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A model for colour pattern formation
in the butterfly wing of Papilio dardanus
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The butterfly Papilio dardanus is well known for the spectacular phenotypic polymorphism in the female of
the species. We show that numerical simulations of a reaction diffusion model on a geometrically accurate
wing domain produce spatial patterns that are consistent with many of those observed on the butterfly.
Our results suggest that the wing coloration is due to a simple underlying stripe-like pattern of some
pigment-inducing morphogen. We focus on the effect of key factors such as parameter values for mode
selection, threshold values which determine colour, wing shape and boundary conditions. The generality
of our approach should allow us to investigate other butterfly species. The relationship between these key
factors and gene activities is discussed in the context of recent biological advances.
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1. INTRODUCTION

There exist very few mathematical models to account for
the diversity of colour patterning in butterfly wings.
Murray (1981) showed that a diffusing-morphogen-gene-
activation system could account for the development of
the commonly observed crossbands of pigmentation
shortly after pupation. His model was based on the idea
of a determination stream proposed by Kithn & von
Engelhardt (1933), namely, that the anterior and posterior
margins of the wing are sources from which emanate a
wave of morphogen concentration. Using a simple diffu-
sion equation, Bard & Irench (1984) have calculated
stable morphogen concentration profiles which simulate
the wing pigmentation patterns of three species of
butterfly. Based on certain assumptions on morphogen
sources and sinks, and morphogen degradation, their
results suggest that morphogen gradients can generate
some features of butterfly wing patterns. Nyhout (1990)
presented a model for colour patterning based on experi-
mental evidence that colour pattern formation is a two-
step process: first, a spatial distribution of sources and
sinks of pattern organizers is set up (during the larval
stage); second, these organizers induce colour patterning
in their surroundings (completed during the late larval
and early pupal stages). He showed that the required
spatial distribution of sources and sinks could be achieved
by signalling determined by the concentration of an acti-
vator in a lateral inhibition reaction diffusion model. His
model produced patterns consistent with eyespot patterns,
which are observed along the distal margin of the wing
(Nijhout 1994).

In general, there exist two different kinds of pattern in
butterfly wings—colour pattern and the spatial arrange-
ment of scale cells. Colour patterns are formed by the
colours of the regularly arranged scale cells (Sekimura et
al. 1998, 1999). The colour of scale cells is mainly due to
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the presence of chemical pigments, but can sometimes
result from diffraction of light in the physically fine-
structured scale. The colour patterns of wings are, in
general, finely tiled mosaic patterns produced by overlap-
ping, monochromatic scales and are characteristic of each
lepidopteran species (Nijhout 1991). The time-scales on
which these two patterns are generated are different from
each other. The arrangement pattern of scale cells occurs
in the early stages of pupation, while colour patterns
appear in the last stage of pupation after completion of
cell rearrangement (Nijhout 1980; Yoshida 1988). The
dimensions of the colour pattern extend from tens to
several hundreds of cell diameters, and no cell migration
occurs during the period of colour pattern determination.
Diffusion of small molecules through gap junctions is
assumed to be a feasible mechanism for long distance cell-
to-cell communication to form colour patterns {Nijhout
1991). It is known that the formation of the colour pattern
1s independent of the arrangement pattern of scale cells,
so we assume 1n our model that the colour pattern occurs
due to a spatial pattern in pigmentation, not in cell
density.

