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MATHEMATICAL MODELLING IN THE LIFE SCIENCES:
APPLICATIONS IN PATTERN FORMATION AND WOUND
HEALING

PHILIP K. MAINI
Centre for Mathematical Biology, Ozford

1 Introduction

Spatial and spatio-temporal patterns occur widely in the life sciences as well
as in chemistry. Perhaps the best-known example of spatio-temporal pattern
formation is the spontaneous generation of propagating fronts, target pat-
terns, spiral waves and toroidal scrolls in the Belousov-Zhabotinsky reaction,
in which bromate ions oxidise malonic acid in a reaction catalysed by cerium,
which has the states Ce®* and Ce**. Sustained periodic oscillations are ob-
served in the cerium ions. If, instead, one uses the catalyst Fe?* and Fe3*
and phenanthroline, the periodic oscillations are visualised as colour changes
between reddish-orange and blue (see, for example, Murray, 1993, Johnson
and Scott, 1996 for review). Similar types of patterning arise in physiology
and one of the most widely-studied and important areas of wave propagation
concerns the electrical activity in the heart (Panfilov and Holden, 1997) which
stimulates muscle contraction resulting in the heart beating.

Understanding the mechanisms underlying spatio-temporal pattern for-
mation is a central goal in embryology. Although genes control pattern for-
mation, genetics does not give us an understanding of the actual mechanisms
involved in patterning. Many models of how different processes can conspire to
produce pattern have been proposed and analysed. They range from gradient-
type models involving a simple source-sink mechanism (Wolpert, 1969); to
cellular automata models in which the tissue is discretised and rules are intro-
duced as to how different elements interact with each other (see, for example,
Bard, 1981); to more complicated models which incorporate more sophisti-
cated chemistry, physics and biology, and which propose that patterns are set
up due to self-organisation rather than as a consequence of externally imposed
cues. All of these models focus on the key question of how cells respond to and
interact with signalling cues. This is a crucial question in a number of areas
of the biomedical sciences. For example, in tumour formation, one wishes to
understand how the signalling cues involved in the regulation of cellular pro-
cesses no longer function properly. Many of the physical processes that occur
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during the formation and spread of tumour cells are also of vital importance
in wound healing, where their function benefits the organism rather than be-
ing destructive to it. Recent advances in molecular and cellular biology have
led to the rapid development of experimental research into the biochemical
mechanisms underlying the processes of wound healing. Wound healing is an
enormously complex dynamic spatio-temporal process and new insights are
being gained by focussing on the interaction of specific processes involved for
a particular aspect of healing.

In all the above areas, a number of complex mechanical and biochemical
processes are interacting in a highly nonlinear way. Such systems are amenable
to mathematical modelling and the role of the modeller is to suggest explana-
tions, based on biologically plausible mechanisms, of observed behaviour and
to make experimentally testable predictions.

In this article, I will review, in Section 2, some of the commonly used
models for pattern formation in early development. In Section 3 I will describe
some models that have been used to address particular phenomena in wound
healing. At the end of each section, a discussion on the particular applications
is presented. Section 4 contains a general discussion and points to future
directions.

2 Models for pattern formation and morphogenesis

Cell fate and position within the embryo can be strongly influenced by en-
vironmental factors. Therefore, to answer questions on pattern formation,
one must really address the issue of how the embryo organises the complex
spatio-temporal sequence of signalling cues necessary to develop structure
in a controlled and coordinated manner. Structure can form through tissue
movement and rearrangement, cell-cell interaction, or in response to chemical
signals. We first consider the latter type of model.

2.1 Chemical pre-pattern models

The simplest chemical pre-pattern model is the gradient model proposed by
Wolpert (1969) in which a source-sink mechanism, coupled with diffusion and
degradation, leads to a spatial gradient in a single morphogen. He proposed
that this provided positional information for cells, which differentiated ac-
cording to a series of threshold values. More complicated spatial patterns can
be generated due to the reaction and diffusion of a number of chemicals. This
phenomenon is known as diffusion-driven instability and was first proposed
by Turing in a seminal paper (Turing, 1952). The reaction kinetics he consid-
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ered were ‘stabilizing and diffusion is, of course, a homogenizing process. Yet
combined in th.e a.ppl_"opriate way, these two stabilizing influences can conspire
to produce an 1n:stab1hty which can result in spatially heterogeneous chemical
proﬁles - a‘spat.lal pattern. This is an example of an emergent property and
115 ten;ied diffusion-driven instability, that is, a spatially uniform steady state
inearly stable in the absence of diffusion. becomes [i i ’
g ) A s linearly un

presence of diffusion. Y nstable in the
. To d(.erive th.e partial differential equation form of Turing’s model, let us
first (Eonsuier a single chemical, with concentration c(x,t) at position x € R3
and time ¢ € [0,00). Consider an arbitrary volume V ¢ R3. Then

rate of change of chemical in V = — flux + net production i.e,
d
—_— d = —
i J, e /av F.dS+/Vf(c)dv (1)

vf'here Fis f,he flux of chemical per unit area and f(c) is net chemical produc-
tion per ur?lt vol.ume. On using the divergence theorem and the fact that the
volume V is arbitrary, this equation becomes

)
a_j = —V.F + f(o). )

Fl“he funct%on F is determined by Fick’s Law, which states that chemical flux
18 proportional to the concentration gradient, i.e.

F = -DVe¢ (3)

where D is the diﬁ‘_usion coefficient. Therefore the reaction-diffusion equation
governing the spatio-temporal evolution of ¢ takes the form:

de

i V.(DVe) + f(c). (4)
To complete the model formulation we need to specify initial conditions
c.(x,.O) = co(x) and boundary conditions. The latter may typically be pe-’
riodic, zero flux or.ﬁxgd, depending on the phenomenon being modelled.

"[.‘he abovg derl.vatlon can be generalised easily to a system of interacting
chemicals leading (in the case of constant diffusion coefficients) to
du

a = DV?u + f(l.l), (5)

where u is a vector of chemical concentrations, u = (uy,us, e Upn) T £ =
(_fl (u.), fa(u), “..,fn(u))T and models chemical interaction; and D is an n x n
diffusion matrix. In the simplest examples, D is a diagonal matrix. More

generally, D can have off-diagonal terms to model cross-diffusion.
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The classical reaction-diffusion model is a system of two chemicals, u and
v, reacting and diffusing as follows:

du

— =DV%u + u,v

ot 1 f( yV) (E)

__E = D,V?%v + g(u,v) (7)
n = 9 v glu, .

We will assume zero flux boundary conditions. The functions f and g are
rational functions of u and v (see examples later). Using standard linear
analysis (see, for example, Murray, 1993) it can be shown that a spatially uni-
form steady state of the above system can undergo diffusion-driven instability
if the following conditions hold:

(C.1) fut+gu<0
(C-2) fugv — foGu > 0
(C.8) Digy + Dafu > 2¢/D1Da(fugo = fugu)

where all the partial derivatives are evaluated at the spatially uniform steady
state.

