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in the biosciences
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The spectacular biotechnological advances
of the past two decades have led to an
explosion of data m the biomedical sci-
ences.  We have recently completed the
mapping ol the human genome, we can
now determine when in development cer-
tain genes are switched on, and we can
accurately follow the fate ol single cells.
The list is endless. However, we are per-

tlously close to falling into the practices of

the nineteenth century, when biology was
steeped in modes ol classilication and
there was a tremendous amount ol list-
making activity. This was recognised by
D'Arcy Thompson [1] in his classic work
On Growth and Form, lirst published in
1917. He was the first to develop theories
as to how certain forms arose, rather than
simply cataloguing dilferent Torms, as was
the tradition at that time.

Of course, we have come a long way
since then. The identilication ol a gene
that causes a certain disease or delormity
has huge benefits for medicine. We must
recognise, though, that genes only specily
the properties ol proteins and cells. It is
the physico-chemical interactions ol these
cells that lead to (for example) the devel-
opment of structure and form in the early
embryo. Cell fate can be determined by
environmental factors, and cells respond
to signalling cues. Therefore, a study at
the molecular level alone will not help us
to understand how cells interact. Having
devoted a huge amount ol effort to taking
Humpty Dumpty apart, we must now [ind
out how to put him together again.

Since the iteractions that govern bio-
logical processes are highly non-linear and
may be non-local, they must be couched in
a language that is designed to compute the
results of such complex interactions. At
the moment, the only language we have lor
doing such calculations i1s mathematics.
Mathematics has been extremely successiul
in helping us to understand physics. It is
now becoming clear that mathematics and
computation have a similar role to plav in
the life sciences.

Self-organisation

One ol the key puzzles in developmental
biology is the understanding ol how the
vast array ol spatial patterns and structure
we observe in the animal kingdom emerge
from the almost homogeneous mass of
dividing cells that constitute the carly
embryo. The skeleton, lor example, is laid
down during chondrogenesis, when spe-
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cialised cells (chondroblasts) condense into
aggregates that lead eventually to bone
formation. Butterlly wings exhibit beauti-
[ul colours and patterns, and many animals
develop dramatic coat markings.

In all of these examples, although genes
play a key role, genetics say nothing about
the actual mechanisms that produce spatial
pattern.  The first major advance in this
field was made by Alan Turing [2]. He was
interested in morphogenesis — the process by
which form and structure arise. He con-
sidered a system ol chemicals reacting and
diffusing, modelled by equations of the
form

du/dt = DV2u + f(u, p),
where u(x, 1) is the vector of chemical con-

centrations at spatial point x and time {, D
is a diagonal matrix of diffusion coelfi-
cients, and f models the reaction kinetics,
which are functions of the chemical con-
centrations and various kinetic parameters
p. The problem was completed by Impos-
ing certain boundary conditions - for
example, periodic if one wants to model a
cylindrical structure, or zero-flux il one
wants to model an impermeable boundary.
Turing showed that one could choose
equations ol this form which exhibited a
uniform steady state that was stable in the
absence ol dillusion, but became desta-
bilised when dillusion was introduced and
evolved to a spatially varying state — a spa-
tial pattern. This phenomenon is known
as diffusion-driven instability and is an exam-
ple of self-organisation or an emergent proper-
ty.  Assuming that one ol these chemicals
was a growth hormone, Turing then postu-
lated that points where the concentration
ol hormone was highest would grow
fastest, resulting in spatial structure.  For
this reason, the chemicals were termed
morphogens. More generally, one assumes
that these chemicals activate a gene switch
if thev breach a threshold value, causing
cells to dilferentiate.  This theory thus
hypothesises that the structures one sees
overlie a pre-pattern in chemical concen-
trations.

