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Enzyme Kinetics at High Enzyme Concentration
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We re-visit previous analyses of the classical Michaelis–Menten substrate–enzyme
reaction and, with the aid of the reverse quasi-steady-state assumption, we chal-
lenge the approximation d[C]/dt ≈ 0 for the basic enzyme reaction at high en-
zyme concentration. For the first time, an approximate solution for the concen-
trations of the reactants uniformly valid in time is reported. Numerical simula-
tions are presented to verify this solution. We show that an analytical approxima-
tion can be found for the reactants for each initial condition using the appropriate
quasi-steady-state assumption. An advantage of the present formalism is that it pro-
vides a new procedure for fitting experimental data to determine reaction constants.
Finally, a new necessary criterion is found that ensures the validity of the reverse
quasi-steady-state assumption. This is verified numerically.

c© 2000 Society for Mathematical Biology

1. INTRODUCTION

Biochemists usually analyse enzyme kinetics parameters within theMichaelis
and Menten (1913) framework (Alberty, 1956, 1959; Hearonet al., 1959; Segel,
1975; Fersht, 1985; Schulz, 1994). In particular, the reversible reaction between
enzymeE and substrateS, giving the enzyme–substrate complexC, which irre-
versibly yields productP

S+ E
k1



k−1

C
k2
→ E + P (1)

has been extensively studied, based on the standard quasi-steady-state assumption
(sQSSA,Briggs and Haldane, 1925), resulting in the MM equation,

v =
vmax[S]

KM + [S]
(2)

∗Author to whom correspondence should be addressed.

0092-8240/00/030483 + 17 $35.00/0 c© 2000 Society for Mathematical Biology



484 S. Schnell and P. K. Maini

which leads to the double-reciprocal linear plot (Haldane and Stern, 1932;
Lineweaver and Burk, 1934)

1

v
=

1

vmax

(
1+

KM

[S]

)
(3)

and allows one to estimate the reaction parameters, namely theMM constant KM ≡

(k−1+ k2)/k1 and themaximum velocityvmax≡ k2[E0].
More recently, based on the sQSSA,Schnell and Mendoza (1997) have derived

for the basic enzyme reaction (1) a closed form solution for the total time evolution
of the substrate:

[S′](t) = W
(
[S′0]exp(−kt + [S′0])

)
. (4)

In this expression[S′] ≡ [S]/KM is thereduced concentrationandk ≡ vmax/KM

is thefirst-order rate constant. The innovative aspect of this solution is the rel-
atively unknownomega function W(Wright, 1959; Fritsch et al., 1973; Barry
et al., 1995a,b; Corlesset al., 1996) which satisfies the transcendental equation
W(x) exp(W(x)) = x, and allows the complete characterization of the system,
i.e., the time evolution of all the reactant concentrations and their derivatives. This
result also allows for a novel procedure for fitting experimental data to determine
reaction constants based on concentrations rather than velocities. The effectiveness
of this procedure has been recently verified byGoudaret al. (1999).

The actual validity of the quasi-steady-state (QSS) approximation was first dis-
cussed byLaidler (1955) who found that the substrate concentration ([S]) has to
greatly exceed that of the enzyme ([E])

[E0]

[S0]
� 1, (5)

where the subscript 0 denotes initial concentration. Using the early analog com-
puters,Hommes (1962), Walter and Morales (1964) andWalter (1966) mapped the
range of validity of the sQSSA, showing notable shortcomings for the case with
large reverse bimolecular velocity constants.Wong (1965) made an attempt to de-
velop a continuous description of the transient-state and the steady-state phase, and
concluded that the transient must be brief for the sQSSA to be applicable.Stay-
ton and Fromm (1979) found the sQSSA to generally hold for substrate–enzyme
ratios greater than 100 by means of simulation modelling on a digital computer,
and by considering the time-dependent process,Schauer and Heinrich (1979) gave
a detailed analysis of the errors resulting from the sQSSA. More recently,Segel
(1988) andSegel and Slemrod (1989) showed that a more general condition for the
sQSSA to be valid is

