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• 8th August 1931

• 1851 “... an oblong arrangement of terms consisting,

suppose, of lines and columns. This will not in itself

represent a determinant, but is, as it were, a Matrix

out of which we may form various systems of determi-

nants..”

JJ Sylvester, An Essay on Canonical Forms, Supplement to
a Sketch of a Memoir on Elimination, Transformation and
Canonical Forms
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= OCTONIONS
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• 26th December 1843

KW Chung & A Sudbery, Octonions and the Lorentz and
conformal groups of ten-dimensional space-time, Phys Lett

B 198 (1987)

16th October 1843

Graves to Hamilton December 1843

Hamilton to Graves October 1843



(a2+b2+c2+d2+e2+f2+g2+h2)(m2+n2+o2+p2+q2+r2+s2+t2)

= v2
1 + v2

2 + v2
3 + v2

4 + v2
5 + v2

6 + v2
7 + v2

8

where,

v1 = am− bn− co− dp− eq − fr − gs− ht

v2 = bm + an + do− cp + fq − er − hs + gt

v3 = cm− dn + ao + bp + gq + hr − es− ft

etc.
6
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CAYLEY NUMBERS

e2i = e2j = e2k = eiejek = −1

(ijk) = (123), (145), (624), (653), (725), (734), (176)
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AUTOMORPHISMS

• quaternions x0 + x1i + x2j + x3k

• automorphism group SO(3)

• octonions x0 + x1i1 + x2i2 + x3i3 + x4i4 + x5i5 + x6i6 + x7i7

• automorphism group G2 ⊂ SO(7)

• 14-dimensional compact simple Lie group
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Because of this uncertainty, we are still a long way from know-
ing if the strange octonions are of fundamental importance in
understanding the world we see around us or merely a piece of
beautiful mathematics. Of course, mathematical beauty is a
worthy end in itself, but it would be even more delightful if the
octonions turned out to be built into the fabric of nature. As
the story of the complex numbers and countless other mathe-
matical developments demonstrates, it would hardly be the first
time that purely mathematical inventions later provided precisely
the tools that physicists need.

“the crazy old uncle nobody lets out of the attic”

J C Baez, The Octonions, BAMS 39 145–205 (2002)



• Matrices

• Octonions O

• What is SL(2,O)?
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OCTONIONS AND THE LORENTZ AND CONFORMAL GROUPS 

OF TEN-DIMENSIONAL SPACE-TIME 

K.-W. C H U N G  and A. SUDBERY 

Department of Mathematics, University of York, Heslington, York Y01 5DD, UK 

Received 3 August 1987 

Replacing complex numbers by octonions enables spinors and twistors to be defined for ten-dimensional space-time in close 
analogy to the four-dimensional case. 

Introduction. In physical (3 + 1)-dimensional 

space-time the properties of  spinors and twistors are 

related to the local isomorphisms which enable the 

Lorentz group and the conformal group of 

Minkowski space to be discussed in terms of groups 

of complex matrices: 

SO(3, 1 ) ~SL(2,  C) ,  

SO(4, 2) ~ SU(2, 2) ~Spt(4 ,  C ) ,  

(1) 

(2) 

where the tilde denotes the universal covering group 

and the hermitian-symplectic group on the right of  

(2) is defined to be 

Sp*(4, C) = { U ~ C 4 X 4 :  V~f~U.~-~¢~), (3) 

g2 being an antisymmetric non-singular 4 X 4 matrix 

which can be taken as 

O = ( _ ~  10) (4) 

in terms of 2 X 2 blocks. 

In the critical dimension of the fermionic string, 

namely (9 + 1 )-dimensional Minkowski space-time 

M to, there are similar isomorphisms involving groups 

of octonionic matrices [ 1 ]: 

S0(9, 1) ~SL(2,  O ) ,  (5) 

SO(10, 2) --- Sp*(4, O ) .  (6) 

In this note we show explicitly how these isomor- 

phisms can be used to describe Lorentz and confor- 

mal transformations of M '°, and how Dirac spinors 

and twistors for ten dimensions can be obtained from 

those of four dimensions by replacing complex num- 

bers by octonions. This adds to a growing set of  in- 

dications that octonions provide the appropriate 

language for superstring theory [2,3]. 

Lorentz transformations. Let us recall the reason 

for the relationship between SL(2, C) and the four- 

dimensional Lorentz group [4]. A four-vector x u is 

made to correspond to a complex 2 X 2 matrix 

( XO+X3Z ) 
X = x °  + x  a (7) 

• ~ - X 0 - - X  3 

where z = x  t + i x  2, ~ = x  I - i x  2. As x ~ varies over real 

Minkowski space M 4, X varies over all hermitian 

2 ! 2 matrices, and we have 

det X =  xU xu (8) 

for a metric with signature ( + - - - ). Now if M is 

any complex 2!2  matrix we consider the 

transformation 

X--, Y '  = MXM* , (9) 

X' is also hermitian and therefore corresponds to a 

four-vector x 'u, and if det M =  1 we have det X=  

det X' ,  so that x'Ux'u=xUx, and therefore (9) rep- 

resents a Lorentz transformation. The infinitesimal 

version of (9), with M =  1 +64, is 

X ~  X' = X + ~ X " ,  (10) 

0370-2693/87/$ 03.50 © Elsevier Science Publishers B.V. 