The colour patterns on the wings depend on the
species. However, owing to the pioneering work of
Schwanwitsch (1924) and Siffert (1927) on the nymph-
alid ground plan, the complicated colour patterns on
butterfly wings can be understood as a composite of a
relatively small number of pattern elements. For example,
Njhout (1981) proposed a two-gradient model based on
positional information (Wolpert 1969). He hypothesized
that the focus of an eyespot was the source of a diffusing
chemical (morphogen), the concentration level of which
determined the synthesis of certain pigments. This would
only give ring patterns. But the further assumption, that
interpretation of the chemical signal depended on cell
position (perhaps as the result of a second chemical
signal) gave rise to more complicated patterns. These two
factors appear to be sufficient to explain thousands of
different wing patterns based on the nymphalid ground
plan.
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More recently, Nijhout (1991) proposed a specific
ground plan for Papilio dardanus, a species of butterfly
widely distributed across sub-Saharan Africa. P.dardanus
is well known for the spectacular phenotypic poly-
morphism 1in females that has evolved as different
geographic races have simultaneously come to mimic an
array of different species in their specific regions. The
females have evolved more than a dozen different wing
colour patterns, of which several mimic different species
of unpalatable danaids, other butterflies and moths. In
addition, females exhibit male-like forms with wing tails
in some populations. The males, on the other hand, are
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‘Figure 1. (a) Polymorphism in females of Papilio dardanus:

(1) trophonius, (11) cenea, (111) planemoides, (iv) hippocoonides.
(b) Male pattern. (Courtesy of Dr A. P. Vogler and Dr A.
Cieslak of the Natural History Museum, London, and
Imperial College, Silwood Park.)

monomorphic and strikingly different from the females,
exhibiting a characteristic yellow and black colour
pattern and tailed hindwings (figures 1 and 2).

According to Nijhout’s idea, there exist four regions—
three regions on the forewing and one region on the
hindwing—in which (i) the black elements of the colour
pattern can increase or decrease in size, and (11) the back-
ground colour of the wing can change independently. The
size of the black pattern elements is under independent
genetic control. The modifications of the black pattern
elements are also quantitative, consisting of variations in
the width of existing bands. Widening of black bands
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Figure 2. Diagram illustrating the black patterned elements in mimetic and non-mimetic forms of Papilio dardanus. () Mimetic
forms: (1) trophonius, (i1) cenea, (111) planemoides, (1v) hippocoonides. (b) Non-mimetic forms: (i) natalica, (i1) niobe, (iii) leighi,
(iv) salaami. (With permission of Professor H. F. Nijhout of Duke University.)

constricts the background colour that shows through and
can have dramatic effects on the overall appearance of
the pattern. The black pattern elements seem to be the
main parts of the wing colour patterns, even though the
background colour attracts our attention most.

In this paper, we focus on the formation of the black
pattern elements on the wing of P.dardanus. We 1incor-
porate two key features of the above models into our
reaction diffusion model, namely, the existence of
different regions in the wing, and a morphogen inter-
pretation mechanism that is spatially dependent.

In §2 we briefly describe the reaction diffusion model
we use and show some numerical results; §3 compares
these results with colour patterns observed on the wings
of P. dardanus. The implications of our results are discussed
in § 4.

2. MODEL AND NUMERICAL RESULTS

(a) Model equations

Since the seminal work of Turing (1952), which showed
that a system of reacting and diffusing chemicals could
evolve from an initially uniform spatial distribution to
concentration profiles that vary spatially—a spatial
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pattern—many models have been proposed exploiting the
short-range activation, long-range inhibition mechanism
used by Turing. One of the earliest models is that of Gierer
& Meinhardt (1972). They, in fact, proposed a class of
phenomenological models in which the reaction kinetics
were chosen to be of activator-inhibitor type. These
models all take the general form

u = f(u, ) + D, Viu, (1)

v, = g(u, v) + Dy V0, (2)

where u(x, f) and v(x, ¢) are chemical concentrations at
position x and time ¢; Dy, D, are diffusion coefficients;
and f, g are polynomials or rational functions of u, v
which describe the kinetics. These equations are solved on
some spatial domain with imposed boundary conditions,
and 1nitial chemical concentrations are prescribed. These
types of model have been analysed in depth mathemati-
cally. Using standard linear analysis, conditions can be
derived on f, g, D and D, under which diffusion-driven
instability can arise (see Appendix A). From this analysis,
it can be shown that in the vicinity of a primary bifurca-
tion point (where the spatially uniform steady state loses
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stability) the chemical profiles of « and v are either in
phase or 180° out of phase (see, for example, Dillon ef al.
1994).