[E0]

KM + [S0]
� 1. (6)



Kinetics at High Enzyme Concentration 485

In the case of mostin vitro assays, condition (6) is satisfied easily for the basic
enzyme reaction (1). It is normally assumed that the formation of the enzyme–
substrate complexC does not diminish significantly the concentration of the sub-
strateS. Thus, the purpose of assumption (6) is to guarantee that there is not a
significant fraction of the substrate bound to the enzyme during the assay (Reiner,
1969; Segel, 1975, 1988; Schulz, 1994). According toSchulz (1994), the presump-
tion is not that the enzyme must be saturated with substrate, this is a misinterpre-
tation of the assumption. Although, this condition implies that the concentration
of the intermediate complex is in a QSS with regard to the substrate and the prod-
uct, due to enzyme saturation (Segel, 1988; Segel and Slemrod, 1989; Schnell and
Mendoza, 1997).

However, the sQSSA condition breaks down inin vivo conditions (Sols and
Marco, 1970). Intra-cellular concentrations of enzyme are usually higher or at least
of the same magnitude as their substrates and, consequently, a significant fraction
of S can be bound asC complexes. Substrate concentration within the cells are in
the neighbourhood of theirKM values (these values range from about 10−6 to 10−2

M), otherwise the full potential of the enzyme would not be realized (Goldstein,
1944; Srere, 1967; Cha, 1970; Segel, 1975). Furthermore, it is also recognized
that high affinity of an enzyme for a substrate may lead to binding of a significant
proportion of substrate to the enzyme.

Under this situation, the MM equation (2), its double reciprocal plot (3) and the
Schnell and Mendoza (1997) equation (4) become increasingly invalid (Straus and
Goldstein, 1943; Cha, 1970; Segel, 1988; Schnell and Mendoza, 1997). Some ex-
pressions have been developed that allow the determination of the equilibrium con-
stants for high enzyme concentration or high affinity of an enzyme for a substrate
(Goldstein, 1944; Dixon, 1972; Henderson, 1973). The equation most widely used
is the generalized rate equation for the formation of product derived byGoldstein
(1944), Cha and Cha (1965) andReiner (1969)

v =
k2

2

(
(KM + [E0] + [̃S])−

√
(KM + [E0] + [̃S])2− 4[̃S][E0]

)
, (7)

where [̃S] is a new variable, the total substrate concentration, given by what is
called the substrate mass balance (Reiner, 1969; Segel, 1975; Schulz, 1994)

[̃S] = [S] + [C]. (8)

In spite of these attempts to study the enzyme kinetics at high enzyme concentra-
tions, the latter rate equation (7) has been developed in accordance with the sQSSA
for the complexC without examining if the sQSSA holds for this case.Lim (1973)
showed that expression (8) is not the substrate mass balance, it is only a definition
for the sum ofC andS. The correct conservation law is

[̃S] = [S] + [C] = [S0] − [P]. (9)
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Substituting (9) reduces expression (7) to (2) (seeLim, 1973, p. 660). Therefore,
the general rate equation is equivalent to the MM equation. In addition,Lim (1973)
has analysed the discrepancies between the numerical solution ofSand the sQSSA
solution. The agreement between the sQSSA solution and the numerical solution
is quite good when[E0] ≤ 0.01[S0]. However, when[E0]/[S0] becomes large,
the error of the sQSSA solution becomes intolerably high. Furthermore, the author
illustrates that the error involved is particularly high during the initial stages of the
reaction. These results suggest that the assumption d[C]/dt ≈ 0 of the sQSSA
could be inappropriate at high enzyme concentration.

