r)

〈
δ̄W[C(r)]

〉
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∫
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......



Loop equations & BCFW recursion

Beginning in the pure holomorphic Chern-Simons theory, integration by parts in the path integral gives

〈
δ̄W[C(r)]

〉
= −

∫

C
ω ∧

〈
TrF (0,2)(Z) P exp

(
−

∫
ω ∧A

)〉

hCS

= −
∫

C
ω ∧

〈
Tr

δShCS

δA(Z)
P exp

(
−

∫
ω ∧A

)〉

hCS

=
∫

C×C
ω ∧ ω′ ∧ δ̄3|4(Z,Z ′) 〈W[C ′]W[C ′′]〉hCS

=
∫

C×C
ω ∧ ω′ ∧ δ̄3|4(Z,Z ′) 〈W[C ′]〉 〈W[C ′′]〉

Z1

Zn

Zn(r)

Zn−1

Zj

Zj+1

......



Loop equations & BCFW recursion

Beginning in the pure holomorphic Chern-Simons theory, integration by parts in the path integral gives
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!When the line           intersects              , the 
corresponding space-time points are null separated. 
For the amplitude this implies

(nr1) (j j+1)

which is a BCFW factorization channel.

(p1(r) + p2 + · · · + pj)
2 = 0

Zn Z1

Zn−1

Zn(r) p1(r)

pn(r)

pj

pj+1

An interesting holomorphic family of curves corresponds to BCFW deforming the scattering amplitude



Loop equations & BCFW recursion

Integrating both sides with respect to the BCFW measure gives
∫

dr

r
∧ dr̄

∂

∂r̄
〈W[C(r)]〉 =

∫
dr

r

∫

C×C
ω ∧ ω′ ∧ δ̄3|4(Z,Z ′) 〈W[C ′]〉 〈W[C ′′]〉

Carrying out the three integrals is 
just a matter of finding a Jacobian.

Z(s, r) = Z1 + sZn(r)

Z ′(t) = Zj + tZj+1

ω ∧ ω′ =
ds

s

dt

t

Z1

Zn

Zn(r)

Zn−1

Zj

Zj+1

......

s

t

r

This is the tree-level BCFW recursion relation, summed over MHV degree. Arises here as an 
analogue of the skein relations for holomorphic invariants.

〈W[1, . . . , n]〉 = 〈W[1, . . . , n−1]〉 +
n−2∑

j=2

[n−1, n, 1, j, j+1] 〈W[1, . . . , j, ZI ]〉 〈W[ZI , j+1, . . . , nr]〉

!Complete classical S-matrix arises from correlator in theory with no amplitudes!

!Provides rationale for amplitude / Wilson Loop correspondence; both meromorphic with same poles & residues.



Quantum Corrections

To also obtain quantum corrections, we compute the expectation value of the same holomorphic Wilson 
Loop, but now in the twistor QFT for complete, not just asd,             SYM. This can be described by the 
twistor space action[Nair; Witten; Boels, Mason, DS]

N = 4

S =
∫

D3|4Z ∧ Tr
(
A∂̄A+

2
3
A3

)
+ g2

∫
d4|8x log det

(
∂̄ +A

)
X

!Expanding in powers of the field, the terms proportional to the coupling are

  giving an infinite sum of MHV vertices.

∫
d4|8x log det

(
∂̄ + A

)
X

=
∞∑

n=2

1
n

∫
d4|8xTr

(
∂̄−1A ∂̄−1A · · · ∂̄−1A

)
︸ ︷︷ ︸

n terms

xi

xj

= 1 +
∑

i<j−1

+
∑

i<j−1<k<l−1

+
∑

i<j−1<l−2
xi

xj xk

xl

xj

xi xl

+ · · · + O(g2)

xj

xi

x+
∑

i<j−1

+ · · ·

Repeating the Loop Equations calculation theory defined by above action leads to the all-loop extension[Arkani-

Hamed, Bourjaily, Caron-Huot, Cachazo, Trnka] of the BCFW recursion relations for the integrand of the planar amplitude.

(explored by many groups[Cachazo, Svrcek, Witten; Brandhuber, Spence, 

Travaglini; Boels, Mason, DS; Bianchi, Elvang, Freedman, Kiermaier; Adamo, Bullimore, ...])



Space-time formulation

What does this supersymmetric twistor space Wilson Loop correspond to on space-time?[c.f. Caron-Huot]

xi

xi+1

(xi+1, θi+1)

(xi, θi)

To reflect the twistor geometry, the space-time 
superconnection must be integrable over super null rays

This gives correct space-time version[Mason, DS; Caron-Huot]

[
Dbos

α̇(α , Dferm
β)B

]
= 0

{
Dferm

A(α , Dferm
β)B

}
= 0

!However, the supersymmetric incidence relations

   mean that a (null) twistor no longer corresponds to a null ray, but to a (chiral) super 

null ray[Witten; Harnad, Hurtubise, Shnider]. These are best thought of as 1|4 dimensional. 

ωα = ixαα̇πα̇ ψA = θAα̇πα̇

!A natural generalisation of the space-time connection is a (chiral) superconnection

dxµ

(
∂

∂xµ
+ Aµ(x, θ)

)
+ dθAα̇

(
∂

∂θAα̇
+ ΓAα̇(x, θ)

)

!These integrablity constraints make the space-time version considerably more difficult to work with.
! In addition, a good regularisation scheme is currently lacking[Belitsky, Korchemsky, Sokatchev].



