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e 1351 “... an oblong arrangement of terms consisting,
suppose, of lines and columns. This will not in itself
represent a determinant, but is, as it were, a Matrix
out of which we may form various systems of determi-
nants..”

JJ Sylvester, An Essay on Canonical Forms, Supplement to
a Sketch of a Memoir on Elimination, Transformation and
Canonical Forms
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on the 16th of October 1843
Sirwilliam Rowan Hamilton
in a flash of genius discovered
the fundamentcal formula for
quaternion multiplication
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Hamilton to Graves October 1843

(Copy of a) Letter from Sir William R. Hamilton to John T. Graves, Esq. on

aternions
Observatory, October 17, 1843

MY DEAR GRAVES, A very curious train of mathematical speculation occurred to me
vesterday. which 1 cannot but hope will prove of interest to vou. You know that I have long
wished, and 1 believe that you have felt the same desire, to possess a Theory of Triplets,
analogous to my published Theory of Couplets. and also to Mr. Warren's geometrical rep-
resentation of imaginary quantities. Now [ think that 1 discovered’ vesterday a theory of
guaternions which includes such a theory of triplets.”

My train of thoughts was of this kind. Since /—1 is in a certain well-known sense, & line
perpendicular to the line 1, it seemed natural that there should be some other imaginary to
express a line perpendicular to the former; and because the rotation from this to this also
being doubled conducts to —1, it ought also to be a square root of negative unity, though
not to be confounded with the former. Calling the old root, as the Germans often do, i, and
the new one j. I inquired what laws ought to be assumed for multiplying together a + ib 4 je
and r + iy + jz. It was natural to assume that the product



Graves to Hamilton December 1843

(a®+b°+c?+d? e+ 2 +g%+1%) (m*+n? 40 +p° +¢° +17+57+1%)

= vf 4 v5 + v3 + vg + v5 +vg +v7 + 3

where,

vi=am—bn—co—dp—eq— fr —gs— ht
vo=bm-+4+an+do—cp+ fg—er — hs+ gt

vy=cm —dn+ao+bp+ gqg+ hr —es — ft

etc.



21.

ON JACOBI'S ELLIPTIC FUNCTIONS, IN REPLY TO THE
REV. B. BRONWIN; AND ON QUATERNIONS.

[From the Philosophical Magazine, vol. XXv1. (1845), pp. 208, 211.]
The frst part of this Paper is omitted, see [17]: only the Postseript on Quaternions, pp. 210, 211, is printed.

It is possible to form an analogous theory with seven imaginary roots of (—~1)
(?with »=2"—1 roots when » is a prime number). Thus if these be @, @, ¥, % 0y %, %,
which group together according to the types

123, 145, 624, 653, 725, 734, 176,
Le. the type 123 denotes the system of equations
Uty = '53: ?:27:3 = 2:1; ?'37'1 =,
'iﬂ?jlm““?::b 3:3?:2=""'£1; 'izism“?:m

&e. We have the following expression for the product of two factors:



CAYLEY NUMBERS

(ijk) = (123),(145),(624),(653),(725),(734),(176)



CAYLEY NUMBERS

= OCTONIONS

(ijk) = (123),(145),(624),(653),(725),(734),(176)



AUTOMORPHISMS

e quaternions xg + x1t + xoJ + x3k

e automorphism group SO(3)



AUTOMORPHISMS

e quaternions xg + x1t + xoJ + x3k

e automorphism group SO(3)

e octonions xg 4+ x111 + xoio + 313 + T4t4 + 515 + x5l + x717

e automorphism group G C SO(7)

e 14-dimensional compact simple Lie group



“the crazy old uncle nobody lets out of the attic”

J C Baez, The Octonions, BAMS 39 145-205 (2002)



e Matrices

e Octonions O



e Matrices

e Octonions O

What is SL(2,0)7



Lorentz group and the conformal group of
Minkowski space to be discussed in terms of groups
of complex matrices:

SO(3, 1) ~SL(2,C), (1)

SO(4, 2)=SU(2, 2)=Sp'(4,C) , (2)



Lorentz group and the conformal group of
Minkowski space to be discussed in terms of groups
of complex matrices:

SO(3, 1) ~SL(2,C), (1)

SO(4, 2)=SU(2, 2)=Sp'(4,C) , (2)

In the critical dimension of the fermionic string,
namely (94 1)-dimensional Minkowski space—time
M !, there are similar isomorphisms involving groups
of octonionic matrices [1]:

SO(9, 1) =SL(2, 0) (5)
SO(10, 2) ~Sp'(4, D) . (6)

KW Chung & A Sudbery, Octonions and the Lorentz and
conformal groups of ten-dimensional space-time, Phys Lett
B 198 (1987)



e Spin(9,1)

e spinors S, S* 16-dimensional real spaces



e Spin(9,1)

e spinors S, S* 16-dimensional real spaces

Claim: GL(2,0) is an open set in S® R?




TWISTORS



conformal transformations of S%: SO(5,1)

spin representations S, S* complex 4-dimensional

2-dimensional quaternionic spaces

Spin(5,1) & SL(2,H)



a complex vector space S is quaternionic if it has an antilinear
automorphism J such that J2 = —1

q = (ap + tay) + (ao + iaz)J

A: S — S complex linear is quaternionic if AJ = JA

(left action of a quaternionic matrix commutes with right
multiplication by q)



eigenvalues: Av = \v

AJv = JAv = J(\v) = AJv

complex determinant of A is real and > 0O

quaternionic n x n matrix A = det A is a real polynomial of
degree 2n



REALIZATION IN CONFORMAL GEOMETRY
e spinor bundles S1,S—

e Dirac operator

Dy => e -V

e [ wistor operator

_ 1
D¢:Z€i®viw+g€i®ei'l)¢
i



REALIZATION IN CONFORMAL GEOMETRY
e spinor bundles S1,S—

e Dirac operator

Dy =>e;-Vip  conformal weight ™ — 1
i 2

e [ wistor operator
_ 1
D¢:Z€i®viw+g€i®ei'l)¢
i

1
conformal weight )



e on S%, Dy = 0 with ¢ € St has a 4-dimensional space of
solutions — the space of twistors T

e for ¢ € S~ the solutions are the dual twistor space T*



e on S%, Dy = 0 with ¢ € St has a 4-dimensional space of
solutions — the space of twistors T

e for ¢ € S~ the solutions are the dual twistor space T*

e stereographic projection = ¢ = z-¢~ 4+ T where o, T are
constant spinors on R#



e on S%, Dy = 0 with ¢ € St has a 4-dimensional space of
solutions — the space of twistors T

e for ¢ € S~ the solutions are the dual twistor space T*

e stereographic projection = ¢ = z-¢~ 4+ T where o, T are
constant spinors on R#

e conformal transformations act on T,T* as the representa-
tions S, S* of Spin(5,1).



e Oon R#

_ 1
Af = (sz)z-j — géijAf conformal weight —1

e Af =0 has a 6-dimensional space of solutions

o f=ar?4bx;+c: f25; is an Einstein metric



e Oon R#

_ 1
Af = (sz)ij — géijAf conformal weight —1

e Af =0 has a 6-dimensional space of solutions
o f=ar?4bx;+c: f25; is an Einstein metric

e conformal transformations act via the vector representation V



e Oon R#

_ 1
Af = (sz)ij — géijAf conformal weight —1

e Af =0 has a 6-dimensional space of solutions
o f=ar?4bx;+c: f25; is an Einstein metric
e conformal transformations act via the vector representation V

e Lorentzian inner product (f, f) = b;b; — 4ac = - scalar curva-
ture of the metric



e solutions 1,1o of twistor equation

e hermitian inner product on St

f = (11,%») scalar of weight —1



e solutions 1,1o of twistor equation

e hermitian inner product on St

f = (11,%») scalar of weight —1

e Af=0

o f = (¢,9) real = Einstein metric

e (f,f) =0 — flat metric on S%\pt.



e YT
e f = (1,¢) vanishes at a point in §%

e f = x-¢p vanishes at x = O:

one-dimensional quaternionic subspace = Sa" of T

e S*=HP! =P(T)



GL(2,H)



T ® R2

left action of Endg(T)

right action of H + right action of End(R?)