One possible scenario for pattern formation is that in which f, and g, are
positive, the latter implying that u activates v, while g, and f, are negative,
so that v inhibits u (see, for example, Dillon et al., 1994). Condition (C.1)
= |ful < |gul, so from (C.3) Dy < Dy. That is, the activator diffuses more
slowly than the inhibitor. This is an example of the classic property of many
self-organising systems, namely short-range activation, long-range inhibition.

In Turing’s original model, f and g were linear so that, if the uniform
steady state became unstable, then the chemical concentrations would grow
exponentially. This, of course, is biologically unrealistic. Since Turing’s paper,
a number of models have been proposed wherein f and g are nonlinear so that
when the uniform steady state becomes unstable, it may or may not evolve to
a bounded, stationary, spatially non-uniform, steady state (a spatial pattern)
depending on the nonlinear terms.

These models may be classified into four types:

(i) Phenomenological Models: The functions f and g are chosen so that one
of the chemicals is an activator, the other an inhibitor. An example is
the Gierer-Meinhardt model (1972), for which

2
flu,v) = o= fu+ T, g(u,v) = du’ —m ®)
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where a, 8,7, 8 and n are positive constants, u activates v and v inhibits
u.

(ii) Hypo'thetical Models: Derived from a hypothetically proposed series of
chen.nca_l reactions. For example, Schnakenberg (1979) proposed a series
of trimolecular autocatalytic reactions involving two chemicals as follows

k1
X=4, BXy 2x+Y & 3x.
k2

btsing the Law of Mass Action, which states that the rate of reaction is
directly proportional to the product of the active concentrations of the
reactants, and denoting the concentrations of X,Y, A and B by u,v,a
and b, respectively, we have o

fu,v) = kaa — kyu + ksu?v, g(u,v) = ksb — kgu?v 9)

where ki, ..., k4 are (positive) rate constants. Assuming that there is an
abundance of A and B, a and b can be considered to be approximately
constant.

(iii) Empirical Models: The kinetics are fitted to experimental data. For
example, the Thomas (1975) immobilized-enzyme substrate-inhibition
mechanism involves the reaction of uric acid (concentration u) with oxy-
gen (concentration v). Both reactants diffuse from a reservoir maintained
at_const.ant concentration ug and vg, respectively, onto a membrane con-
taining the immobilized enzyme uricase. They react in the presence of
the enzyme with empirical rate ﬁ;‘“ﬁqr, so that

Vinuv
flu,v) = a(up —u) — =
e A TR

Vinuv (36
Kn+u+u?/K,

where a, 8, V;n, K, and K are positive constants.

glu,v) = Blvg —v) —

(iv) Actual Chemical Reactions: Although Turing predicted, in 1952, the
spatial patterning potential of chemical reactions, this phenomeno;l has
only recently been realised in actual chemical reactions. Therefore, it is
now possible in certain cases to write down detailed reaction scheme; and
derive, using the Law of Mass Action, the kinetic terms.



206 P. K. Maini

The first Turing patterns were observed in the chlorite-iodide-malonic acid
starch reaction (CIMA reaction) (Castets et al., 1990, De Kepper et al., 1991).
The model proposed for this reaction by Lengyel and Epstein' (1?91) stresses
three processes: the reaction between malonic acid (MA) and iodine to.cre‘:ate
iodide, and the reactions between chlorite and iodide and chloride and iodide.

These reactions take the form
MA+L > IMA+I- +H?*

1
ClO, + 17 = ClO; + 51’2

ClO; +4I~ +4H* — CI™ + 21, + 2H,0.

The rates of these reactions can be determined experimentally. By making t‘he
experimentally realistic assumption that the concentration of malonic acid,
chlorine dioxide and iodine are constant, Lengyel and Epstein derived the
following model:

du quv 2
—_— = — U — + V-u
5t T T

v uv 2
5{ = ko [k3 (U— 1+'U2) + eV 'U]

where u,v are the concentrations of iodide and chlorite, respectively and
ky, ko, ks and ¢ are positive constants. '

Murray (1982) calculates and compares the parameter spaces determined
by (C.1)-(C.3) for linear instability in the Gierer-Meinhardt, Schnakenberg
and Thomas models.

In many cases, particularly in one dimension, the results of the linear analysis
carry over to the weakly nonlinear case but the fully nonlinear system can only
be analysed by numerical simulation. There is now a great deal of llterat.ure
on this subject and general results on the patterning properties of rea.ctlc‘m~
diffusion equations can be found in the books by Britton (1986), Edelstein-
Keshet (1988), Fife (1979), Grindrod (1996), Murray (1993) and Segel (198{!).
The gradient models and the Turing-type models differ in two crutlzlal
aspects: In the gradient model, the chemical pre-pattern is set up by a sim-
ple process which can only produce a simple gradient. To use this gra,_dlent
to generate complicated pattern, it is hypothesized that a complex series of
thresholds exist and cells have the machinery to interpret multiple thresholds.
In Turing’s model, complex spatial patterns arise due to a complex chemical
interaction, but the interpretation of the pre-pattern is via a single threshold
(Nagorcka, 1989) and is therefore simpler than that in the gradient model.
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2.2  Cell movement models

Cell movement models are based on the assumption that a spatial pattern
arises in cell density, and cells then differentiate in a density-dependent man-
ner. Cell aggregation occurs when the cell dispersing factors (for example,
diffusion) are overcome by aggregating factors such as chemotaxis (movement
up chemical gradients), or factors generated by the mechanical interaction of
cells with the extracellular matrix (ECM) on which they move. These include
haptotaxis (movement up adhesive gradients) or passive convection arising
as the result of deformation of the ECM due to cell traction. Chemotactic
models have been analysed by a number of authors and shown to lead to
spatial pattern formation (see, for example, Keller and Segel, 1971; Maini et
al., 1991). These models involve reaction and diffusion, but spatial patterning
arises in this case due to the advective term introduced by chemotaxis. The
typical model takes the form:

g_: = D,V?n - V.(x(w)nVu) + f(n,u) (11)
)
6_‘: = D, V?u + g(n,u), =

where n(x,t),u(x,t) denote cell density and chemoattractant concentration,
respectively, at position x and time ¢; D,,, D,, are diffusion coefficients, f, g are
terms incorporating production and degradation and x(u) is the chemotactic
sensitivity. The latter varies depending on the mode of cell-chemoattractant
interaction (Othmer and Stevens, 1997).