The patterning properties of these models have, in the
main, been studied on simple geometrical shapes (for
example, rectangles) with zero flux boundary conditions
on both species or with both species fixed at the steady
state. It is also typically assumed that the domain
responds homogeneously to the chemical, i.e. there is a
spatially uniform threshold level of chemical concentra-
tion above which cells differentiate. In this paper, we
begin to extend these studies to consider non-standard
cases. For the purpose of illustration, we focus on the
activator—inhibitor mechanism suggested by Gierer &
Meinhardt (1972). This mechanism has been used in a
variety of modelling situations (see, for example,
Meinhardt 1982, 1995). The reaction kinetics in the
Gierer—-Meinhardt model are defined as

S, v) = ky — kou+ ————pr (3)
glu, v) = kg — ksp, (4)

where u(x, {) and o»(x, ¢) are activator and inhibitor
concentrations, respectively, at spatial point x and time ¢,
and 4, . . ., k; are positive rate constants. The reaction
diffusion system can be non-dimensionalized in the
standard way (see, for example, Murray 1993) to yield the
system

u? o
= — b _— \a 5
u, ’7(a u+v(1+1{u2>)+ u, (9)

0 =y —v) +dV, (6)

where a, b, d, K and 7y are positive parameters, V is the
non-dimensionalized spatial operator and, for simpli-
city, the non-dimensionalized chemical concentrations
and time are denoted, as before, by u, v and ¢, respec-
tively.

In the simulations below, we fix the values of
a=0.1, =10 and K =0.5, while the values of =
and d are determined from the Turing space according
to the mode which would be selected on a unit square
domain (see Appendix A). The numerical simulations
show the plots of » only. The profiles of u can easily be
deduced from these plots as they are in phase with
those of ».

(b) Numerical simulations

We wish to compare our results with the butterfly
P dardanus, so we first trace the forewing and hindwing
domains from photographs of the wings of P dardanus.
Then, these shapes are approximated using polygonal
domains. The model system is solved on the resulting
domain using the finite element method on an unstruc-
tured triangular mesh which is generated using a
Delaunay mesh generator (Miller ez al. 1993). The numer-
ical simulations are independent of the mesh structure;
hence structured or unstructured meshes yield the same
numerical solution.
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With the kinetic parameters fixed as above, we further
select and fix the values d = 70.8473 and v = 619.45,
chosen to select the (3, 0) model (see Appendix A) with
zero flux boundary conditions on a unit square. Let v, be
the steady state of the concentration v. Assuming that
coloration is determined by a constant threshold value in
v concentration, v, say, such that cells in the region where
v = v, are black, while cells which experience a concen-
tration v < o, are coloured, these parameters result in a
simple pattern of two coloured stripes.

We now allow the threshold function to take the more
general form of a plane ay + fx + ¢;, where a or 3 or
both are non-zero and ¢, is a non-negative constant. Here
coloration is determined as follows: if cells experience
chemical concentration v 2> ay + fx + ¢, they are black;
otherwise they become coloured. By taking this more
general form of threshold function, we are making the
assumption that the cells within the wing are not necessa-
rily homogeneous in their response to ». Note that if both
a and f are zero, then the threshold gradient is reduced
to a constant threshold, while if one of « or 3 is zero,
then cells are homogeneous in one direction but have a
response gradient in the other direction.

We also allow the boundary conditions to take the
more general form

O(u —up) + (1 —0)(u, — uy) = us, (7)

with a similar form for s, where u, is the normal deriva-
tive at the boundary and we impose values on 8, u, u,
and u3. For example, § =0 gives a (Neumann) flux
condition, while § = 1 gives a (Dirichlet) fixed condition.
Choosing a value of 8 between these extremes results in a
mixed (Robin) condition. In the simulations below we
also allow 6, u), u, and u3 to be functions of position
along the boundary.

