Conformal foliations and CR geometry

Michael Eastwood
[joint work with Paul Baird]
Australian National University

Disclaimers and references

- R.P. Kerr, I. Robinson, . . ~1961
- R. Penrose and W. Rindler, Spinors and Space-time vol. 2, Chapter 7, Cambridge University Press 1986
- L.P. Hughston and L.J. Mason, A generalised Kerr-Robinson theorem, Class. Quant. Grav. 5 (1988) 275-285
- P. Baird and J.C. Wood, Harmonic morphisms and shear-free ray congruences (2002), http://www.maths.leeds.ac.uk/pure/staff/wood/BWBook/BWBook.html
- P. Baird and J.C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford University Press 2003
- P. Baird and R. Pantilie, Harmonic morphisms on heaven spaces, Bull. Lond. Math. Soc. 41 (2009) 198-204
- P. Nurowski, Construction of conjugate functions, Ann. Glob. Anal. Geom. 37 (2010) 321-326
- P. Baird and M.G. Eastwood, CR geometry and conformal foliations, http://arxiv.org/abs/1011.4717

Conformal foliations

$U=$ unit vector field on $\Omega^{\text {open }} \subseteq \mathbb{R}^{3}$.

U is (transversally) conformal $\Leftrightarrow \mathcal{L}_{U}$ preserves the conformal metric orthogonal to its leaves
isothermal coördinates

$$
\leadsto \begin{array}{ll}
\leadsto h=f+i g & \langle\nabla f, \nabla g\rangle=0 \\
& \|\nabla f\|=\|\nabla g\|
\end{array}
$$

conjugate functions

Conjugate functions on R^{2}

$$
\begin{aligned}
& f=f(r, s) \quad g=g(r, s) \quad \text { s.t. }\left\{\begin{array}{l}
\langle\nabla f, \nabla g\rangle=0 \\
\|\nabla f\|=\|\nabla g\|
\end{array}\right. \\
& f f=r \quad g=s \\
& \text { - } f=r^{2}-s^{2} \quad g=2 r s \\
& \text { - } f=\frac{r}{r^{2}+s^{2}} \quad g=\frac{s}{r^{2}+s^{2}} \\
& \\
& f=e^{r} \cos s \quad g=e^{r} \sin s \\
& h \equiv f+i g \text { is (anti-)holomorphic in } z \equiv r+i s
\end{aligned}
$$

Conjugate functions on R^{3}

$f=f(q, r, s) \quad g=g(q, r, s) \quad$ s.t. $\left\{\begin{array}{l}\langle\nabla f, \nabla g\rangle=0 \\ \|\nabla f\|=\|\nabla g\|\end{array}\right.$

- $f=r \quad g=s$
- $f=q^{2}-r^{2}-s^{2} \quad g=2 q \sqrt{r^{2}+s^{2}}$
- $f=r \frac{q^{2}+r^{2}+s^{2}}{r^{2}+s^{2}} \quad g=s \frac{q^{2}+r^{2}+s^{2}}{r^{2}+s^{2}}$

$$
\begin{aligned}
& f=\frac{\left(1-q^{2}-r^{2}-s^{2}\right) r+2 q s}{r^{2}+s^{2}} \\
& g=\frac{\left(1-q^{2}-r^{2}-s^{2}\right) s-2 q r}{r^{2}+s^{2}}
\end{aligned}
$$

$$
\mathbb{R}^{3} \rightarrow S^{3}
$$

\downarrow Hopf

$$
\mathbb{R}^{2} \leftarrow S^{2} \backslash\{*\}
$$

Almost Hermitian structures

NB: $J(p, q, r, s): \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ satisfies

$$
\begin{array}{cc}
\text { - } J^{2}=-\mathrm{Id} & \Longleftrightarrow J=\left[\begin{array}{cccc}
0 & -u & -v & -w \\
u & 0 & -w & v \\
v & w & o & -u \\
w & -v & u & 0
\end{array}\right] \\
& u^{2}+v^{2}+w^{2}=1, \text { two-sphere }
\end{array}
$$

Consider $\mathbb{R}^{3}=\left\{(p, q, r, s) \in \mathbb{R}^{4} \mid p=0\right\} \subset \mathbb{R}^{4}$
NB: $\left.U \equiv\left(J \frac{\partial}{\partial p}\right)\right|_{\mathbb{R}^{3}}=\left.\left(u \frac{\partial}{\partial q}+v \frac{\partial}{\partial r}+w \frac{\partial}{\partial s}\right)\right|_{\mathbb{R}^{3}}$ unit vector field also \leadsto two-sphere \quad]

Sphere bundles

Hermitian structures

Lemma

J is integrable $\left.\Longrightarrow U \equiv\left(J \frac{\partial}{\partial p}\right)\right|_{\mathbb{R}^{3}}$ is conformal
Conversely??
NB: J integrable $\Longrightarrow J$ real-analytic
Question: U conformal $\Longrightarrow U$ real-analytic??
Answer: NO!
However: U real-analytic and conformal $\Longrightarrow U$ extends uniquely to an integrable J.