Recently,Borghanset al. (1996) re-examined the problem. In their paper, by
changing variables from free substrateS to total substratẽS, they extend the do-
main of parameters for which it is permissible to employ the classical assumption
d[C]/dt ≈ 0, with the following condition

k2[E0]

k1(KM + [S0] + [E0])2
� 1. (10)

RecallingSegel (1988), they explain that the essential reason why the basic as-
sumptions hold is that the QSS variableC has a fast intrinsic rate of change com-
pared with the non-QSS variable: total substrateS̃. This variable changes very
much more slowly thanS, and therefore the sQSSA is improved. This new condi-
tion for the total substrate system̃S is called the total quasi-steady-state assump-
tion (tQSSA). It is important to note thatBorghanset al. (1996) neither challenged
the basic assumption d[C]/dt ≈ 0 nor found a rate equation for the substrate or
the product at high enzyme concentration. They employed a different approach by
changing variables and extending the sQSSA.

The aim of the present work is to extend the formalism ofSchnell and Mendoza
(1997) to the basic enzyme reaction at high enzyme concentration. In Section2
we show how to derive an approximate solution to describe the variations of the
reactant concentrations during the complete span of the enzyme reaction, based on
the reverse quasi-steady-state assumption (rQSSA,Segel and Slemrod, 1989). This
solution simplifies analysis and provides a new procedure for fitting experimental
data. In pursuing this goal, we challenge the assumption d[C]/dt ≈ 0 for the basic
reaction at high enzyme concentration. In Section3 we investigate the conditions
under which the rQSSA is valid. In Section4 we study the domains of validity of
the rQSSA and the sQSSA. Crucially, we find that the union of these two domains
covers the whole positive[S0]–[E0] plane. This means that we can find an analytic
approximation for the reactant concentration profiles for any initial substrate and
enzyme concentrations. Finally, in Section5 we summarize the main conclusions
and discuss the advantages of the present approach.
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2. THE REVERSE QUASI-STEADY-STATE ASSUMPTION

In the general reference for the sQSSA as a case study in perturbation,Segel and
Slemrod (1989) proposed a rQSSA in which the substrateS is in a QSS with respect
to the enzyme–substrate complexC. The derivation of the rQSSA is considered to
further test the principles of their scaling concepts to discover new aspects of the
QSS. However, the full potential of the rQSSA has not been exploited.

Our aim is to challenge the basic assumption d[C]/dt ≈ 0 with the aid of the
rQSSA when the enzyme reaction (1) occurs at high enzyme concentration. The
paper ofSegel and Slemrod (1989) examines the sQSSA, showing that it holds
if [S0] + KM � [E0]. From a biophysical point of view, it seems reasonable to
state that the enzyme–substrate complexC is in a QSS when the concentration of
the substrateS is high enough, because the free enzymeE will immediately com-
bine with another molecule ofS. However, when there is an excess of enzymeE,
this condition does not hold (Segel and Slemrod, 1989; Borghanset al., 1996). In
the latter case, all the molecules of substrateSwill immediately combine with the
molecules ofE. This implies that the substrate will be depleted, and the approxi-
mation d[S]/dt ≈ 0 can be valid for a considerable period of time.

Therefore, instead ofC being in a QSS with respect toS, at high enzyme concen-
tration it seems to be more reasonable to propose thatS is in QSS with respect to
C. To further elucidate the principles of the rQSSA, we firstly derive the governing
equations for the system.

By applying the law of mass action, the time evolution of reaction (1) can be
described completely by the following pair of coupled non-linear differential equa-
tions

d[S]

dt
=−k1([E0] − [C])[S] + k−1[C] (11)

d[C]

dt
= k1([E0] − [C])[S] − (k−1+ k2)[C], (12)

together with the uncoupled equation

d[P]

dt
= k2[C] (13)

and the enzyme and substrate conservation laws

[E0] = [E](t)+ [C](t) (14)

[S0] = [S](t)+ [C](t)+ [P](t), (15)

with initial conditions att = 0

([S], [E], [C], [P]) = ([S0], [E0],0,0). (16)
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In this system, the parametersk1, k−1 andk2 are positive rate constants for each
reaction.