Although the identfication of mor-

(a)-(c) Some computed solutions of a Turing reaction-diffusion model. (d)-(g) Typical animal coal
markings. () Photograph of a common genet exhibiting a spotted body and striped tail (from
Murray, 1993, with permission).
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phogens has thus far proved elusive,
Turing structures have now been shown to
exist in chemical systems. When Turing
first proposed his theory, he met with some
hostility from chemists who were con-
vinced that such patterns could not arise in
chemical systems. This is a nice example
of mathematics driving research in other
scientific areas.

A number ol theories based on different
biological hypotheses have since been pro-

posed for self-organisation, but many of

these models rely on the common pattern-
ing mechanism ol short-range activation,
long-range inhibition. 1Tt is thus possible to
make predictions that do not rely on spe-
cific biological details. One such predic-
tion is that a spotted animal with a striped
tail is more likely to occur than a striped
animal with a spotted tail. This is an exam-
ple of a developmental constraint. The
book by James Murray [3] has an excellent
in-depth discussion of this and related
1ssues.

It transpires that models of the same
general form as that above can exhibit a
wide variety of patterns, such as propagat-
ing fronts, spiral waves, target patterns and
toroidal scrolls.  Indeed, the Hodgkin-
Huxley model for electrical signalling in
nerve axons (for which they won the Nobel
prize) is ol the above form. The most
famous example in chemistry of pattern
formation is the Belousov-Zhabotinsky (BZ)
reaction, in which bromate ions oxidise
malonic acid i a reaction catalysed by
cerium, resulting in sustained periodic
oscillations in the cerium ions. 1 mstead,
the catalvsts Fe?+ and Fe3* and phenan-
throline are used, the periodic oscillations
are visualised as colour changes between
reddish-orange and blue. This system has
been 1hmr)1m|1]\ modelled ]Ihl[htln(llihl”\
and it emerges that the kev to patterning
here 15 a plu_ nomenon termecd f.\ufm"J.'r'.'f_‘l.
An excitable system is one in which the
steady state s stable to small perturbations,
but to large (supra-threshold) perturba-
tions, the system undergoes a large devia-
tion belore coming back to its original
steady state. During this transient period,
the system does not respond to perturba-
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tions.  Coupling diflusion to this type ol
kinetic behaviour allows [or waves ol activ-
ity to propagate through the medium.
Excitable media also play a role in the
aggregation of certain amoeboid species,
such  as  the cellular  shhime mould
Dictyostelium discoidewn (Dd), which has
served as an important model paradigm
because it is simple enough to allow exper-
imentation, yet sulliciently sophisticated to
exhibit many physico-chemical processes
that are similar to those observed in high-
er organisms. Under starvation condi-
tions, these amoebae signal each other via
the chemical messenger cyclic AMP, result-
ing in the propagation of spiral waves of
the chemical. The amoebae move up gra-
dients of cyclic AMP, resulung in the fm-
mation of aggregations. The formation of
aggregates seems Lo be a vital component
ol the Dd life cycle, as it appears to be nec-

essary to enable the cells o dilferentiate
into a spore type that can survive harsh
conditions.  This species has been exten-
sively studied theoretically and the model-
ling has resulted in crucial biological
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msights that could not have been gained
casily in any other way.

This example illustrates the power ol
mathematics as the universal scientilic lan-
guage because, although the details of the
biology underlying Dd aggregation are
very different from the chemistry underly-
ing the BZ reactions, the resulting mathe-
matical equations are very similar, so that
imsights gained in one field can be trans-
ferable to another, seemingly very differ-
ent leld.

Medical applications

Intriguingly, the heart is another example
ol an excitable system, allowing electrical
activity to propagate across its surface as
the signal for the heart to beat. Manv
heart abnormalities arise as the result ol
disturbances to this wave propagation, and
these have been studied using simple mod-

els of More

the above general form.
sophisticated models have been developed
that allow one to predict what effect a sin-
gle gene mutation will have on the global

dynamics of the heart. We are now enter-

17



FEATURE

ing the realm ol the ‘virtual human’, in
which even surgical procedures may be
first tested n virtual reality - after all, we
do not allow commercial airline pilots to
fly a plane until they have completed sev-
eral hours of training on a {light-simulator,
yet we are happy to let surgeons loose on
our brains without equivalent training! /n
silico drug-testing is already approaching
reality and is attracting a lot ol interest
from pharmaceutical companies. The
reduction in the costs (presently some
450m euros) of bringing a drug to market
by the use of good models is beginning to
motivate such companies to invest in mod-
elling research.