Twistor geometry

bundle of almost Hermitian structues

$\begin{array}{cccc}Q_{\circ} & \subset & Z_{\circ} & \mathbb{C P}_{3} \backslash\left\{z_{3}=z_{4}=0\right\} \ni\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \\ \downarrow & & \tau \downarrow \\ \mathbb{R}^{3} & \subset & \mathbb{R}^{4} & \tau \downarrow \\ & & \downarrow\end{array}$
compactify

$$
\mathbb{C}^{2} \ni\binom{p+i q}{r+i s}=\frac{1}{\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}}\binom{z_{2} \bar{z}_{3}+z_{4} \bar{z}_{1}}{z_{1} \bar{z}_{3}-z_{4} \bar{z}_{2}}
$$

$\mathbb{C P}_{3}$
$\tau \downarrow$ twistor fibration (cf. Hopf)
S^{4}

Twistor geometry cont'd

$$
\begin{aligned}
Q & =\left\{[z] \in \mathbb{C P}_{3} \mid \Re\left(z_{2} \bar{z}_{3}+z_{4} \bar{z}_{1}\right)=0\right\} \\
& \cong\left\{\left.[Z] \in \mathbb{C P}_{3}| | Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}=\left|Z_{3}\right|^{2}+\left|Z_{4}\right|^{2}\right\} \\
& \equiv \text { Levi-indefinite hyperquadric }
\end{aligned}
$$

(cf. saddle)

Twistor results

Theorem A section $S^{4} \supseteq{ }^{\text {open }} \Omega \stackrel{J}{\rightarrow} \mathbb{C P}_{3}$ of τ defines an integrable Hermitian structure if and only if $\tilde{M} \equiv J(\Omega)$ is a complex submanifold.

Theorem A section $S^{3} \supseteq$ open $\Omega \xrightarrow{U} Q$ of $\tau: Q \rightarrow S^{3}$ defines a conformal foliation if and only if $M \equiv U(\Omega)$ is a CR submanifold.

CR submanifolds and functions

$M \subset Q \subset \mathbb{C P}_{3}$ is a 'CR submanifold'?

It means: $T M \cap J T Q$ is preserved by J.
It does not mean: $\quad M=\{f=0\}$ where f is a
CR function: $(X+i J X) f=0 \quad \forall X \in \Gamma(T Q \cap J T Q)$.

Implicit function theorem is false in the CR category

- CR functions on Q are real-analytic.
- conformal foliations on S^{3} need not be.

CR functions

$\left\{\left.[Z] \in \mathbb{C P}_{2}| | Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}=\left|Z_{3}\right|^{2}\right\}=$ three-sphere

Theorem (H. Lewy 1956)
CR \Rightarrow holomorphic extension
$\left\{\left.[Z] \in \mathbb{C P}_{3}| | Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}=\left|Z_{3}\right|^{2}+\left|Z_{4}\right|^{2}\right\}=Q$

Corollary
$\mathrm{CR} \Rightarrow$ holomorphic extension

Hence, a CR function on Q is real-analytic!

Smooth conjugate functions

Eikonal equation: $\left(\frac{\partial f}{\partial r}\right)^{2}+\left(\frac{\partial f}{\partial s}\right)^{2}=1$
Plenty of non-analytic solutions:

$f=$ signed distance to Γ

$$
\left.\begin{array}{l}
f(q, r, s)=f(r, s) \\
g(q, r, s)=q
\end{array}\right\} \Rightarrow \begin{aligned}
& \langle\nabla f, \nabla g\rangle=0 \\
& \|\nabla f\|=\|\nabla g\|
\end{aligned}
$$

Real-analytic refinements

$U=$ unit vector field on $\Omega^{\text {open }} \subseteq \mathbb{R}^{3}$.
Choose ω a \mathbb{C}-valued null 1-form on Ω s.t. $U\lrcorner \omega=0$.
Lemma U conformal $\Leftrightarrow \omega \wedge d \omega=0$.
Consider $h=f+i g: \Omega \rightarrow \mathbb{C}$ and let $\omega=d h$.
Remark $\bullet d \omega=0 \quad f$ and g conjugate $\Leftrightarrow \omega$ is null.
Theorem Suppose $\omega: \Omega \rightarrow \mathbb{C}$ is real-analytic null.

$$
\begin{aligned}
& \left.\quad \omega \wedge d \omega=0 \leftrightarrow \tilde{M} \hookrightarrow \mathbb{C P}_{3} \quad \text { (s.t. } M=\tilde{M} \cap Q\right) \\
& \quad \omega^{\perp} \wedge d \omega=0 \leftrightarrow \tilde{S} \hookrightarrow \mathbb{C}^{4} \backslash\{0\} \text { s.t. } \pi(\tilde{S})=\tilde{M} \\
& \quad d \omega=0 \leftrightarrow \tilde{S} \hookrightarrow \mathbb{C}^{4} \backslash\{0\} \text { s.t. } \tilde{S} \text { is Lagrangian } \\
& \text { Holomorphic function of two complex variables }
\end{aligned}
$$

THANK YOU

