TWISTORS AND THE OCTONIONS

 Penrose 80Nigel Hitchin
Oxford July 21st 2011

- 8th August 1931
- 8th August 1931
- 1851 " \ldots an oblong arrangement of terms consisting, suppose, of lines and columns. This will not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants.."

JJ Sylvester, An Essay on Canonical Forms, Supplement to
a Sketch of a Memoir on Elimination, Transformation and Canonical Forms

- 26th December 1843

- 26th December 1843

John T Graves

16th October 1843

Hamilton to Graves October 1843

(Copy of a) Letter from Sir William R. Hamilton to John T. Graves, Esq. on Quaternions

Observatory, October 17, 1843
My dear Graves,-A very curious train of mathematical speculation occurred to me yesterday, which I cannot but hope will prove of interest to you. You know that I have long wished, and I believe that you have felt the same desire, to possess a Theory of Triplets, analogous to my published Theory of Couplets, and also to Mr. Warren's geometrical representation of imaginary quantities. Now I think that I discovered ${ }^{1}$ yesterday a theory of quaternions which includes such a theory of triplets. ${ }^{2}$

My train of thoughts was of this kind. Since $\sqrt{-1}$ is in a certain well-known sense, a line perpendicular to the line 1 , it seemed natural that there should be some other imaginary to express a line perpendicular to the former; and because the rotation from this to this also being doubled conducts to -1 , it ought also to be a square root of negative unity, though not to be confounded with the former. Calling the old root, as the Germans often do, i, and the new one $j, 1$ inquired what laws ought to be assumed for multiplying together $a+i b+j c$ and $x+i y+j z$. It was natural to assume that the product

Graves to Hamilton December 1843

$$
\begin{gathered}
\left(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}+g^{2}+h^{2}\right)\left(m^{2}+n^{2}+o^{2}+p^{2}+q^{2}+r^{2}+s^{2}+t^{2}\right) \\
\\
=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}+v_{5}^{2}+v_{6}^{2}+v_{7}^{2}+v_{8}^{2}
\end{gathered}
$$

where,

$$
\begin{aligned}
& v_{1}=a m-b n-c o-d p-e q-f r-g s-h t \\
& v_{2}=b m+a n+d o-c p+f q-e r-h s+g t \\
& v_{3}=c m-d n+a o+b p+g q+h r-e s-f t
\end{aligned}
$$

etc.

21.

ON JACOBI'S ELLIPTIC FUNCTIONS, IN REPLY TO THE REV. B. BRONWIN ; AND ON QUATERNIONS.

[From the Philosophical Magazine, vol. xxvi. (1845), pp. 208, 211.]

The first part of this Paper is omitted, see [17]: only the Postscript on Quaternions, pp. 210, 211, is printed.
Ir is possible to form an analogous theory with seven imaginary roots of (-1) (? with $\nu=2^{n}-1$ roots when ν is a prime number). Thus if these be $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}$, which group together according to the types

$$
123, \quad 145,624,653, \quad 725, \quad 734, \quad 176,
$$

i.e. the type 123 denotes the system of equations

$$
\begin{array}{lll}
i_{1} i_{2}=i_{3}, & i_{2} i_{3}=i_{1}, & i_{3} i_{1}=i_{3}, \\
i_{2} i_{1}=-i_{3}, & i_{3} i_{2}=-i_{1}, & i_{1} i_{3}=-i_{2},
\end{array}
$$

\&c. We have the following expression for the product of two factors:

CAYLEY NUMBERS

$$
e_{i}^{2}=e_{j}^{2}=e_{k}^{2}=e_{i} e_{j} e_{k}=-1
$$

$(i j k)=(123),(145),(624),(653),(725),(734),(176)$

CAYLEY NUMBERS

 $=$ OCTONIONS$$
e_{i}^{2}=e_{j}^{2}=e_{k}^{2}=e_{i} e_{j} e_{k}=-1
$$

$(i j k)=(123),(145),(624),(653),(725),(734),(176)$

AUTOMORPHISMS

- quaternions $x_{0}+x_{1} i+x_{2} j+x_{3} k$
- automorphism group $S O(3)$

AUTOMORPHISMS

- quaternions $x_{0}+x_{1} i+x_{2} j+x_{3} k$
- automorphism group $S O(3)$
- octonions $x_{0}+x_{1} i_{1}+x_{2} i_{2}+x_{3} i_{3}+x_{4} i_{4}+x_{5} i_{5}+x_{6} i_{6}+x_{7} i_{7}$
- automorphism group $G_{2} \subset S O(7)$
- 14-dimensional compact simple Lie group
"the crazy old uncle nobody lets out of the attic"

J C Baez, The Octonions, BAMS 39 145-205 (2002)

- Matrices
- Octonions O
- Matrices
- Octonions O

What is $S L(2,0)$?