The first partial differential equation model incorporating the role of me-
chanical cues in the formation of cell aggregation was proposed by Oster et
al. (1983) and since then such models have been extensively studied (Mur-
ray, 1993). They consist of conservation equations for cells and extracellular
matrix, which take the general form of the equations above, but the main dif-
ference is the force-balance equation, which is that for a viscoelastic material.
The mechanical model proposed by Oster et al. (1983) has three dependent
variables: n(x, t), p(x,t) and u(x, t) which represent, respectively, cell density,
matrix density and matrix displacement at position x and time t.

The cell equation is

0
5’:— =-V.J+r(N —n) (13)
where net cell production is assumed to be of logistic form, r and N are

positive constants, and J, the cell flux, is given by J = —DVn+aan+n%—‘t‘.
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The first term on the right-hand side models random motion and th}é third
term accounts for passive advection. Cells can also move by attaching cell
processes to adhesive sites within the matrix and crawhr‘;g along_. As c?lls
exert forces on the extracellular matrix they generate adhesive g?*adlepts which
serve as guidance cues to motion. The movement up STlCh grad}ents is t.el"med
haptotaxis. The assumption that the number of adhesive sites is proportlon:fxl
to ECM density leads to the second term on the right-hand side, where « is
the haptotactic coefficient, assumed to be a non-negative constant. Hence the
equation for cell motion is

o _ pye -V na—u
F T DV*n — aV.(nVp) ; ( T
The equation for ECM density is much simpler as the only contribution to
matrix flux is advection, and matrix secretion is assumed negligible. Hence,

p satisfies
a
%’g =-V. (pa—l:) . (15)

To derive the equation for the matrix displacement, u(x, t), we first note that
for cellular and embryonic processes, inertial terms are negligible in compar-
ison to viscous and elastic forces, that is, motion ceases instantly when the
applied forces are turned off. Hence the traction forces generated by the
cells are balanced by the viscoelastic forces within the ECM. Therefore the

equilibrium equations are

) +rn(N —n). (14)

Vo+pF=0 (16)
where ¢ is the composite stress tensor of the cell-ECM milieu and pF accounts

for body forces. . ‘ . ‘
Oster et al. (1983) model the cell-matrix composite as a linear viscoelastic

material with stress tensor
0 =0, + On. (17)

Here o, is the usual viscoelastic stress tensor (see, for example, Landau and
Lifshitz, 1970),

Je a6 E v )
= p1 o e 01 18
a"“”‘at+”28t1+1+v(s+1—2u s
Se— pr—— ~ ~ -
viscous elastic

where: § = V.u is the dilatation, ¢ = %[Vu + VuT] is the stress.tensor, I
is the unit tensor, py, o are the shear and bulk viscosities, respectively, and
E, v are the Young’s modulus and the Poisson ratio, respectively.
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The stress due to cell traction is modelled by

_Tnp
1+ An

n (19)
where 7 and A are positive constants. This satisfies the conditions that there is
no traction without matrix and that traction per cell decreases with increasing
cell density (contact inhibition).

If the cell-matrix composite is attached to an external substratum, for
example a subdermal basement layer, then the simplest way to model the
body force is to assume

F = su (20)

where s is the modulus of elasticity of the substrate to which the composite
is attached.

With appropriate boundary conditions (for example zero flux on n and
p, with u fixed) the above equations for cell density, matrix density and dis-
placement define a simple version of the more complicated mechanical model
presented by Oster et al. (1983).

Linear and nonlinear analyses, plus numerical simulation, show that mod-
els within this general mechanical framework can exhibit steady-state spa-
tial patterns (Perelson et al., 1986) and spatio-temporal patterns (Ngwa and
Maini, 1995).

Other movement models hypothesize that cells move to minimize energy
(Cocho et al., 1987a,b; Steinberg, 1970: Sulsky, 1984). Such models can be set
up mathematically and solved to show cell sorting and patterning behaviour
consistent with a number of experimentally observed phenomena.

2.3 Cell rearrangement models

Theoretical studies in this area include the early purse-string model of Odell
et al. (1981) for tissue folding in which, in response to a large deformation,
cells were proposed to actively contract and in so doing cause a large de-
formation in neighbouring cells which, in turn, also contract, setting up a
propagating contraction wave which leads to tissue folding. This model was
applied to a variety of developmental problems, and provided the precursor to
the "mechanochemical theory” of developmental pattern formation reviewed
above. This approach emphasises the link between tissue mechanics and chem-
ical regulation, and has been applied widely in both developmental biology
and medicine. Subsequently, Weliky and Oster developed a discrete-cell mod-
elling approach in which morphogenesis occurs via mechanical rearrangement
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of neighbours in an epithelial sheet. They assume that the boundary of the ep-
ithelial sheet is pulled over the surface of the egg and show that the resultant
model can produce many experimentally observed aspects of both Fundulus
epiboly and notochord morphogenesis in Xenopus laevis (Weliky and Oster,
1990; Weliky et al., 1991). More recently, Davidson et al. (1995) used a com-
putational finite element model to test various explanations for sea urchin
invagination.

In all these models individual cell movements within the tissue are deter-
mined by the balance of mechanical forces acting on the cell. Such models can
exhibit tissue folding, thickening, invagination, exogastrulation and intercala-
tion, and have been shown to capture many of the key aspects of processes
such as gastrulation, neural tube formation, and ventral furrow formation in
Drosophila. Models for tissue motion are not amenable to a mathematical
analysis and tend to be highly computation-based.

2.4 Applications

Turing considered the chemicals in his model to be growth hormones, so that
the spatial pattern in chemical concentrations would result in spatially non-
uniform growth and hence pattern. He applied his theory to account for
budding in plant stems and to growth-induced shape changes in the early
embryo which he proposed could account for gastrulation. Since his seminal
paper, reaction-diffusion models have been proposed to account for a vast
number of patterning processes in nature, too great to be completely reviewed
here, so we consider only a few examples to give a flavour of the applications.

Gierer and Meinhardt (1972) used their model to account for pattern for-
mation in Hydra and showed that this model could account for the remarkable
regenerative properties exhibited by this organism. Reaction-diffusion models
have been proposed to account for compartmentalisation in insect develop-
ment and to provide an explanation for the occurrence of various mutants
(see Meinhardt, 1982, for review). However, for Drosophila it now appears
that patterning is due to a cascade of protein interactions that are consistent
with the gradient-type models and are not of Turing-type.

Meinhardt (1995) has shown that reaction-diffusion type models solved
on a growing domain can produce the spectacular variety of patterns seen on
shells (Figure 1), while Nijhout (1990) has shown that such models, together
with a small number of sources and sinks, can exhibit the vast array of pig-
mentation patterns observed on butterfly wings. Shell patterns can also be
produced by an integro-partial differential equation model aimed at capturing
neural activity along the front of the growing shell (Ermentrout et al., 1986).
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Figure 1. (a) Spatial pattern exhibited on the shell Oliva porphyria and a simulation of
a reaction-diffusion model on a large array of cells. (Reproduced with permission from
Meinhardt, 1995).