Conclusions & related directions

Holomorphic linking in twistor space, and more sophisticated non-Abelian 
invariants, are intimately related to dynamical processes in space-time QFT.

!Through this and other means, we are beginning to understand how to encode fully non-linear (but 
perturbative) space-time QFT in terms of twistor geometry.

!The resulting picture provides one of the most powerful & efficient techniques physicists currently posses for 

computing scattering amplitudes, at least in supersymmetric gauge theories. In particular, provides a vast 
improvement over textbook Feynman diagrams (some QFT textbooks now use twistor methods...) and also 
improves on `modern unitarity methods’ of circa 2005.

There are a number of closely related topics:

1) Scattering amplitudes as volumes of polytopes[Hodges; Arkani-Hamed, Bourjaily, Cachazo, Trnka]off” the vertex (2351) and replacing it with the three new vertices, as shown below:

Similarly, we can go from the F2,6 to F2,7 by “chopping off” the vertex (2361), and continue

in this way to define all the F2,n.

We now wish to give a local triangulation of the F2,n. Let’s illustrate this in pictures with

one local triangulation for the first non-trivial case of F2,6:

This “local” triangulation is to be contrasted with a “BCFW” triangulation, which would

adds back the “spurious” point (2351), and represent the prism for F3,6 as F2,5 with the

“chopped off” tetrahedron subtracted.

For general n, we can build F2,n from F2,n−1 by “chopping off” the vertex (2 3n−1 1) and

adding the three vertices (2 3n 1), (2 3n−1n), (1 2n−1n). This makes it natural to define

F2,n = Gn + Tn (59)

where Tn is the tetrahedron

Tn = (60)
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φ

φ
X ∼= CP1

Conclusions & related directions

2) How about other representations? 

Local operators on space-time are non-local on twistor space.

e.g. TrΦ2(x) =
∫

X×X

dσ dσ′ Tr (φ(σ)U(σ,σ′)φ(σ′)U(σ′,σ))

and easy to generalize to complete (chiral) operator supermultiplets.

This is straightforward to see on twistor space[Adamo, Bullimore, Mason, DS]:

Xi−1

Xi+1

Xi . . .
...

. . .
... Xi

Xi−1 Xi+1

In the limit that the twistor lines intersect, factoring out a singular piece from the integrand leaves us 
with a super Wilson Loop in the adjoint, and in the planar limit this equals (scattering amplitude)2

⇒

Choosing e.g. the adjoint representation makes contact with a conjecture[Alday, Eden, Heslop, Korchemsky, Maldacena, Sokatchev] 
relating Wilson Loops to correlation functions of gauge-invariant local operators, again in a null-separated limit.



Conclusions & related directions

3) Hamiltonian framework?

Witten’s derivation of the skein relations for the Jones polynomial did not use the loop equations, but 
rather cutting open the 3-manifold on a Riemann surface and identifying the associated Hilbert space.

There should be a generalization of the Wilson Loop OPE that handles the supersymmetric extension / 
non-MHV sector. It will be interesting to see what this looks like in twistor space.
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Fig. 7a-c. A link C on a general three manifold M is sketched in a. A small sphere S has been 
drawn about an inconvenient crossing; it cuts M into a simple piece (the interior of S) and a 
complicated piece. In b, the picture is rearranged to exhibit the cutting of M more explicitly; the 
two pieces now appear on the left and right as ML (the complicated piece whose details are not 
drawn) and MR (the interior of S). The key to the skein relation is to consider replacing M R with 
some substitutes, as shown in c 

last section, the physical Hilbert  spaces Nd~L and NgR associated with the 

boundaries of  ML and MR are two dimensional. 

The strategy is now the same as the strategy which led to the multiplicativity 

relation (4.1). The Feynman path  integral on ML determines a vector X in YgL" The 

Feynman path integral on MR determines a vector ~, in ~'~R. The vector spaces ~ z  

and ;/gR (which are associated with the same Riemann surface S 2 with opposite 

orientation) are canonically dual, and the partition function or Feynman path 

integral Z (L) is equal to the natural  pairing 

Z(L) = (Z, ~ ) .  (4.8) 

We cannot  evaluate (4.8), since we know neither;( nor ~u. The one thing that  we do 

know, at present, is that (for the groups and representations we are considering) 

this pairing is occurring in a two dimensional vector space. A two dimensional 

vector space has the marvelous property that  any three vectors obey a relation of 
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some substitutes, as shown in c 

last section, the physical Hilbert  spaces Nd~L and NgR associated with the 

boundaries of  ML and MR are two dimensional. 

The strategy is now the same as the strategy which led to the multiplicativity 

relation (4.1). The Feynman path  integral on ML determines a vector X in YgL" The 

Feynman path integral on MR determines a vector ~, in ~'~R. The vector spaces ~ z  

and ;/gR (which are associated with the same Riemann surface S 2 with opposite 

orientation) are canonically dual, and the partition function or Feynman path 

integral Z (L) is equal to the natural  pairing 

Z(L) = (Z, ~ ) .  (4.8) 

We cannot  evaluate (4.8), since we know neither;( nor ~u. The one thing that  we do 

know, at present, is that (for the groups and representations we are considering) 

this pairing is occurring in a two dimensional vector space. A two dimensional 

vector space has the marvelous property that  any three vectors obey a relation of 

α β+=

! In SYM, a related idea is the Wilson Loop OPE[Alday, Gaiotto, Maldacena, Sever, Vieira] for space-time version

! ! !
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