The phase plane curves or phase trajectories for the system are the solutions of
the following expression obtained on dividing (12) by (11),

d[C]

d[S]
=

k1([E0] − [C])[S] − (k−1+ k2)[C]

−k1([E0] − [C])[S] + k−1[C]
. (17)

This equation can be rearranged to give

[C]([S]) =
[E0][S]

KS+
K

1+ d[C]/d[S]
+ [S]

, (18)

where KS = k−1/k1 is the equilibrium dissociation constantof S from C, and
K = k2/k1, which we call theVan Slyke–Cullen constant(van Slyke and Cullen,
1914).

Further simplification can be introduced to this system by assuming the rQSS.
We consider that the rQSS is based on the following two assumptions:

(1) After the initial transient,t > tS say, the substrate concentration has been
depleted and approaches zero. Therefore, in the slow time regime

d[S]

dt
≈ 0. (19)

Substituting this condition into (18) leads to

[C] =
[E0][S]

KS+ [S]
(t > tS). (20)

If k2� k−1, this equation will be indistinguishable from the corresponding sQSSA
equation obtained by substituting d[C]/dt ≈ 0 into (18), [C] = ([E0][S])/(KM +

[S]), whereKM , the MM constant, is equal toKS+ K .
Solving (20) for S, we obtain

[S] =
KS[C]

[E0] − [C]
(t > tS), (21)

which substituted into (12) leads to the decoupled differential equation

d[C]

dt
= −k2[C], (22)

with initial condition [C](t → tS) = c0, wherec0 is a constant to be determined
by matching with the solution fort < tS.
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(2) During the initial transient, that is fort < tS, a negligible amount of the initial
enzymeE0 is used to form the enzyme–substrate complexC. This assumption im-
plies that the complex concentration is negligible with respect to the initial enzyme
concentration. Therefore, fort < tS, it may be assumed that

[E](t) ≈ [E0] ⇒
[C]

[E0]
� 1 (t < tS). (23)

This assumption has an important implication for system (11)–(12), because it en-
ables the following simplification to be made for the fast transient,

d[S]

dt
=−k1[E0][S] (24)

d[C]

dt
= k1[E0][S], (25)

with initial conditions([S], [C]) = ([S0],0) at t = 0. Solving these equations, we
obtain fort < tS

[S](t)= [S0]exp(−k1[E0]t) (26)

[C](t)= [S0] (1− exp(−k1[E0]t)) . (27)

To match the enzyme–substrate complex (C) solutions fort < tS andt > tS, we
calculate the limit of equation (27) ast →∞. We find this limit ([S0]) is the initial
conditionc0 for [C] in (22). With this, equation (22) yields

[C](t) = [S0]exp(−k2t) (t > tS). (28)

Now, we can obtain a uniform approximation for the total time evolution (0<

t < ∞) of the reactant concentration. For[C], we add the solution fort < tS and
t > tS and then subtract their common part, which is given by the limit previously
estimated ([S0]). For [S], the matching procedure is not quite as straightforward
as it is for [C]. We find that we need to go to higher-order terms in the small
parameter given by (23) to obtain a uniformly valid solution that is non-trivial in
the outer time scale. Ifk1[E0] � k2 (see next section) this may be approximated
by

[S](t)= [S0]exp(−k1[E0]t)+
KS[S0]

[E0]
(exp(−k2t)− exp(−k1[E0]t)) (29)

[C](t)= [S0](exp(−k2t)− exp(−k1[E0]t)). (30)