(North-Holland Physics Publishing Division) 
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• Spin(9,1)

• spinors S, S∗ 16-dimensional real spaces

Claim: GL(2,O) is an open set in S ⊗R2
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TWISTORS
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• conformal transformations of S4: SO(5,1)

• spin representations S, S∗ complex 4-dimensional

• 2-dimensional quaternionic spaces

• Spin(5,1) ∼= SL(2,H)

8



• a complex vector space S is quaternionic if it has an antilinear
automorphism J such that J2 = −1

• q = (a0 + ia1) + (a2 + ia3)J

• A : S → S complex linear is quaternionic if AJ = JA

• (left action of a quaternionic matrix commutes with right
multiplication by q)

9



• eigenvalues: Av = λv

• AJv = JAv = J(λv) = λ̄Jv

• complex determinant of A is real and ≥ 0

• quaternionic n × n matrix A ⇒ detA is a real polynomial of
degree 2n

10



REALIZATION IN CONFORMAL GEOMETRY

• spinor bundles S+, S−

• Dirac operator

Dψ =
∑

i

ei ·∇iψ

• Twistor operator

D̄ψ =
∑

i

ei ⊗∇iψ +
1

n
ei ⊗ ei · Dψ

12
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• on S4, D̄ψ = 0 with ψ ∈ S+ has a 4-dimensional space of
solutions – the space of twistors T

• for ψ ∈ S− the solutions are the dual twistor space T∗

• stereographic projection ⇒ ψ = x ·ϕ−+ϕ+ where ϕ−,ϕ+ are
constant spinors on R4

• conformal transformations act on T,T∗ as the representa-
tions S, S∗ of Spin(5,1).
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• on R4

∆̄f = (∇2f)ij −
1

n
δij∆f

• ∆̄f = 0 has a 6-dimensional space of solutions

• f = ar2 + bixi + c: f−2δij is an Einstein metric

• conformal transformations act via the vector representation
V

• Lorentzian inner product (f, f) = bibi−4ac = scalar curvature
of the metric

conformal weight −1
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• solutions ψ1, ψ2 of twistor equation

• hermitian inner product on S+:

f = 〈ψ1, ψ2〉 scalar of weight −1

• ∆̄f = 0

• f = 〈ψ, ψ〉 real ⇒ Einstein metric

• (f, f) = 0 – flat metric on S4\pt.
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• ψ ∈ T

• f = 〈ψ, ψ〉 vanishes at a point in S4

• f = x · ϕ vanishes at x = 0:

one-dimensional quaternionic subspace ∼= S+
0 of T

• S4 = HP1 = P(T)

16



GL(2, H)

5



• T⊗R2

• left action of EndH(T)

• right action of H + right action of End(R2)

• ⇒ T⊗R2 = HomH(H2,T)

19



DETERMINANT

• ρ = (ψ1, ψ2) ∈ T⊗R2

• 〈ψa, ψb〉 = fab

• (f11, f22)− (f12, f21) (real) quartic function µ(ρ)

• µ(ρ) = −3detA, A : H2 → T

20



• {ρ ∈ T⊗R2 : µ(ρ) #= 0} ∼= IsoH(H2,T)

• ∼ quaternionic bases of twistor space

• any two differ by an action of GL(2,H)

21



GL(2, O)

6



• conformal transformations of S8: SO(9,1)

• spin representations S, S∗ real 16-dimensional

• twistor space T ∼= S

• ψ = x · ϕ− + ϕ+ vanishes at a point: S8 ∼= OP1

22



• ρ = (ψ1, ψ2) ∈ T⊗R2

• 〈ψa, ψb〉 = fab

• (f11, f22)− (f12, f21) real quartic µ(ρ)
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PROP: {ρ ∈ T ⊗ R2 : µ(ρ) #= 0} is an open orbit of the group
Spin(9,1)×GL(2,R) with stabilizer G2 × SL(2,R).