Although this model is based on very different biology to the reaction-diffusion
model and has a different mathematical form, it still falls under the general
category of short-range activation, long-range inhibition models.

Reaction-diffusion and cell movement models have been applied to animal
coat markings (Bard, 1981; Cocho et al., 1987a,b; Murray, 1981; Murray and
Myerscough, 1991) and to skeletal patterning in the limb, for which gradient
models have also been proposed (see Maini and Solursh, 1991, for a critical
review).

The above models propose different scenarios for pattern formation and,
to date, it is a highly controversial issue as to which model is the appropriate
one. Chemical morphogens, the name given to the chemicals proposed to
form pre-patterns, have yet to be unequivocally identified, so it is difficult



212 P. K. Maini

to fix parameter values. For the mnechanical type model mentioned above,
parameters are also difficult to determine. Moreover, the original model is
based on the Kelvin model of linear viscoelasticity and there is no justification
for taking this particular form. The Maxwell model will also give rise to
pattern formation, but for different parameter values (Byrne and Chaplain,
1996). Thus, without constraints on the parameter values, one can produce
similar patterns with each model and therefore cannot distinguish between
them on that basis.

It is also difficult to distinguish, from a biological viewpoint, between
models. For example, in some cases one observes both a chemical pattern and
a cell aggregation pattern but it is difficult biologically to determine which
came first. The chemical pre-pattern model would say that the chemical
pattern arose first and cells responded to this by differentiating, resulting in
cell condensations. The cell-chemotaxis model scenario would be that both
patterns arise simultaneously, while under the assumptions in the mechanical
model, the patterns would be explained by cell aggregations first forming and
then secreting a chemical pattern as a result of differentiation.

Although these models are based on very different biological assump-
tions, many of them share common properties. For example, the patterning
in reaction-diffusion and in many cell movement models arises from the inter-
action of the processes of short-range activation, long-range inhibition. On the
one hand, this has the disadvantage of making it very difficult to use models to
distinguish between mechanisms, on the other hand, it does mean that one can
make general conclusions and predictions that are mechanism-independent.
This leads to the idea of developmental constraints which proposes that only
certain patterns are possible, regardless of the mechanism (Oster and Murray,
1989). Figure 2 illustrates one such developmental constraint.

A key property of many development processes is their robustness in the
face of naturally occurring random fluctuations. This has been a major prob-
lem for reaction-diffusion theory, as it is well-known that the patterns it pro-
duces are not robust (Bard and Lauder, 1974). In other words, Turing-type
models can exhibit multiple stable solutions in large regions of parameter
space. Recently it has been shown that boundary conditions can play a cru-
cial role in stabilizing patterns. For example, if one chooses fixed boundary
conditions for one chemical and zero flux boundary conditions for the other,
then this reduces the number of admissible solutions and thus diminishes the
regions in parameter space in which one obtains multiple stable solutions. In
effect, the boundary conditions serve to select only certain patterns (Dillon et
al., 1994).

In higher dimensions, this problem becomes more acute as one now has
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Figure 2. Simulation of a cell-chemotaxis model of the form (11) — (12) showing the effect
of domain size on cell density concentration (arrow denotes increasing cell density). As the
domain narrows, the diamond pattern changes to a simpler, wavy stripe pattern. This is
an example of a developmental constraint. (b) Examples of diamond patterns on snakes
(i) Crotalus adamanteus; (i) Coluber hippocrepis (note the effect of the tapering domain).
Reproduced with permission from Murray and Myerscough, 1991.
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the added problem of degeneracy. For example, for certain parameters, there
may be two or more admissible solutions with the same linear growth rate
and it is then not clear which solution is selected. Using nonlinear bifur-
cation analysis, Ermentrout (1991) showed that the nonlinear terms play a
key role in pattern selection, with quadratic terms favouring spots, while cu-
bic terms favour stripes. More recently, Benson et al. (1998) have shown
how a spatially-varying parameter can unravel such degeneracies and select
one pattern over another. The role of spatially-varying parameters has re-
ceived little attention (although it should be noted that the Gierer-Meinhardt
model was initially designed to explain how localized structures could arise
in places determined by a pre-existing gradient) but they can play a crucial
role in the patterning process. For example, Wolpert and Hornbruch (1990)
showed experimentally that double-anterior chick limb buds gave rise to two
humeri, even though the size of the bud was the same as that of a normal
limb bud, which only produces one humerus. This contradicts the standard
Turing model, which predicts that patterning complexity is intimately linked
to domain size. Maini et al. 1992, showed that a Turing model with spatially-
varying diffusion coefficients could give rise to results that are consistent with
Wolpert and Hornbruch’s experiments. Results of dye-spreading experiments
suggest that the hypothesis of spatially-varying diffusion is very plausible
(Briimmer et al., 1991).

These studies have all been carried out on the reaction-diffusion model
system because it is the simplest, mathematically speaking, of the models
reviewed in this section. It is still an open question as to whether the results on
robustness, pattern selection and spatially-varying parameters carry through
to the other model types.

In all the above applications, patterns occur simultaneously throughout
the whole domain. However, in some cases, patterns arise as the result of
propagation. For example, in the alligator embryo, the pigmentation stripes
occur as a propagating pattern moving down the body from head to tail.
Murray et al. (1990), have shown that a cell-chemotactic model of the form
discussed above can give rise to such patterns. They were able to make ex-
perimentally confirmed predictions on how the number of stripes varies with
the length of the embryo and present biological evidence that supports the
view that this is a cell movement process.

More recently, Painter et al. (1999a) have studied the formation of the
primitive streak. This is a novel patterning process wherein, during the blas-
toderm stage of early chick development, a column of cells, known as the
primitive streak, advances to about 3/5 the way across the disk-shaped blas-
toderm, before regressing. They have shown how this could arise from a
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Thirteen-lined
Ground Squirrel

Pomacanthus maculatus

Figure 3. Coupling two reaction-diffusion models can lead to a complicatgd pattern of
stripes interspersed with spots, as observed in the thirteen-lined ground squirrel and Po-
macanthus maculatus. (Reproduced with permission from Aragén et al., 1998).

cell-chemotaxis type model and have made a number of testable predictions.