= T ® R? = Homg(H?, T)



DETERMINANT

e p=(1,¥2) € T®R?

i <¢&7¢b> — fab

o (f11,f22) — (f12, f21) (real) quartic function u(p)

e u(p) =—-3detA, A:H2 T



o {pe T®R?: u(p) # 0} = Isoy(H?T)

e ~ quaternionic bases of twistor space

e any two differ by an action of GL(2, H)



GL(2,0)



conformal transformations of S8: SO(9,1)

spin representations S, S* real 16-dimensional

twistor space T = S

Y =x -9~ + ¢T vanishes at a point: S8 &2 OP!



e p=(Y1,92) € T®R?

i <¢a,¢b> — fa,b

o (f11,f22) — (f12, f21) real quartic u(p)



PROP: {p € T®R? : u(p) # 0} is an open orbit of the group
Spin(9,1) x GL(2,R) with stabilizer Go> x SL(2,R).

T.Kimura, Introduction to prehomogeneous vector spaces, AMS
(2003)




PROP: {p € T®R? : u(p) # 0} is an open orbit of the group
Spin(9,1) x GL(2,R) with stabilizer Go> x SL(2,R).

T.Kimura, Introduction to prehomogeneous vector spaces, AMS
(2003)

e GoxSL(2,R) - G>xS0(2,1) C SO(7)xS50(2,1) C SO(9,1)
e T=Z000

e T®R?2 = 2 x 2 octonionic matrices




PROP: {p € T®R? : u(p) # 0} is an open orbit of the group
Spin(9,1) x GL(2,R) with stabilizer Go> x SL(2,R).

T.Kimura, Introduction to prehomogeneous vector spaces, AMS
(2003)

e GoxSL(2,R) — Gox SO(2,1) C SO(7) x SO(2,1) C SO(9,1)

e T=Z000

e T®R?2 2 2x 2 octonionic matrices

e {pecT®R?: u(p) # 0} = “octonionic bases” in T




IN TWISTOR TERMS

o twistors v = x -~ + cp'l'

° cp_,g0+ constant spinors in 8 dimensions

e ¢ unit vector o= — e- p~ isomorphism as representations of Spin(7)



IN TWISTOR TERMS

o twistors v = x -~ + go'l'

° cp_,g0+ constant spinors in 8 dimensions

e ¢ unit vector o= — e- p~ isomorphism as representations of Spin(7)

o GG> C Spin(7) stabilizer of a spinor ¢

® p= (¢17¢2) — ('56907690)



e Spin(9,1)

e spinors S, S* 16-dimensional real spaces

Claim: GL(2,0) is an open set in S® R?




e 50(9,1) +gl(2) = g2 +51(2) Hgl(2) ® O |




e 50(9,1) +gl(2) = g2 +51(2) Hgl(2) ® O |

e pu=const.

e Ac gl(2) ® O tangent space if tr A is imaginary

e Definition: {p e T®R?: u(p) = -3} = SL(2,0)




THE INVARIANT METRIC



e SL(2,0) = hypersurface y = —3 in R32

e Hessian metric ¢ = V24 invariant under Spin(9,1) x SL(2,R)

e tangent space sl(2) + gi(2)  mO



e SL(2,0) = hypersurface y = —3 in R32
e Hessian metric ¢ = V24 invariant under Spin(9,1) x SL(2,R)

e tangent space sl(2) + gi(2)  mO

.
(A, A) = 3(tr A5 — Y _tr A?)
1



.
(A, A) = 3(tr A — > _tr A?)
1

e signature (24+1x7,14+3x7) =(9,22)