In Fig. 1, these approximations are shown (solid curve) along with the solutions
for t < tS (dashed curve) andt > tS (dotted curve), and the numerical solutions
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Figure 1. Graph of the numerical solution (cross symbols), the uniform approximation
(solid curve), the solutions fort < tS (dashed curve) andt > tS (dotted curve) for the
time-dependent behaviour of (a) the substrate concentrations([S]) and (b) the enzyme–
substrate complex([C]) in the basic reaction (1) at high enzyme concentration. The fast,
tS, and the slow,tC, time-scales are also shown as vertical dashed lines. Initial conditions
are:[E0] = 10 and[S0] = 1; parameter values arek1 = 1, k−1 = 1 andk2 = 1.
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(cross symbols) for[S0]/[E0] = 0.1 andKM = 2. Note that the approximations
are in very close agreement with the numerical solutions. The approximate and
numerical solutions would be almost indistinguishable over most of the interval if
the[S0]/[E0] ratio is decreased.

It will be shown in the following section (Section3) under what circumstances
we can use the rQSSA. Of great interest is that the[S0]/[E0] ratio needs to be small
as a necessary condition for the validity of the rQSSA.

3. CONDITIONS FOR THE VALIDITY OF rQSSA

The selection of appropriate time-scales is the basis for deriving the necessary
conditions for the validity of quasi-steady-state assumptions. In the context of the
rQSS,Segel and Slemrod (1989) suggested two time-scales: (i) the time related to
the duration of the initial fast transient,tS, which is the time taken for a significant
change inS concentration, and (ii) the time that characterizes the rQSS period,
tC, which is the time taken for a significant change inC concentration. Using the
criteria proposed bySegel (1984) andLin and Segel (1988), we can determine the
time-scales for the rQSSA. From (26), the fast time-scale for the initial transient is
derived as

tS =
1

k1[E0]
, (31)

and the slow time-scale for a significant change inC concentration,tC, is deter-
mined from equation (28) as

tC =
1

k2
. (32)

The intrinsic time-scale for the substrateS differs from that quoted bySegel and
Slemrod (1989) who found that the fast time-scale is(k1([E0] − [C]))

−1 during the
test of their methods whenS is considered in QSS.

On the other hand, in agreement withSegel and Slemrod (1989), if we derived
the condition for the fast time-scaletS to be indeed much smaller than the slow
time-scaletC, that is

tS� tC, (33)

we find the criterion

k2

k1[E0]
� 1. (34)
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This condition can also be expressed as

[E0] � K , (35)

which can be written, if we restrictk−1� k2, as

[E0] � KM . (36)

We now derive another necessary condition. An essential feature for the rQSSA,
stated in (23), is that a negligible amount of the initial enzymeE0 is used to form
the enzyme–substrate complexC during the initial transient. This is ensured by
demanding that the fractional change of the free enzyme is small during the fast
transient, that is, ∣∣∣∣1[E][E0]

∣∣∣∣ ≈ tS

[E0]

∣∣∣∣d[E]dt

∣∣∣∣
max

� 1. (37)

From the conservation law (14), it follows that,

d[E]

dt
= −

d[C]

dt
. (38)

Using equation (25) with [S] = [S0] to determine1[C] leads to∣∣∣∣d[E]dt

∣∣∣∣
max

= | − k1[E0][S0]|, (39)

and with definition (31) of tS, it follows that∣∣∣∣1[E][E0]

∣∣∣∣ ≈ [S0]

[E0]
. (40)

Therefore, we find the additional necessary condition for the validity of the rQSSA

[S0]

[E0]
� 1. (41)

In Fig. 2, to check that conditions (34) and (41) are necessary for the validity
of the rQSSA, we compare the approximation (20) for the rQSS (dashed curve)
with the numerical solution plotted in the phase plane (solid curve) for different
values ofk1, k2 and[E0], with initial conditions[S0] = 1 andk−1 = 1. The initial
transienttS holds for substrate concentrations greater than those indicated by the
point r .