Lorentz group and the conformal group of Minkowski space to be discussed in terms of groups of complex matrices:

$$
\begin{equation*}
\widetilde{\mathrm{SO}}(3,1) \cong \operatorname{SL}(2, \mathbb{C}), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{\mathrm{SO}}(4,2) \cong \operatorname{SU}(2,2) \cong \mathrm{Sp}^{\dagger}(4, \mathbb{C}), \tag{2}
\end{equation*}
$$

Lorentz group and the conformal group of Minkowski space to be discussed in terms of groups of complex matrices:

$$
\begin{equation*}
\widetilde{\mathrm{SO}}(3,1) \cong \operatorname{SL}(2, \mathbb{C}), \tag{1}
\end{equation*}
$$

$\widetilde{\operatorname{SO}}(4,2) \cong \operatorname{SU}(2,2) \cong \operatorname{Sp}^{\dagger}(4, \mathbb{C})$,

In the critical dimension of the fermionic string, namely ($9+1$)-dimensional Minkowski space-time M^{10}, there are similar isomorphisms involving groups of octonionic matrices [1]:
$\widetilde{\mathrm{SO}}(9,1) \cong \mathrm{SL}(2, \mathbb{Q})$,
$\widetilde{\mathrm{SO}}(10,2) \cong \mathrm{Sp}^{\dagger}(4, \mathbb{D})$.

KW Chung \& A Sudbery, Octonions and the Lorentz and conformal groups of ten-dimensional space-time, Phys Lett B 198 (1987)

- $\operatorname{Spin}(9,1)$
- spinors $S, S^{*} 16$-dimensional real spaces
- $\operatorname{Spin}(9,1)$
- spinors $S, S^{*} 16$-dimensional real spaces

Claim: $G L(2, \mathbf{O})$ is an open set in $S \otimes \mathbf{R}^{2}$

TWISTORS

- conformal transformations of $S^{4}: S O(5,1)$
- spin representations S, S^{*} complex 4-dimensional
- 2-dimensional quaternionic spaces
- $\operatorname{Spin}(5,1) \cong S L(2, \mathbf{H})$
- a complex vector space S is quaternionic if it has an antilinear automorphism J such that $J^{2}=-1$
- $q=\left(a_{0}+i a_{1}\right)+\left(a_{2}+i a_{3}\right) J$
- $A: S \rightarrow S$ complex linear is quaternionic if $A J=J A$
- (left action of a quaternionic matrix commutes with right multiplication by q)
- eigenvalues: $A v=\lambda v$
- $A J v=J A v=J(\lambda v)=\bar{\lambda} J v$
- complex determinant of A is real and ≥ 0
- quaternionic $n \times n$ matrix $A \Rightarrow \operatorname{det} A$ is a real polynomial of degree $2 n$

REALIZATION IN CONFORMAL GEOMETRY

- spinor bundles S^{+}, S^{-}
- Dirac operator

$$
D \psi=\sum_{i} e_{i} \cdot \nabla_{i} \psi
$$

- Twistor operator

$$
\bar{D} \psi=\sum_{i} e_{i} \otimes \nabla_{i} \psi+\frac{1}{n} e_{i} \otimes e_{i} \cdot D \psi
$$

REALIZATION IN CONFORMAL GEOMETRY

- spinor bundles S^{+}, S^{-}
- Dirac operator

$$
D \psi=\sum_{i} e_{i} \cdot \nabla_{i} \psi \quad \text { conformal weight } \frac{n-1}{2}
$$

- Twistor operator

$$
\begin{aligned}
& \bar{D} \psi=\sum_{i} e_{i} \otimes \nabla_{i} \psi+\frac{1}{n} e_{i} \otimes e_{i} \cdot D \psi \\
& \quad \text { conformal weight }-\frac{1}{2}
\end{aligned}
$$