T.Kimura, Introduction to prehomogeneous vector spaces, AMS
(2003)

• G2×SL(2,R)→ G2×SO(2,1) ⊂ SO(7)×SO(2,1) ⊂ SO(9,1)

• T ∼= O⊕O

• T⊗R2 ∼= 2× 2 octonionic matrices
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• T ∼= O⊕O

• T⊗R2 ∼= 2× 2 octonionic matrices

• {ρ ∈ T⊗R2 : µ(ρ) #= 0} = “octonionic bases” in T
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IN TWISTOR TERMS

• twistors ψ = x · ϕ−+ ϕ+

• ϕ−, ϕ+ constant spinors in 8 dimensions

• e unit vector ϕ− "→ e · ϕ− isomorphism as representations of
Spin(7)

• G2 ⊂ Spin(7) stabilizer of a spinor ϕ

• ρ = (ψ1, ψ2) = (x · ϕ, e · ϕ)
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• Spin(9,1)

• spinors S, S∗ 16-dimensional real spaces

Claim: GL(2,O) is an open set in S ⊗R2
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• Spin(9,1)

• spinors S, S∗ 16-dimensional real spaces

Claim: GL(2,O) is an open set in S ⊗R2
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• so(9,1) + gl(2) = g2 + sl(2) + gl(2)⊗O

• µ=const.

• A ∈ gl(2)⊗O tangent space if tr A is real

• Definition: {ρ ∈ T⊗R2 : µ(ρ) = −3} = SL(2,O)
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• so(9,1) + gl(2) = g2 + sl(2) + gl(2)⊗O

• µ=const.

• A ∈ gl(2)⊗O tangent space if tr A is imaginary

• Definition: {ρ ∈ T⊗R2 : µ(ρ) = −3} = SL(2,O)

26



THE INVARIANT METRIC
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• SL(2,O) = hypersurface µ = −3 in R32

• Hessian metric g = ∇2µ invariant under Spin(9,1)×SL(2,R)

• tangent space sl(2) + gl(2)⊗ imO

•

(A, A) = 3(tr A2
0 −

7∑

1
tr A2

i )
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(A, A) = 3(tr A2
0 −

7∑

1
tr A2

i )

• signature (2 + 1× 7,1 + 3× 7) = (9,22)

• Replace O by H

• metric = Killing form on SL(2,H) ∼= Spin(5,1)

• signature (2 + 1× 3,1 + 3× 3) = (5,10)
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maximal compact

Spin(5)

Because of this uncertainty, we are still a long way from know-
ing if the strange octonions are of fundamental importance in
understanding the world we see around us or merely a piece of
beautiful mathematics. Of course, mathematical beauty is a
worthy end in itself, but it would be even more delightful if the
octonions turned out to be built into the fabric of nature. As
the story of the complex numbers and countless other mathe-
matical developments demonstrates, it would hardly be the first
time that purely mathematical inventions later provided precisely
the tools that physicists need.
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STIEFEL MANIFOLDS
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• V2(Fn) = orthonormal pairs of vectors

• V2(C2) = U(2)

• V2(H2) = Sp(2)

• V2(O) = Spin(9)/G2

• dim = 36− 14 = 22
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• M = Spin(9)/G2

• TxM ∼= 2× 2 octonionic matrices A such that...

• ĀT = −A

32



• H∗(U(2)) = H∗(S1 × S3)

• H∗(Sp(2)) = H∗(S3 × S7)

• H∗(Spin(9)/G2) = H∗(S7 × S15)

• Spin(7)/G2 → Spin(9)/G2 → Spin(9)/Spin(7)
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• Spin(9)/G2 has trivial tangent bundle

WA Sutherland, A note on the parallelizability of sphere-
bundles over spheres, J. London Math. Soc 39 55–62 (1964)

• The product of two harmonic forms is harmonic

D Kotschick, D & S Terzic, Geometric formality of homo-
geneous spaces and of biquotients, Pacific J. Math. 249

157-176 (2011)
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REAL FORMS
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• µ : S ⊗R2 → R

• dµ(ρ) = ρ̂ ∈ S∗ ⊗R2

• Spin(5,1), ρ ∼ quaternionic matrix A

• Â = (ĀT )−1
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• v ∈ V, (v, v) "= 0

• ψ #→ v · ψ defines S ∼= S∗

• real form ρ̂ = v · ρ

• (v, v) < 0⇒ Sp(2), (v, v) > 0⇒ Sp(1,1)

36



• µ : S ⊗R2 → R

• Spin(9,1)

• (v, v) < 0⇒ Spin(9)/G2 = SU(2;O)

• (v, v) > 0⇒ Spin(8,1)/G2 = SU(1,1;O)

37



WHAT NEXT?
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8-DIMENSIONAL RIEMANNIAN GEOMETRY?

• M8 Riemannian manifold

• principal Spin(8)-bundle P

• P/G2 modelled on SU(2,O)

40



D = 10,N = (2,0) SUPERGRAVITY?

• M9,1 space time

• supermanifold S ⊗R2 →M

• “principal SL(2,O) bundle” ?

41



“.... Of course, mathematical beauty is a worthy end in itself,
but it would be even more delightful if the octonions turned out
to be built into the fabric of nature. As the story of the com-
plex numbers and countless other mathematical developments
demonstrates, it would hardly be the first time that purely math-
ematical inventions later provided precisely the tools that physi-
cists need.”

J C Baez & J Huerta, “The Strangest Numbers in String Theory,
Scientific American, May (2011)
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