Recently, the multi-national pharmaceu-
ticals giant Hollfman-LaRoche approached
Denis Noble and his colleagues in the
Department of Physiology, Oxford, to help
with a problem that arose during the
approval process for one ol their drugs by
the US Food and Drug Administration.
The FDA had noticed a glitch in the elec-
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Frame 1. Excitation has occurred in septum but is
not velt visible on surface.

to produce ECG characteristic of
Torsade de Pointes.

Frame 4.

Time evolution of mudtiple

tro-cardiograms ol people taking the drug,
and clinicians had concluded that the drug
was dangerous. Noble applied the drug to
his virtual heart model and found that
developed the same glitch. He found that
the glitch was not a sign of major mallunc-
tion and the drug was approved [4].
These types ol models are highly com-
putational, as they involve intricate molec-
ular details linked to cellular activity.  As
computing power increases daily, more
complicated models can be analysed. Such
models also throw up interesting mathe-
matical questions, such as how can one
properly model the interactions of process-
es occurring over many dilferent length
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and time scales.

The second biggest killer in the devel-
oped world, alter heart disease, is cancer.
Despite the huge proliferation of experi-
mental data and clinical treatments, there
has been no decrease in the death rates
due to the most common cancers. This 1s
largely because there is still no basic con-
sensus models of tumour growth and sur-
vival, metastasis (the process whereby
potentially fatal secondary tumours are
formed from a primary tumour), tumour
angiogensis (whereby nutrients are divert-
ed to the tumour), and extra-cellular
matrix breakdown by tumour cells.
the challenges of the next decade is to
develop mathematical models that clarify
these [undamental processes and that can
predict new strategies ol clinical therapy.

At present this area is attracting a lot of

research, and modelling is being used to
address such problems as effective drug-
delivery strategies and ways of decreasing
angiogenesis.

Frame 2. Break-out on surface of ventricles is

abnormal ...
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Frame 5. re-entrant tachycardia continues
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Summary

We are entering the post-genomic period,
and it is clear that mathematics has an
ever-increasing role to play in biomedi-
cine. In 1997 the International Union of
Physiological Sciences set up the Physiome
Commission to ‘promote anatomically and
biophysically based computational model-

ling for analysing integrative function in
terms of underlying structure and molecu-
lar mechanisms’.  More recently, the

research councils have set up programmes
funding research at the interface between
computation, mathematics and the life sci-
ences.

Mathematical biology is a rapidly grow-
ing subject and the number of full-time
university faculty engaged in this type ol
research is increasing. The subject area

itsell has expanded enormously and the
above represents a very brief review. Other
areas of active research include neural net-
works, neurophysiology, immunology, epi-
demiology and ecology.

It is clear that the

Frame 3. ...
entry ...

and initiates multiple wavelets of re-

Frame 6. ... {continued).

re-entrant waves in a 3D model of the dog heart (courtesy of Denis Noble).

Bioinformatics

As technology continues to advance, we
must dev l'll}i) ways Lo t‘.\pl[:il and imt‘l'pl'c[
the flood of data, not drown n it
Probability theory, statistics, stochasticity
and high- pm\uul computing will play an
important vole in the rapidly emerging
field of bioinformatics.  Some ol the
important questions here are pattern find-
ing, data mining and pattern recognition,
to name but a few. Presently a major aim
is to understand how protein structures
form, and how spm‘il'l(' protein structure
determines function. Here, there may be a
role for [npf‘r]f)g}'__ geomerry, electrostatics
and mechanics.

life sciences will continue to pose exciting,
novel and challenging problems for math-
ematicians.
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