- on $S^{4}, \bar{D} \psi=0$ with $\psi \in S^{+}$has a 4-dimensional space of solutions - the space of twistors \mathbf{T}
- for $\psi \in S^{-}$the solutions are the dual twistor space \mathbf{T}^{*}
- on $S^{4}, \bar{D} \psi=0$ with $\psi \in S^{+}$has a 4-dimensional space of solutions - the space of twistors \mathbf{T}
- for $\psi \in S^{-}$the solutions are the dual twistor space \mathbf{T}^{*}
- stereographic projection $\Rightarrow \psi=x \cdot \varphi^{-}+\varphi^{+}$where φ^{-}, φ^{+}are constant spinors on \mathbf{R}^{4}
- on $S^{4}, \bar{D} \psi=0$ with $\psi \in S^{+}$has a 4-dimensional space of solutions - the space of twistors \mathbf{T}
- for $\psi \in S^{-}$the solutions are the dual twistor space \mathbf{T}^{*}
- stereographic projection $\Rightarrow \psi=x \cdot \varphi^{-}+\varphi^{+}$where φ^{-}, φ^{+}are constant spinors on \mathbf{R}^{4}
- conformal transformations act on $\mathbf{T}, \mathbf{T}^{*}$ as the representations S, S^{*} of $\operatorname{Spin}(5,1)$.
- on \mathbf{R}^{4}

$$
\bar{\Delta} f=\left(\nabla^{2} f\right)_{i j}-\frac{1}{n} \delta_{i j} \Delta f \quad \text { conformal weight }-1
$$

- $\bar{\Delta} f=0$ has a 6 -dimensional space of solutions
- $f=a r^{2}+b_{i} x_{i}+c: f^{-2} \delta_{i j}$ is an Einstein metric
- on R^{4}

$$
\bar{\Delta} f=\left(\nabla^{2} f\right)_{i j}-\frac{1}{n} \delta_{i j} \Delta f \quad \text { conformal weight }-1
$$

- $\bar{\Delta} f=0$ has a 6-dimensional space of solutions
- $f=a r^{2}+b_{i} x_{i}+c: f^{-2} \delta_{i j}$ is an Einstein metric
- conformal transformations act via the vector representation V
- on R^{4}

$$
\bar{\Delta} f=\left(\nabla^{2} f\right)_{i j}-\frac{1}{n} \delta_{i j} \Delta f \quad \text { conformal weight }-1
$$

- $\bar{\Delta} f=0$ has a 6-dimensional space of solutions
- $f=a r^{2}+b_{i} x_{i}+c: f^{-2} \delta_{i j}$ is an Einstein metric
- conformal transformations act via the vector representation V
- Lorentzian inner product $(f, f)=b_{i} b_{i}-4 a c=-$ scalar curvature of the metric
- solutions ψ_{1}, ψ_{2} of twistor equation
- hermitian inner product on S^{+}:

$$
f=\left\langle\psi_{1}, \psi_{2}\right\rangle \text { scalar of weight }-1
$$

- solutions ψ_{1}, ψ_{2} of twistor equation
- hermitian inner product on S^{+}:

$$
f=\left\langle\psi_{1}, \psi_{2}\right\rangle \text { scalar of weight }-1
$$

- $\bar{\Delta} f=0$
- $f=\langle\psi, \psi\rangle$ real \Rightarrow Einstein metric
- $(f, f)=0$ - flat metric on $S^{4} \backslash p t$.
- $\psi \in \mathbf{T}$
- $f=\langle\psi, \psi\rangle$ vanishes at a point in S^{4}
- $f=x \cdot \varphi$ vanishes at $x=0$:
one-dimensional quaternionic subspace $\cong S_{0}^{+}$of \mathbf{T}
- $S^{4}=\mathrm{HP}^{1}=\mathbf{P}(\mathbf{T})$
$G L(2, \mathrm{H})$
- $\mathbf{T} \otimes \mathbf{R}^{2}$
- left action of $\mathrm{End}_{\mathbf{H}}(\mathbf{T})$
- right action of $\mathbf{H}+$ right action of $\operatorname{End}\left(\mathbf{R}^{2}\right)$
- $\Rightarrow \mathbf{T} \otimes \mathbf{R}^{2}=\operatorname{Hom}_{\mathbf{H}}\left(\mathbf{H}^{2}, \mathbf{T}\right)$