2.5 Coupling pattern generators

In many cases, pattern formation arises as the result of the interaction of more
than one pattern generator. For example, epidermal-dermal interactions play
a crucial role in the development of skin organs, such as hair, teeth, feathers
and scales. Nagorcka et al. (1987) considered a tissue-tissue interaction model
that coupled a mechanochemical cell movement model in the dermis with a
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reaction-diffusion model in the epidermis. They showed that such a model can
give rise to patterns on two different length scales, namely, large spots inter-
spersed with small spots, and these are similar to the scale patterns observed
in certain lizards and to the feather germ patterns observed on certain birds.
More recently, Aragén et al. (1998) have shown how the coupling between
two systems of reaction-diffusion models can produce complex patterns (see
Figure 3).

The life cycle of the cellular slime mould Dictyostelium discoideum serves
as an excellent paradigm for morphogenesis as it exhibits the processes of
signal transduction, signal relay, cell movement and aggregation, all of which
play important roles in early embryonic development. Hence, for many years,
it has attracted the interest of developmental biologists and theoreticians
alike. Starvation conditions trigger a developmental programme which is
initiated by cell-cell signalling via the extracellular messenger cyclic 3’5’-
adenosine monophosphate (cAMP). The chemotactic response to this signal
leads, through the phenomenon of cell streaming, to the formation of a multi-
cellular organism composed typically of 10* — 10° cells. This organism passes
through an intermediate motile (slug) phase during which cells differentiate
into pre-spore and pre-stalk types, before developing a fruiting body, aiding
the dispersal of spores from which, under favourable conditions, new amoe-
bae develop. The comparative simplicity of morphogenesis in Dictyostelium
has made it an attractive model system for the study of self-organisation,
and many of the molecular and cellular mechanisms which are involved in cell
aggregation, collective movement and differentiation have now been identified.

Several models have been proposed to account for many of the afore-
mentioned phenomena. Here, we shall focus on a model for cell aggregation
proposed by Hofer et al. (1995a,b) — we refer the reader to this paper for a
fuller description of the biology and parameter values, as well as references to
other models. The model takes the form:

on

i V- (uVn — x(v)nVu) (21)
3]

5% = Ao(n) f1(u,v) — (¢(n) + 6) f2(u)] + Vu (22)
dv

o= (w)v + ga(u)(1 — v), (23)

where n, v and v denote cell density, extracellular cAMP concentration and
fraction of active cAMP receptors, respectively.

The second and third equations are a simplified model of the cAMP-cell
receptor dynamics (see Martiel and Goldbeter, 1987, for full details) modi-
fied by cell density effects; the rate of CAMP synthesis per cell is f;(u,v) =

Mathematical Modelling in the Life Sciences 217

(bv +v?)(a + u?)/(1 +u?), where a and b are positive constants. This models
autocatalytic production with saturation, mediated by receptor binding. The
functions f; and g, are assumed to be linear in u, to model linear degradation
of cAMP and binding of active receptors to cAMP, respectively, while g2 is
assumed to be a positive constant, accounting for the resensitization of the
desensitized fraction of receptors at constant rate. This subsystem exhibits ex-
citable dynamics leading to the formation of spiral waves of cAMP concentra-
tion. Cell density effects are modelled by the factor ¢(n) = n/(1-pn/(K+n)),
where p and K are positive constants. This excitable system is coupled with
a chemotaxis equation for cell density, with constant diffusion coefficient y,
and chemotactic sensitivity x(v) = xov™/(4™ +v™), m > 1, which accounts
for adaptation, where xo and A are positive constants. Hence an appreciable
chemotactic response requires a minimal fraction of active receptors, yet, for
a large fraction of active receptors, the response saturates. Note that many
models of chemotaxis assume x to be a constant. Under that assumption, cells
would respond to a pulse of chemoattractant by moving towards the wave in
the wavefront, then moving with the wave in the waveback, resulting in a net
movement away from the source of attractant, rather than towards it. This
is the so-called “chemotactic wave paradox” (Soll et al., 1993). The form of
x(v) chosen above resolves this paradox (Hofer et al., 1994).

Using experimentally determined parameter values, the above model cap-
tures the key features of the aggregation process (see Figure 4). The model
is consistent with the observation that as streaming proceeds, the wavespeed
and wavelength of the spiral patterns decrease (Gross et al., 1976). Previously,
this has been explained by assuming that biochemical changes must be occur-
ring in the cell-cAMP system and, indeed, it has now been established that
changes of this sort can occur. However, in the above model, this behaviour
arises naturally, because as the cells form streams, they alter the conditions
through which the cAMP waves are propagating. This is initially equivalent
to increasing the excitability of the medium which, in turn, leads to an in-
crease in the rotation frequency of the spiral core. As a result (Tyson and
Keener, 1988) the wavespeed and wavelength of the spiral patterns decrease.

2.6 Domain Growth

None of the above models account for domain growth. However, a number of
recent studies have shown that domain growth can play a vital part in the pat-
tern formation process. For example, Kondo and Asai (1995) showed that the
pigmentation pattern in the juvenile angelfish Pomacanthus semicirculatis,
exhibits changes in the number of stripes as it grows. Briefly, when the wave-
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(b)

["igure.ti, S.pat.io—t.empora.l evolution of (a) cell density, and (b) cAMP concentration in a
numerical simulation of (21)-(23). (Reproduced with permission from Hofer et al., 1995b).
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length of the stripes increases twofold due to domain growth, further stripes
are inserted to restore the wavelength to its original value. They showed that
this is consistent with a reaction-diffusion model. More recently, Painter et al.
(1999b) showed that a cell-chemotaxis model coupled with a reaction-diffusion
model on a growing domain could account also for the fact that the inserted
stripes are thinner than the original stripes. This phenomenon is not easily
explained by a reaction-diffusion model.

It is believed that domain growth also plays a role in the determination of
the sites of tooth primordia in alligators. The first seven tooth primordia of
the lower alligator jaw occur (taking one half of the jaw) in the spatio-temporal
sequence 4-1-5-2-6-3-7, that is, the fourth primordia to form is the posterior-
most while the seventh primordia to form is the anterior-most. Kulesa et al.
(1996) have shown how a reaction-diffusion model coupled with an inhibitor
model on a growing domain could explain this sequence.

More recently, Crampin et al. (1999) have shown that domain growth can
lead to the robust pattern selection of certain types of patterns in reaction-
diffusion models, while Holloway and Harrison (1999) have shown that inter-
specific variation in branching patterns in certain plants can be accounted
for by a system of reaction-diffusion equations on a growing two-dimensional
domain in which growth is controlled by the concentration of one of the chem-
icals.

2.7 Discussion

Development of spatial pattern and form is unquestionably one of the central
areas in biology. It is a very complex process that involves the interaction
of a large number of components acting at different levels, yet the models
presented in this section focus on only a small number of components. An
important question to ask therefore, is that although it is clear that even these
simple models offer theoreticians an enormous range of challenging problems
from modelling, numerical computation and mathematical viewpoints, what
does it actually say about the biology? The models presented here are really
of two types. The first are conceptual, for example, it is remarkable that the
simple mechanism of short-range activation, long-range inhibition can give
rise to such an enormous range of patterns. One can think of this as being
a primary mechanism for generating spatial pattern. Such models provide a
framework in which one can test theories of patterning, as well as making
experimentally testable predictions.