A sample of patterns generated using a threshold func-
tion and boundary conditions of the form in equation (7)
are shown in figure 3, and the parameter values and the
boundary conditions used are summarized in the table in
Appendix B and in figure 4, respectively. We shade in
white, regions in which the chemical » has concentration
less than ay + Bx + ¢y; other regions are shaded black.

"Although the male and male-like female patterns can
be generated using the same model parameters as for the
more complicated female patterns, they can also be
generated by parameters selected to isolate the (1, 0)
mode on a square domain, with a simple constant
threshold value (figure 5). This simpler method of gener-
ating male patterns is consistent with the experimental
point of view, because these patterns have been geneti-
cally considered as the primitive pattern for all other
female patterns.

Preliminary numerical simulations suggest that the
gross patterning properties of equations (3) and (6) are
robust to small perturbations of the wing shape for the
parameter values used in this paper. They also suggest
that similar results can be produced by different reac-
tion diffusion models. For example, simulations of the
Thomas (1975) model and the Schnakenberg (1979)
model exhibit similar patterns to those of the Gierer—
Meinhardt model.
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Figure 3. Results of numerical simulations of the Geirer—Meinhardt model (5) and (6). For comparison with Papilio dardanus see
figures 1 and 2. (a) Mimetic forms: (1) trophonius, (11) cenea, (111) planemoides, (iv) hippocoonides. (b) Non-mimetic forms:

(1) natalica, (11) niobe, (ii1) leight, (iv) salaami. Black indicates concentrations of v above the threshold gradient; white indicates
values below the threshold gradient. Model and threshold parameters are given in Appendix B; boundary conditions are shown

in figure 4.

3. COMPARISON WITH PAPILIO DARDANUS

Comparing figures 1 and 2 with our numerical simula-
tions (figure 3) we see that a simple reaction diffusion
model can capture the details of the different patterns. In
these simulations, for the threshold function the values of
a=—0.111 and § = —0.025 are fixed for the forewing
patterns in niobe, salaami, hippocoonides, planemoides and
trophonius, while for natalica the value a = —0.0555 is
taken. For the hindwing the same values are taken except
that o has positive sign (sec Appendix B for full details).
We find that, under these conditions, the forewing
patterns for niobe, salaami, hippocoonides and trophonius are
generated with the same boundary conditions and with
very small changes in ¢,. However, to obtain other
patterns, different boundary conditions are used (see
figure 4).

Our numerical simulations reveal that only small
changes in threshold are necessary to determine different
observed patterns. For example, the forewing patterns of
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niobe, salaami, hippocoonides and trophonius are obtained
from the same boundary conditions and parameter values
with less than 0.1% change in the threshold. We also find
that the boundary conditions play a crucial role in orien-
tation of pattern. A large number of the wing patterns
can be simulated with the same boundary conditions. The
forewing pattern of planemoides is obtained by simply
extending the fixed boundary conditions of niohe. The
hindwing appears to admit more simple patterns, consis-
tent with the observations in figure 1. These are simulated
with the same model parameter values as used for the
forewing. The boundary conditions on the hindwing are
shown in figure 4 and are unchanged throughout the
different simulations.

4. CONCLUSION AND DISCUSSION

When a particular species exhibits morphological
diversity, a key issue is whether or not such diversity can
arise from the modification of a basic ground plan
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Figure 4. Boundary conditions for the simulations shown in figure 3.
(a) Forewings of (i) natalica, niobe, salaami, trophonius and hippocoonides,
(ii) planemoides, (iii) cenea and leighi. (b) Hindwing (all butterflies). This

figure also
performed.

pattern. Using a reaction diffusion model, we have found
that a fixed set of parameter values, chosen to generate a
striped mode on a square domain, can not only generate
striped patterns on a wing-shaped domain, but is also
sufficient to generate the variety of patterns observed on
the fore- and hindwings of P dardanus. This suggests that
the wing coloration may be due to underlying stripe-like
patterns of some pigment-inducing morphogen rather
than to more complicated patterns. Our results suggest
that different colour patterns (black pattern elements
here) in females are similar to each other and they could
be generated essentially by a fixed set of kinetic and diffu-
sion parameters in a reaction diffusion system. This result
could be important from the genetic point of view
because it agrees with the result that most of the different
forms of the female are controlled by a single genetic
locus (Clarke & Sheppard 1959, 1960).