DETERMINANT

- $\rho=\left(\psi_{1}, \psi_{2}\right) \in \mathbf{T} \otimes \mathbf{R}^{2}$
- $\left\langle\psi_{a}, \psi_{b}\right\rangle=f_{a b}$
- $\left(f_{11}, f_{22}\right)-\left(f_{12}, f_{21}\right)$ (real) quartic function $\mu(\rho)$
- $\mu(\rho)=-3 \operatorname{det} A, A: \mathbf{H}^{2} \rightarrow \mathbf{T}$
- $\left\{\rho \in \mathbf{T} \otimes \mathbf{R}^{2}: \mu(\rho) \neq 0\right\} \cong \operatorname{Iso}_{\mathbf{H}}\left(\mathbf{H}^{2}, \mathbf{T}\right)$
- ~ quaternionic bases of twistor space
- any two differ by an action of $G L(2, \mathbf{H})$
$G L(2, \mathrm{O})$
- conformal transformations of $S^{8}: S O(9,1)$
- spin representations S, S^{*} real 16-dimensional
- twistor space $\mathbf{T} \cong S$
- $\psi=x \cdot \varphi^{-}+\varphi^{+}$vanishes at a point: $S^{8} \cong \mathrm{OP}^{1}$
- $\rho=\left(\psi_{1}, \psi_{2}\right) \in \mathbf{T} \otimes \mathbf{R}^{2}$
- $\left\langle\psi_{a}, \psi_{b}\right\rangle=f_{a b}$
- $\left(f_{11}, f_{22}\right)-\left(f_{12}, f_{21}\right)$ real quartic $\mu(\rho)$

PROP: $\left\{\rho \in \mathbf{T} \otimes \mathbf{R}^{2}: \mu(\rho) \neq 0\right\}$ is an open orbit of the group $\operatorname{Spin}(9,1) \times G L(2, \mathbf{R})$ with stabilizer $G_{2} \times S L(2, \mathbf{R})$.
T.Kimura, Introduction to prehomogeneous vector spaces, AMS (2003)

PROP: $\left\{\rho \in \mathbf{T} \otimes \mathbf{R}^{2}: \mu(\rho) \neq 0\right\}$ is an open orbit of the group $\operatorname{Spin}(9,1) \times G L(2, \mathbf{R})$ with stabilizer $G_{2} \times S L(2, \mathbf{R})$.
T.Kimura, Introduction to prehomogeneous vector spaces, AMS (2003)

- $G_{2} \times S L(2, \mathbf{R}) \rightarrow G_{2} \times S O(2,1) \subset S O(7) \times S O(2,1) \subset S O(9,1)$
- $\mathrm{T} \cong \mathrm{O} \oplus \mathrm{O}$
- $\mathbf{T} \otimes \mathbf{R}^{2} \cong 2 \times 2$ octonionic matrices

PROP: $\left\{\rho \in \mathbf{T} \otimes \mathbf{R}^{2}: \mu(\rho) \neq 0\right\}$ is an open orbit of the group $\operatorname{Spin}(9,1) \times G L(2, \mathbf{R})$ with stabilizer $G_{2} \times S L(2, \mathbf{R})$.
T.Kimura, Introduction to prehomogeneous vector spaces, AMS (2003)

- $G_{2} \times S L(2, \mathbf{R}) \rightarrow G_{2} \times S O(2,1) \subset S O(7) \times S O(2,1) \subset S O(9,1)$
- $\mathrm{T} \cong \mathrm{O} \oplus \mathrm{O}$
- $\mathbf{T} \otimes \mathbf{R}^{2} \cong 2 \times 2$ octonionic matrices
- $\left\{\rho \in \mathbf{T} \otimes \mathbf{R}^{2}: \mu(\rho) \neq 0\right\}=$ "octonionic bases" in \mathbf{T}

IN TWISTOR TERMS

- twistors $\psi=x \cdot \varphi^{-}+\varphi^{+}$
- φ^{-}, φ^{+}constant spinors in 8 dimensions
- e unit vector $\varphi^{-} \mapsto e \cdot \varphi^{-}$isomorphism as representations of $\operatorname{Spin}(7)$

IN TWISTOR TERMS

- twistors $\psi=x \cdot \varphi^{-}+\varphi^{+}$
- φ^{-}, φ^{+}constant spinors in 8 dimensions
- e unit vector $\varphi^{-} \mapsto e \cdot \varphi^{-}$isomorphism as representations of $\operatorname{Spin}(7)$
- $G_{2} \subset \operatorname{Spin}(7)$ stabilizer of a spinor φ
- $\rho=\left(\psi_{1}, \psi_{2}\right)=(x \cdot \varphi, e \cdot \varphi)$
- $\operatorname{Spin}(9,1)$
- spinors $S, S^{*} 16$-dimensional real spaces