The second type of model is where more is known about the biochemistry
and parameter values. Pattern formation in Dictyostelium discoideum pro-
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vides the most well-studied case of this type of model. Although the model
described in this section is based on only three equations, the excitable sub-
system of the model arises from a much larger model which can be simplified
by using the fact that there are a number of different timescales involved.
The recent work by Weijer and coworkers has gone a long way in explaining a
number of patterning phenomena that occur in Dictyostelium discoideum by
including ideas from chemotaxis, excitable media and computational fluid dy-
namics (see Vasiev and Weijer, 2000, and references therein). Such single-cell
systems, which are simpler to manipulate than embryos, may be important in
providing crucial insights to some of the workings of more complicated multi-
cellular organisms, and are therefore attracting more and more attention. For
example, there is now a great deal of literature on the modelling of bacterial
patterns (see Ben-Jacob et al., 2000, and references therein).

All the above models are based on considering pattern formation at a
macroscopic level. There is now an enormous amount known at the molecular
level about pattern formation. One of the main future challenges is to develop
models that can integrate the molecular and cellular levels.

3 Models for wound healing

Wound healing is an enormously complicated phenomenon involving different
processes interacting on different spatio-temporal timescales (see, for example,
the books by Clark and Henson, 1988, Asmussen and Sollner, 1993) and the
method of healing varies depending on whether the wound is a surface wound
(epidermal) or a deep wound (dermal), and on whether it is in the adult or
the embryo. In this section we focus on a model for epithelial wound healing
and one for dermal wound healing, and show how the ideas of modelling used
in the previous section can be applied.

3.1 Corneal Wound Healing

Cell migration and proliferation are central to the healing of wounds in the
corneal epithelium and biological evidence suggests that both processes are
regulated by a protein called epidermal growth factor (EGF). The source of
EGF is an area of controversy and the model of Dale et al. (1994) sets out
to investigate the possibility that the exposed underlying tissue within the
wound acts as an additional source to the overlying tear film layer.

Here, we summarise the model of Dale et al. (1994) and refer the reader
to the original and references therein for full biological and modelling details.
The model is a pair of reaction-diffusion equations for the cell density n(x, t)
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and EGF concentration ¢(x,t) at position x and time ¢ and takes the form
(suitably nondimensionalised)

on Cell Migration Mitotic Generation  na¢ural Loss

—==V- (Dn(c)Vn)+ s(en(2-n) — “m (24)

dc unc

= = D.Vic+ n - —dc 25

g-a s I G+ -
Diffusion  Production by Cells ——an—

Decay of Active EGF

where D, (c) = ac+pf, and D¢, u, 8, a, B and ¢ are all positive constants. The
model assumes that the cell diffusion coefficient is increased by EGF and s(c)
is an increasing function of ¢ to account for the EGF-enhanced cell mitotis
rate. The function f(n) is taken to be of the form f(n) = A + B(n), where

o if n < 0.2
B(n) =4 0(2—-5n)if0.2<n <04
0 ifn>04

and A and o are positive constants. The A accounts for the constant source
of EGF due to the tear film, while the function B(n) is chosen to model EGF
production due to wounding. The authors show that the detailed form of this
function is not important to the behaviour of the model.

Using parameter values derived from the biological literature, this model
system is solved on a one-dimensional domain (a realistic approximation for
the case of surface slash wounds, where cell fronts move in from either side
of the slash to close the wound) to investigate the behaviour of travelling
wave solutions which move from a region where the cell density and EGF
concentration are at their unwounded levels,n =c=1 (as z — —00), into a
region of no cell density, n = 0, with the EGF concentration at its wounded
level, ¢ = f(0)/4 (as £ = +00).

An important conclusion from this work is that a realistic speed of heal-
ing is only attained if the function B(n) is included (Figure 5). Hence the
conclusion is that for the wound healing scenario envisaged by this model, bio-
logically realistic healing times can only be achieved by assuming that the tear
source of EGF is supplemented by EGF production in the wounded tissue.

For biologically realistic parameter values an analytical approximation to

the minimum wavespeed can derived as 4/ Sﬁs(i}i). An important biological

implication of this result is that the rate of healing of corneal epithelial wounds
can be increased by increasing the cell diffusion coefficient or the secretion rate
of EGF. However, increasing the chemical diffusion coefficient does not have a
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Figure 5. Numerical solution for the corneal wound healing model showing cell density and
EGF concentration profiles as functions of space at equal time intervals. (a) The tear film
is the only source of EGF, that is, f (n) A. (b) An additional source of EGF is included,
that is, f(n) = A+ B(n). Note that in (b) healing occurs much more rapidly. (Reproduced
with permission from Dale et al., 1994).
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significant effect. The model can also be used to make experimentally testable
predictions on how the speed of healing will change as the result of topical
application of EGF.

3.2 Dermaf healing

A crucial aspect of wound healing concerns the mechanical interaction of cells
with their external environment. Cells deform and remodel the extracellular
matrix on which they move and ECM materials, in turn, affect cellular prop-
erties and cell orientation. Using the mechanochemical model framework (see
Murray, 1993, for review, and Murray et al., 1988, Murray and Tranquillo,
1992) Olsen et al. (1995) developed a mechanochemical model for dermal
wound healing. We refer the reader to the original paper for full details, in-
cluding experimental justification for each term within the model. The model
consists of two cell types — fibroblasts and myofibroblasts, densities, n and m,
respectively; a generic growth factor, concentration ¢, and ECM, density p.
These quantities obey the general conservation equation

P
6—?:v-Jq+fq, (26)

where () is the quantity in question, the first term on the right-hand side
models motion with flux Jq, and the second term models production and
degradation. To complete the model, a force balance equation is needed to
account for the mechanical interaction of the cells with the ECM.

For simplicity, we present here the one-dimensional version of the model,
where z is space and t is time. The fibroblast cell equation takes the form:

on n 8 dec  Ou klcn
i an = a[X(Ca ﬂ)% +n§] + R(c)n(1- —) =

+ kam —dyn.