We expect the rQSSA to be valid when the substrate concentration is depleted
during the initial transient (t < tS) and the rQSS solution (20) to approach the
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Figure 2. Comparison between the phase plane rQSS approximation (20) (dashed curve)
and the numerical solution (solid curve) fork−1 = 1 and the initial conditions[S0] = 1.
The initial transient,tS, holds for all substrate concentrations above those indicated by the
point r in the graph. In: (a) conditions (34) and (41) are invalid([E0] = 0.1, k1 = 1 and
k2 = 1), (b) condition (34) is satisfied, but new criterion (41) is not valid ([E0] = 0.1,
k1 = 20 andk2 = 1), (c) criterion (34) is not valid, but condition (41) is satisfied ([E0] =

10, k1 = 1 andk2 = 20) and (d) both conditions are valid ([E0] = 10, k1 = 1 and
k2 = 1). Note that when (41) is satisfied, the substrate concentration is depleted during the
initial transient. If the two conditions of the rQSSA are valid, then the rQSS approximation
approaches the numerically computed phase plane trajectory.
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numerical solution in the phase plane after the initial transient (t > tS). This
happens when conditions (34) and (41) are satisfied [Fig.2(d)]. If these conditions
are not satisfied [see Fig.2(a)], the substrate concentration hardly changes during
the initial transient and the rQSS approximation does not approach the numerical
solution. Note that the change in substrate concentration is small during the initial
transient (t < tS), when the initial portion of the numerically computed trajectory
is nearly vertical in the phase plane, and occurs when condition (41) is not satisfied
[Fig. 2(a) and (b)]. If this condition is satisfied, the substrate is depleted during the
initial transient [see Fig.2(c) and (d)]. This confirms that (41) is also a necessary
condition for the rQSSA. Additionally, if (34) is not satisfied [Fig.2(a) and (c)],
the rQSS approximation (20) does not approach the numerically calculated phase
plane trajectory after the initial transient (t > tS).

Note that there is an additional important finding related to the discovery of con-
dition (41). We observe that the general condition for the validity of the sQSSA (6)
and the second necessary condition for the rQSSA (41) are both valid in a domain
which depends onKM . In Section4, we shall compare the sQSSA and rQSSA,
and it will be shown that the rQSSA may extend the range for which the QSSA can
be applied to solve the enzyme reaction (1) completely in the positive[S0]–[E0]

plane.

4. COMPARISON BETWEEN sQSSAAND rQSSA

In Fig. 3(a), the condition for the validity of the sQSSA (6) and the second con-
dition for the validity of the rQSSA (41) are plotted in[S0]–[E0] space to compare
their regions of validity. Note that, strictly speaking, the rQSSA can be valid only
when both criteria (34) and (41) are satisfied. Therefore, to make a fair compar-
ison, we have chosen parameter values that satisfy the first condition (34) for the
rQSSA.

Under such conditions, we find three regions in the positive[S0]–[E0] plane for
the fixed parametersk1 = 2, k−1 = 1 andk2 = 1 (KM = 1). In regionA, only the
rQSS approximation is valid, that is

[E0]

KM + [S0]
> 1. (42)

On the other hand, in regionC, the only approximation valid is the sQSS, which is
given by

[E0]

[S0]
< 1. (43)

Finally, the sQSSA and rQSSA are both valid inB, which is defined as

[E0]

KM + [S0]
< 1 and

[E0]

[S0]
> 1. (44)
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Figure 3. (a) Validity of the sQSSA and the rQSSA for the enzyme reaction (1) for the
case when condition (34) is satisfied. Parameter values arek1 = 2, k−1 = 1 andk2 = 1
(KM = 1). There are three regions:A where the rQSSA is the better approximation,
B where rQSSA and sQSSA are both good approximations andC where the sQSSA is
the better approximation. In (b), (c) and (d) we compare the rQSS (dashed curve) and
sQSS (dotted curve) approximations with the numerical solutions (solid curve) for the
three regions. In addition, the initial transient for the rQSSA and the sQSSA are indicated,
respectively, as the pointsr ands. In (b) the rQSS approximation approaches the numerical
solution([S0] = 1.0, [E0] = 4.5); in (c) both the rQSS and sQSS approximations approach
the numerical solution([S0] = 2.5, [E0] = 3.0) and in (d) the sQSS approximation
approaches the numerical solution([S0] = 4.5, [E0] = 1.0).
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Note that the common region of validity for both is a function ofKM , and would
increase asKM increases.