Claim: $G L(2, \mathbf{O})$ is an open set in $S \otimes \mathbf{R}^{2}$

- $\mathfrak{s o}(9,1)+\mathfrak{g l}(2)=\mathfrak{g}_{2}+\mathfrak{s l}(2)+\mathfrak{g l}(2) \otimes \mathbf{O}$
- $\mathfrak{s o}(9,1)+\mathfrak{g l}(2)=\mathfrak{g}_{2}+\mathfrak{s l}(2)+\mathfrak{g l}(2) \otimes \mathbf{O}$
- $\mu=$ const.
- $A \in \mathfrak{g l}(2) \otimes \mathbf{O}$ tangent space if $\operatorname{tr} A$ is imaginary
- Definition: $\left\{\rho \in \mathbf{T} \otimes \mathbf{R}^{2}: \mu(\rho)=-3\right\}=S L(2, \mathbf{O})$

THE INVARIANT METRIC

- $S L(2, \mathbf{O})=$ hypersurface $\mu=-3$ in \mathbf{R}^{32}
- Hessian metric $g=\nabla^{2} \mu$ invariant under $\operatorname{Spin}(9,1) \times S L(2, \mathbf{R})$
- tangent space $\mathfrak{s l}(2)+\mathfrak{g l}(2) \otimes \mathrm{im} \mathbf{O}$
- $S L(2, \mathbf{O})=$ hypersurface $\mu=-3$ in \mathbf{R}^{32}
- Hessian metric $g=\nabla^{2} \mu$ invariant under $\operatorname{Spin}(9,1) \times S L(2, \mathbf{R})$
- tangent space $\mathfrak{s l}(2)+\mathfrak{g l}(2) \otimes \mathrm{im} \mathbf{O}$

$$
(A, A)=3\left(\operatorname{tr} A_{0}^{2}-\sum_{1}^{7} \operatorname{tr} A_{i}^{2}\right)
$$

$$
(A, A)=3\left(\operatorname{tr} A_{0}^{2}-\sum_{1}^{7} \operatorname{tr} A_{i}^{2}\right)
$$

- signature $(2+1 \times 7,1+3 \times 7)=(9,22)$

$$
(A, A)=3\left(\operatorname{tr} A_{0}^{2}-\sum_{1}^{7} \operatorname{tr} A_{i}^{2}\right)
$$

- signature $(2+1 \times 7,1+3 \times 7)=(9,22)$
- Replace \mathbf{O} by \mathbf{H}
- metric $=$ Killing form on $S L(2, \mathbf{H}) \cong \operatorname{Spin}(5,1)$
- signature $(2+1 \times 3,1+3 \times 3)=(5,10)$

$$
(A, A)=3\left(\operatorname{tr} A_{0}^{2}-\sum_{1}^{7} \operatorname{tr} A_{i}^{2}\right)
$$

- signature $(2+1 \times 7,1+3 \times 7)=(9,22)$
- Replace \mathbf{O} by \mathbf{H}
- metric $=$ Killing form on $S L(2, \mathbf{H}) \cong \operatorname{Spin}(5,1)$
- signature $(2+1 \times 3,1+3 \times 3)=(5,10)$
maximal compact

$$
\operatorname{Spin}(5)
$$

$$
(A, A)=3\left(\operatorname{tr} A_{0}^{2}-\sum_{1}^{7} \operatorname{tr} A_{i}^{2}\right)
$$

- signature $(2+1 \times 7,1+3 \times 7)=(9,22)$
- Replace \mathbf{O} by \mathbf{H}
- metric $=$ Killing form on $S L(2, \mathbf{H}) \cong \operatorname{Spin}(5,1)$
- signature $(2+1 \times 3,1+3 \times 3)=(5,10)$
maximal compact $\operatorname{Spin}(5)$