In our study, the basic ground plan pattern is modified
by assuming a threshold function and that boundary
conditions can vary among the different butterflies. There
is, at present, no direct evidence to support the former,
but it is known that certain cell properties do change with
position in the wing. For example, the colour patterns are
formed by the colours of the regularly arranged scale
cells in the wing, and it 1s known that the adhesive prop-
erties of scale cells change with their position in the wing
(Nardi 1988, 1994; Sekimura et al. 1998, 1999). Therefore
it is not unreasonable to assume that their sensitivity to a
patterning chemical may also vary depending on wing

position.
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shows the mesh on which the numerical calculations were

To obtain the variety of realistic female patterns in
numerical simulations, we had to choose different types
of boundary conditions, suggesting that the wings are
composed of areas with different properties. This is
consistent with, but simpler than, the idea proposed by
Nijhout (1991) that there exist four regions within the
wing (mentioned in §1). Indeed, there is evidence that
there is a source of chemical along the distal margin
(B. Koch and H. F. Nijjhout, personal communication).
Our results provide an explanation of background colora-
tion that does not require differential growth in several
different regions.

Our model simulates the colour pattern by a reaction
diffusion mechanism which acts across the whole wing
surface. This is different to the model proposed by
Nijhout (1991), which views patterning as occurring in
discrete modules within the wing. The spatial patterns
exhibited by our model are produced by diffusion-driven
instability from an initially uniform spatial pattern distri-
bution of chemicals; there are no discrete foci of pattern
organizers acting as sources and sinks for local pattern
elements (Njjhout 1990).

From our computational results, we also find a hier-
archy in relatedness of patterns by combination of some
key factors; for example, planemoides 1s similar to the
male-like pattern; niobe, salaami, trophonius and fuppo-
coonides are almost in the same group; cenea is close to
leighi. Since the above results reflect only the aspect of the
black pattern elements without taking account of the
background colour, we should include the production
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Figure 5. Results of numerical simulations of the Geirer—Meinhardt model (5) and (6), for the male pattern. (a) Parameters
corresponding to the (3, 0) mode (see Appendix A). (4) Parameters corresponding to the (1, 0) (a, b, K as for the (3, 0) mode,

but 4 = 520.157, v = 67) with a constant threshold value of 0.999 for the forewing and 0.699 for the hindwing. (¢} Boundary
conditions.

mechanism of the background colour for more detailed - T.S. would like to thank Professor H. F. Nijhout of Duke University
discussions on the relatedness hierarchy, which are inter- for his suggestions and critical reading of the manuscript, and Dr
esting from the evolutionary point of view. The generality A. P.Vogler of the Natural History Museum and Imperial College

for his critical reading of the manuscript and comments. This work
of our approach should allow us to apply our present . cee . .
. ) (T.S) was in part supported by Engineering and Physical Sciences
theory to a wider class of butterflies and to other Rescarch Council grant (GR/M81878) awarded to M. A. J.
problems (e.g. evolution of wing colour patterns). Chaplain and PX.M., and also by a grant from the Human
In this paper, we have simulated wing colour patterns  Frontier Science Program (RG0323/1999-M). A.M. would like to
of P dardanus on adult wing shapes. It is known, however, thank the National University of Science and Technology of
that the colour patterns are specified earlier during the  Zimbabwe for their financial support.
late larval and early pupal stage when the wing surface is
much smaller and different in shape (Nijhout 1991). Preli- ~ APPENDIX A. LINEAR ANALYSIS
minary numerical studies show that the patterns
produced by the model mechanism described in this
paper are robust to small changes in domain shape and
size. A more detailed study of changes in the form of
colour pattern during wing development from the larval