.
(A, A) = 3(tr A — > _tr A?)
1

signature (24+1x7,14+3x7)=(9,22)
Replace O by H
metric = Killing form on SL(2,H) = Spin(5,1)

signature (24+1x3,14+3x3) =(5,10)



.
(A, A) = 3(tr A — > _tr A?)
1

signature (24+1x7,14+3x7) =(9,22)
Replace O by H

metric = Killing form on SL(2,H) = Spin(5,1)
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.
(A, A) = 3(tr A — > _tr A?)
1

signature (24+1x7,14+3x7)=(9,22)

N

77
Replace O by H

metric = Killing form on SL(2,H) = Spin(5,1)
signature (24+1x3,14+3x3) =(5,10)

maximal compact
Spin(5)



STIEFEL MANIFOLDS



e V>(F") = orthonormal pairs of vectors

e Vr(C2) =U(2)

o Vo(H?) = Sp(2)



e V>(F") = orthonormal pairs of vectors

e Vr(C2) =U(2)

o Vo(H?) = Sp(2)

o V5(02) = Spin(9)/Go

e dim=36—14 =22



e M = Spin(9)/G»

o T.M = 2 x 2 octonionic matrices A such that...



o H*(U(2)) = H*(S1 x §3)

o H*(Sp(2)) = H*(S3 x S7)

o H*(Spin(9)/Go) = H*(S” x S19)



o H*(U(2)) = H*(S1 x §3)

o H*(Sp(2)) = H*(S3 x S7)

o H*(Spin(9)/Go) = H*(S” x S19)

Spin(7)/Go — Spin(9) /G — Spin(9)/Spin(7),

[ [
57 515



e Spin(9)/G» has trivial tangent bundle

WA Sutherland, A note on the parallelizability of sphere-
bundles over spheres, J. London Math. Soc 39 55—-62 (1964)



e Spin(9)/G» has trivial tangent bundle

WA Sutherland, A note on the parallelizability of sphere-
bundles over spheres, J. London Math. Soc 39 55—-62 (1964)

e [ he product of two harmonic forms is harmonic

D Kotschick, D & S Terzic, Geometric formality of homo-
geneous spaces and of biquotients, Pacific J. Math. 249
157-176 (2011)



REAL FORMS



/l/
.



e 1:S®R? >R

o du(p) =pe S*@R?

e Spin(5,1), p ~ quaternionic matrix A

o A= (AT)_l



e veV, (v,v)#0

e Y — v-1 defines S = §*

e real form p=wv-p

e (v,v) <0= Sp(2), (v,v) >0= Sp(1,1)



e 1L:S®R? >R

e Spin(9,1)

e (v,v) < 0= Spin(9)/G, = SU(2;0)

e (v,v) >0 = Spin(8,1)/G» = SU(1,1;0)



WHAT NEXT?



8-DIMENSIONAL RIEMANNIAN GEOMETRY?

e M8 Riemannian manifold

e principal Spin(8)-bundle P

e P/G, modelled on SU(2,0)



D =10,N = (2,0) SUPERGRAVITY?

o M91 space time

e supermanifold S@R2 — M

e ‘“principal SL(2,0) bundle” ?



“.... Of course, mathematical beauty is a worthy end in itself,
but it would be even more delightful if the octonions turned out
to be built into the fabric of nature. As the story of the com-
plex numbers and countless other mathematical developments
demonstrates, it would hardly be the first time that purely math-
ematical inventions later provided precisely the tools that physi-
cists need.”

J C Baez & J Huerta, “The Strangest Numbers in String T heory,
Scientific American, May (2011)