STIEFEL MANIFOLDS

- $V_{2}\left(\mathrm{~F}^{n}\right)=$ orthonormal pairs of vectors
- $V_{2}\left(\mathrm{C}^{2}\right)=U(2)$
- $V_{2}\left(\mathbf{H}^{2}\right)=S p(2)$
- $V_{2}\left(\mathrm{~F}^{n}\right)=$ orthonormal pairs of vectors
- $V_{2}\left(\mathrm{C}^{2}\right)=U(2)$
- $V_{2}\left(\mathbf{H}^{2}\right)=S p(2)$
- $V_{2}\left(\mathrm{O}^{2}\right)=\operatorname{Spin}(9) / G_{2}$
- $\operatorname{dim}=36-14=22$
- $M=\operatorname{Spin}(9) / G_{2}$
- $T_{x} M \cong 2 \times 2$ octonionic matrices A such that...
- $\bar{A}^{T}=-A$
- $H^{*}(U(2))=H^{*}\left(S^{1} \times S^{3}\right)$
- $H^{*}(S p(2))=H^{*}\left(S^{3} \times S^{7}\right)$
- $H^{*}\left(S p i n(9) / G_{2}\right)=H^{*}\left(S^{7} \times S^{15}\right)$
- $H^{*}(U(2))=H^{*}\left(S^{1} \times S^{3}\right)$
- $H^{*}(S p(2))=H^{*}\left(S^{3} \times S^{7}\right)$
- $H^{*}\left(S p i n(9) / G_{2}\right)=H^{*}\left(S^{7} \times S^{15}\right)$

$$
\begin{array}{cc}
\operatorname{Spin}(7) / G_{2} \rightarrow \operatorname{Spin}(9) / G_{2} \rightarrow \operatorname{Spin}(9) / \operatorname{Spin}(7) \\
1 \\
S^{7} & S^{15}
\end{array}
$$

- $\operatorname{Spin}(9) / G_{2}$ has trivial tangent bundle

WA Sutherland, A note on the parallelizability of spherebundles over spheres, J. London Math. Soc 39 55-62 (1964)

- $\operatorname{Spin}(9) / G_{2}$ has trivial tangent bundle

WA Sutherland, A note on the parallelizability of spherebundles over spheres, J. London Math. Soc 39 55-62 (1964)

- The product of two harmonic forms is harmonic

D Kotschick, D \& S Terzic, Geometric formality of homogeneous spaces and of biquotients, Pacific J. Math. 249 157-176 (2011)

REAL FORMS

- $\mu: S \otimes \mathbf{R}^{2} \rightarrow \mathbf{R}$
- $d \mu(\rho)=\hat{\rho} \in S^{*} \otimes \mathbf{R}^{2}$
- $\mu: S \otimes \mathbf{R}^{2} \rightarrow \mathbf{R}$
- $d \mu(\rho)=\hat{\rho} \in S^{*} \otimes \mathbf{R}^{2}$
- $\operatorname{Spin}(5,1), \rho \sim$ quaternionic matrix A
- $\widehat{A}=\left(\bar{A}^{T}\right)^{-1}$
- $v \in V,(v, v) \neq 0$
- $\psi \mapsto v \cdot \psi$ defines $S \cong S^{*}$
- real form $\hat{\rho}=v \cdot \rho$
- $(v, v)<0 \Rightarrow S p(2),(v, v)>0 \Rightarrow S p(1,1)$
- $\mu: S \otimes \mathbf{R}^{2} \rightarrow \mathbf{R}$
- $\operatorname{Spin}(9,1)$
- $(v, v)<0 \Rightarrow \operatorname{Spin}(9) / G_{2}=\operatorname{SU}(2 ; \mathbf{O})$
- $(v, v)>0 \Rightarrow \operatorname{Spin}(8,1) / G_{2}=\operatorname{SU}(1,1 ; \mathbf{O})$

WHAT NEXT?

8-DIMENSIONAL RIEMANNIAN GEOMETRY?

- M^{8} Riemannian manifold
- principal $\operatorname{Spin}(8)$-bundle P
- P / G_{2} modelled on $S U(2, \mathrm{O})$

$$
D=10, \mathcal{N}=(2,0) \text { SUPERGRAVITY? }
$$

- $M^{9,1}$ space time
- supermanifold $S \otimes \mathbf{R}^{2} \rightarrow M$
- "principal $S L(2, \mathrm{O})$ bundle" ?
".... Of course, mathematical beauty is a worthy end in itself, but it would be even more delightful if the octonions turned out to be built into the fabric of nature. As the story of the complex numbers and countless other mathematical developments demonstrates, it would hardly be the first time that purely mathematical inventions later provided precisely the tools that physicists need."

J C Baez \& J Huerta, "The Strangest Numbers in String Theory, Scientific American, May (2011)