Standard linear stability analysis shows that diffusion-
driven instability of a steady state of equations (1), (2)
occurs if the following conditions hold (see, for example,
the books by Edelstein-Keshet (1988) and Murray (1993)):

imaginal disc to the adult wing is of great interest from Jut &<, (Al)
both theoretical and experimental points of view and is
the subject of further research. S = 18>0, (A2)
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df +8.>0, (A3)

(4/[11 + gv>2 - 4d(ﬁgL _ﬁgu) > O:

where the partial derivatives are evaluated at the steady
state. The inequalities (Al})—(A4) define a domain of
parameter space, known as the Turing space, wherein the
uniform steady state is unstable to small perturbations of
given wavenumbers.

Under these conditions, spatial disturbances with wave-
numbers £ € (k_, £, ) will initially grow, where

(Ad)

(df, + ) =V + )" — 4d( /g, —fi8)
2d '

k=v (A3)
In the case in which we are interested, namely, the unit
square with zero flux boundary conditions, a further
restriction on £ is that it must take discrete values
m(n? 4+ m?)'/?,  corresponding to the spatial mode
cosnmx cosmmy denoted by (n, m).

For the Gierer—Meinhardt system (5) and (6) under
zero flux boundary conditions, the steady states satisfy

2

S, v)=a—bu+v

TR A A0

glu, v) =u’' —v=0. (A7)
To be specific, we fix the values ¢ =0.1, 6 =1.0 and
K = 0.5. For these parameters, we solve the steady-state
equations numerically using the Newton—-Raphson
method, vielding the steady state (0.8395, 0.7047)
correct to six decimal places.

We wish to isolate a certain mode, i.e. we want linear
analysis to predict that the uniform steady state goes
unstable only to spatial perturbations cosamx cosmmy with
a particular (n, m). For these parameter values, (Al) and
(A2) are satisfied, so we need to choose values of 4 and
such that (A3) and (A4) hold and the (n, m) mode is
isolated. By carefully spanning the d—y parameter space
we find that the (3, 0) mode can be isolated for (d, 7y)
values in a neighbourhood of the point (70.85, 619.45),
while the (1, 0) mode can be isolated for values in the
neighbourhood of the point (520.16, 67.00).

It should be noted that one could choose different
values for a, b and K to satisty inequalities (Al) and (A2),
and then use the above procedure to determine values of
d and « to isolate mode (3, 0). This would give rise to the
same pattern.

We used a similar method to the above to determine
parameter values to isolate mode (3, 0) for the Thomas
and Schnakenberg models. It is important to note that
models that take the general form of equations (1) and (2)
can give rise to similar spatial patterns due to diffusion-
driven instability. There are only two major differences:
(i) for some models u and v are in phase, in others they
are in anti-phase; (i) some models preferentially exhibit
stripes, others exhibit spots—the nature of the pattern is
determined by the nonlinearities in the kinetics, with
quadratic nonlinearities selecting spots, while cubic
nonlinearities  will select stripes (Ermentrout 1990;
Nagorcka & Mooney 1992; Barrio ef al. 1999).
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APPENDIX B. PARAMETER VALUES

Table B1. Parameter values and gradient thresholds used in the
numerical simulations

pattern forewing hindwing

niobe d = 70.8473,v = 619.45, same as forewing
a=—0.111,8 = —0.025, except
o = 0.69 a=0.111,

B = —0.025,
& = 0.9

salaami same as niobe cxcept ¢ = 0.89
¢o = 0.695

trophonius same as niobe except 6 =091
¢ = 0.697

hippocoonides  same as niobe except co = 0.87
¢o = 0.701

planemoides  same as niobe cxcept 6 =0.7
y = 0.67

natalica same as niobe except ¢ =0.75
a = —0.0555,¢) =0.673

cenea same as niobe except 6 =206
a=-00111,3=-0.025,
¢o = 0.653

lerghi same as cenea except 6 =0.38
¢ = 0.656

male and same as cenea except ¢ =0.75

male-like ¢ = 0.95
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