To illustrate this dynamics, we plot the phase trajectories from the numerical
solution of (18) (solid curve) and its approximate solution (20) for the rQSSA
(dashed curve) and for the sQSSA, which is obtained by substituting d[C]/dt ≈ 0
into (18), [C] = ([E0][S])/(KM + [S]) (dotted curve). Additionally, we indicate
by r ands, respectively, the points on the trajectory corresponding to the end of the
initial transients for the rQSSA (31) and the sQSSA,tc = [k1(KM + [S0])]

−1 [see,
equation (13) ofSegel and Slemrod (1989)]. In Fig. 3(b), we plot the behaviour
of the approximations and numerical solution for the initial conditions[S0] = 1.0
and [E0] = 4.5. Note that the rQSSA represents a better approximation than
the sQSSA. In Fig.3(d), we illustrate the reverse case, where[S0] = 4.5 and
[E0] = 1.0, and the sQSSA is indeed much better. Finally, we consider a point in
space where both approximations are valid ([S0] = 2.5, [E0] = 3.0).

It is important to note that the sQSSA and the rQSSA span all the positive
[S0]–[E0] plane. Thus, the results in this paper, combined with those inSchnell
and Mendoza (1997), show that analytical approximations can be derived for sys-
tem (11)–(12) for any initial conditions ([S0], [E0]).

5. DISCUSSION

The main contribution of the present work is to demonstrate that the rQSSA
is the appropriate approximation for the study of the basic reaction (1) at high
enzyme concentrations. This result challenges the basic assumption d[C]/dt ≈
0. In addition, we derived a new criterion for the validity of the rQSSA, namely
[E0] � [S0]. Note that in using the rQSSA,Segel and Slemrod (1989) assumed as
a special case that[E0] � [S0]. In Section3, we claimed that this is a necessary
condition (see Fig.2).

We also take the opportunity to emphasize that, subject to the constraints of the
rQSSA, an approximate solution for the reactant concentrations is derived valid
uniformly in time. This uniform approximate solution is not the exact solution
but should be accurate for[S0]/[E0] � 1. It is possible to improve on these
approximations in a systematic manner, by considering, in the usual way, series
expansions for the solutions (Lin and Segel, 1988; Segel and Slemrod, 1989).

We have shown (see Fig.3) that the domain of validity of the QSSA (standard+
reverse) covers completely the positive[S0]–[E0] plane. This improves on previous
studies in which all this plane could not be covered by analytic approximations to
the reactant concentrations [seeBorghanset al. (1996), Fig. 1(b), p 51]. Note that
this framework can be extended to other enzymatic modes of action.

Furthermore, in the light of the results ofSchnell and Mendoza (1997), the
present formalism brings forth new perspectives in the implementation of exper-
imental techniques to determine kinetics parameters. This new experimental ap-
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proach, in practice, would consist of fitting the experimentally determined sub-
strate concentration decay profile as a function of time with the uniformly valid
approximate solution (29) to obtaink1, k−1 andk2. In addition, approximation (30)
to the complex concentration could also be fitted to experimental data.

Finally, it is important to note that after the initial transient (t > tS), when the
rQSS has been reached, we can deduce an equation for the velocity of product
formation by substituting (20) into (13), d[P]/dt = vmax[S]/(KS + [S]), which
can be integrated to give[P](t) = [S0](1− exp(−k2t)), and again we can use this
for fitting the concentration of product formation after the initial transient.
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