(27)
Implicit in these equations is the assumption that there are three main
factors contributing to cell flux: random diffusion, with constant diffusion
coefficient, D,,; chemotaxis with chemotactic sensitivity x(c,n), and advection
in response to the displacement, u(z, t), of the ECM. The four remaining terms
on the right-hand side model cell kinetics and include logistic cell growth with
linear rate enhanced by growth factor, fibroblast conversion to myofibroblast
phenotype mediated by growth factor, conversion from myofibroblast back to
fibroblast cell type, and cell death.
The myoﬁbroblast equation takes the form

am kien
E e [ mat]+er(c)m(1"—)+ S

— kom — dpym. (28)
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Here, it is assumed that the dominant contribution to myofibroblast flux is
advection, and that mitosis takes the same form as that for fibroblasts, mod-
ulated by a constant scale factor €.
The growth factor satisfies the equation
2
g? = Dc% + &%[—c%] + S(n,m,c) — d.c. (29)
Implicit in this equation is the assumption that the dominant contributions to
growth factor flux are random diffusion, with constant diffusion coefficient D,
and advection. The remaining terms on the right-hand side model biosynthesis
and degradation.
The ECM moves primarily by advection and satisfies the equation
% = 6%_[*-,0%] + B(n,m.c, p), (30)
where B(n,m, c, p) represents ECM biosynthesis and degradation.
Finally, modelling the ECM as a linear, isotropic, viscoelastic material,
the displacement u satisfies the force balance equation

8%u Pu  O01(n,p)

#szat L E@ L oz

where the first two terms on the left-hand side model viscous and elastic forces,
respectively, and the third term models cell traction forces. These forces are
balanced by the body forces F(p,u). Note that this is very much a simplifi-
cation as a more realistic model should include anisotropy and plasticity.

The above five equations, with appropriate initial and boundary
conditions (see below) constitute the mechanochemical model frame-
work.  Solving these equations in one spatial dimension is an approx-
imation to “slash” wounds. Numerical simulations show that these
equations admit solutions in which a travelling front of cell density
moves into the wound, causing it to heal. Using biologically realistic
forms for the functions x(c,n), R(c), S(n,m,¢c), B(n,m.c, p), 7(n, p), F(p,u),
and estimates derived from experimental data for the parameters
Dy, Do, K, k1,ka2,Cr,dp,dp,de, €., 0 and E, it can be shown that this model
exhibits solutions for the decay of growth factor and rate of wound closure
that closely agree with experimental results (see Olsen et al., 1995, for full
details).

This model can be used to investigate abnormal wound healing. The full
model is very complicated so simpler caricatures are considered. To investi-
gate the potential of the above model framework to exhibit spatially-varying
contracted steady states, corresponding to fibrocontractive diseases, Olsen et

= F(p,u), (31)
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al. 1998, considered a simpler version of the model which focusses only on
the mechanical aspects of the interaction. The non-dimensionalised version of
this caricature model takes the form

on 8n 0 du
o8 gy bt Sup R0 = 32
Bt Ongg Tk Mgl valdem) 82
dp 0 6_1_;
T @[—P 5 (33)
d%u &*u  91(n,p)
al PR i S N o : 34
Hoz20t * E8m2 ¥ oz Flp,u) (34)

This caricature considers only the fibroblast cell type and assumes a simple
form for logistic growth. It also assumes that there is negligible synthesis and
degradation of ECM on the timescale of wound closure. This is a reasonable
assumption to make in the stages prior to tissue remodelling during the process
of wound healing.

By defining the initial wound space as —1 < z < 1 and using symmetry
at z = 0 (the wound centre), we may restrict attention to the semi-infinite
domain 0 < z < co. The boundary conditions are thus
on

— QP_ o = £ — = =1).
ag(ﬁ,t)-gz(ﬂ,t)—u((],t)—o and n(oo,t) = p(co,t) =1, wu(oco,t) =0

The initial conditions are
n(x,(]) - H(.’IZ - 1}: ,0(.’3,0) = pPi 3 (1 - P:) H{LC - 1)) u(I,O) = 0=

where the initial ECM density p; inside the wound is due to the early, pro*
visional wound matrix which is low in collagen and satisfies 0 < p; < 1, and
H{(-) is the Heaviside step function.

Consider now the healed steady state, n = 1. Linearising the matrix
equation about the initial profile, we have

pi(1=0u/dz),0<z <1
”“{ (35)

1 — du/dz, z>1
as suggested by the small-strain restriction (since the convective flux should
be small). Substituting this into the steady state equation for u results in a

second order ordinary differential equation for u which can be written in the
(rescaled) form

u =w (36)
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spiu(l — v)
0<z<1
, | T=aTlna=o)] " =7
v = (37)
su(l —v) 25
1—-T(1-2v)’
where T(p) = 373’;“”)| , and u satisfies the boundary conditions u(0) =

u(oo) = 0. Here it is a.s;l;rlned that the body force, F(p,u), is due to external
tethering to the basement membrane and have modelled it by a linear spring,
that is, F'(p,u) = sup, where s is a constant.

Standard phase plane analysis of (36)—(37) shows that for z > 1, the
origin is a saddle (centre) iff 7(1) < 1(> 1). Linear stability analysis of
the caricature model (32)—(34) shows that a necessary (but not sufficient)
condition for the healed steady state to be stable is 7(1) < 1 (see Olsen et
al., 1998). As this must be the case for the model to be realistic biologically,
we have that the origin of the ordinary differential equation system (36)—(37)
is a saddle, and the boundary condition u(c0) = 0 implies that the solution
must converge towards the origin along the stable manifold as x tends to
oo. By tracing backwards in z from infinity along the stable manifold, the
solution reaches a point in the (u,u')-phase plane corresponding to z = 1
where u = u;, say. This must match the solution for 0 < z < 1.

Now, at the wound centre, u(0) = 0, but »(0) is unspecified and is de-
termined by matching to the “outer” solution at x = 1. For 0 < z < 1, it
can be shown that the origin can either be a saddle or a centre, depending
on the form of the function 7(n,p) and the values of the other parameters.
If the origin is a saddle point, then the solution in 0 < z < 1 will be either
monotonic increasing with increasing gradient or monotonic decreasing with
decreasing gradient. If the origin is a centre, then the solutionin 0 <z < 1
may be oscillatory. Figure 6 illustrates the qualitative construction of such
a solution and Figure 7 illustrates various possible forms of steady state so-
lutions based on this construction. Modelling the traction term, 7(n, p), by
7(n, p) = Tonp/(T%+ p?), where 79 and T are constant parameters, to account
for the fact that traction forces depend on adhesion between cell surface re-
ceptors and binding sites on collagen fibres, but the ability of a cell to extend
and retract protrusions within a collagen substrate is inhibited at relatively
high collagen densities, steady states for (32)—(34) of the form illustrated in
Figure 7(a)—(e) can be found by numerical simulation.

Hence, this caricature model enables us to more fully understand the
properties of the full model and shows clearly that the model can exhibit
spatially-varying contracted steady states, and is thus consistent with clinical
observations on normal healing. For full details, see Olsen et al. 1998.
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Figure 6. Qualitative illustration of a possible solution trajectiory to (35)—{37? for the case
in which the origin is a centre for 0 <z <1 and a saddle point for z > 1 \'\:"lth ul(z) —+ 0
from below as = — oo. See also Figure 7(b). Dashed curves denote phase t:rajectur:es, with
the contracted solution curve highlighted by solid arrows. See text for details. (Reproduced

with permission from Olsen et al., 1997).

We now consider the application of the model to ﬁbropmliferat.i_ve wound
healing disorders. These disorders are characterised by the generation of ab-
normally large amounts of tissue during the healing process, leading to, fqr
example, keloid scarring. Numerical simulations of the full model show tlhat it
can exhibit solutions in which an excess of cells is observed, corresponding to
a pathological state. To understand this more fully, a caricature model of the
full system is, again, investigated. In this case, however, we focus.. pu.rely on
the chemical aspects of the mechanochemical framework by considering the
cell-chemical sub-model

on &n 9 Bc] [ Pe J By 3
— =Dp—— — = — | +o |1+ n(l — =) —dan (38)
5t = Drg 3z XO™Man) o+ X
2
& ps B B e (39)
ot dr2 v+c
where x(c,n) = a/(8 + ¢)?, and a,B,P,Q, K. and « are positive constants
(see Olsen et al., 1996 for full details).

This caricature model has two uniform steady states, (n,c) = (0, 0), (K,0)

corresponding, respectively, to the trivial, or non-healing, state, and the nor-
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Figure 7. Possible qualitative forms of the solution u(z) of the boundary value problem
(36)~(37), representing contracted tissue displacement profiles. The point (u, u') = (0,0)
must be a saddle point for £ > 1 in the (u, u')-phase plane, with u increasing to zero and
u' decreasing to zero monotonically along the stable manifold in the top-left quadrant as
z — oo. For 0 < z < 1, the origin may be either a saddle point, in which case the profiles
for u and u’ are monotonic decreasing as shown in (a), or a centre, in which case « and u
oscillate about the origin as shown in (b—f); within this region, any number of oscillations
is possible—for example, (f) is equivalent to (b) modulo one period. Note that the above
steady-state profiles but with reversed signs of u and u' are also admissible solutions of
(36)-(37), representing expanded tissue displacement profiles since u( 1) would be positive.
Recall that z = 1 is the initial wound boundary. (Reproduced with permission from Olsen
et al., 1997).

mal dermal state. For appropriate parameter values, two other steady states
exist which have both n and ¢ non-zero, with n > K. These are the patholog-
ical, or diseased, steady states. Results from bifurcation analysis of (38)-(39),
in the absence of diffusion, show that for a critical value, &1, of k. (which can
be found in terms of the other parameters) the dermal steady state remains
locally stable but loses global stability as the pathological steady states ap-
pear. At k. = k2, the dermal steady state loses stability and the pathological
state with higher cell density level becomes globally stable.

A travelling wave analysis of the model shows that trajectories from the
dermal state to the pathological state are possible and a minimum wavespeed
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Figure 8. Numerical simulations of (38)-(39) showing progression
Stlfte (a), and cessation and regression for the case where k. is reduced to zero after a
certain time (b). (Reproduced with permission from Olsen et al., 1997).

»

can be determined. Numerical simulations of the system show that such
travelling waves do exist, but that reducing . can cause the waves to stop a:nd
to regress (see Figure 8). This suggests that the reduction of the rate at which
cells secrete growth factor can cause the disease to regress back to t}.le normal
dermal state. More detailed analysis of this model determines analytically how
the bifurcation values of k. depend on the other parameters in Fhe {nf)del. In
particular, the model exhibits hysteresis and therefore, counter-intuitively, .
must be reduced considerably in order to progress from the diseased state t':o
a healed state. This provides a clinically-testable method to help reduce this
type of fibroproliferative disorder. . ’

It should be noted that although the above studies were carried (?ut for
simplified versions of the full mechanochemical model, the results do indeed
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hold for the full model.

3.3 Discussion

The above models have been presented to illustrate how continuum type mod-
els can be used to address problems in normal and abnormal wound healing,.
The model for corneal wound healing has recently been extended to be more
biologically realistic by including more than one cell type. The resultant
mpdel is a system of coupled integro-partial differential equations which ex-
hibits mitotic profiles that are more biologically realistic than those observed
in the original model (Gaftney et al., 1999).

The mechanochemical modelling framework can be extended to include
cell alignment and matrix orientation, the latter is thought to play a crucial
role in determining the severity of scar tissue formation (Olsen et al., 1999
Dallon et al., 1999). This particular modelling framework assumes that thej
extracellular matrix is a linear viscoelastic material. However, it is clearly
more complicated than that and a more realistic model, considering the ECM
:;.Z 9a5 )viscoelastic-pla.stic material has recently been proposed (Tracqui et al.,

None of the above models investigate angiogenesis, the process by which
new blood vessels form. This is of great interest also in tumour formation
where after reaching a certain size, limited by the availability of nutrients viai
simple diffusion, a tumour can only grow further by establishing its own blood
supply via the release of so-called tumour angiogenesis factor. This is what
allows the tumour to grow and undergo metastasis, causing the growth of
secondary tumours which are usually fatal. For the mathematical modelling
of angiogenesis in wound healing, the reader is referred to the paper by Byrne
and Chaplain (1995), while the papers by Pettet et al. (1996) and Olsen et
al. (1997) address wound healing angiogenesis.

4 Conclusions

Ir} this paper I have considered the problems of spatial pattern formation in
biology and of wound healing by illustrating a few applications. These seem-
ingly unrelated processes share the common underlying theme of cell response
to, and interaction with, signalling cues. The models are conceptually simple
and closely related, yet exhibit a bewildering array of behaviours, from spiral
waves, spots and stripes, with application in pattern formation, to travelling
waves of invasion in wound healing.

The material in Sections 2 and 3 has illustrated how mathematical models
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can be used to gain important insights to the underlying mechanisms respon-
sible for spatio-temporal pattern formation in biology and normal/abnormal
wound healing and to make experimentally testable predictions. It is clear that
even these so-called simple models pose challenging problems to the mathe-
matician. Many of the results presented here were obtained from numerical
simulation. An important future aim will be to make some of these results
mathematically realistic.

Over the past decade there have been huge advances in molecular biology.
A key problem for the next decade will be to combine this knowledge with
research in cellular biology to gain a fuller understanding of the systems being
studied. Important scientific advances in this area will only be made by a truly
interdisciplinary approach and it is clear that mathematical modelling and
numerical computation will have important roles to play in this endeavour. It
is also clear that biology and medicine will continue to be a source of novel,
difficult and challenging problems for mathematicians and numerical analysts.
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