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Abstract-Analytic approximations of the time-evolution of the single enzyme-substrate reaction 
are valid for all but a small region of parameter spsce in the positive initial enzyme-initial substrate 
concentration plane. We find velocity equations for the substrate decomposition and product forma- 
tion with the aid of the total quasi-steady-state approximation and an aggregation technique for cases 

where neither the more normally employed standard nor reverse quasi-steady-state approximations 
are valid. Applications to determining reaction kinetic parameters are discussed. @ 2001 Elsevier 
Science Ltd. All rights reserved. 
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1. INTRODUCTION 

One of the most widely studied reactions in enzyme kinetics is the single enzyme-substrate reac- 

tion 
kl 

S+E i== dE+P, (1) 
k-1 

where S, E, C, and P represent substrate, enzyme, complex, and product, respectively, and kl, 

k-1, and kz are reaction rate constants. The time evolution of reaction (1) can be described 

completely by the following pair of coupled nonlinear differential equations: 

d[Sl = kl[([Cl - [Eol)[Sl + Ks[Cll, 

d& 
- = h[Pol - KWSI - h&‘ll, 

dt 

(2) 

(3) 
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(5) 
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together with the uncoupled equation 

d&V=kz[C] (4) 

and the enzyme and substrate conservation laws [Eel = [E](t)+[C](t), [So] = [S](t)+[C](t)+[P](t) 

with initial conditions ([S], [El, [Cl, [P])(O) = ([So], [Ec],O,O), w h ere the square brackets denote 
concentrations. In this system, KS = Ic_i/ki is the equilibrium dissociation constant of the 

complex and KM = (/c-i + Icz)/lci the Michaelis-Menten constant [l]. 

From (3) and (2), it follows that: 

PO1 ISI 
[C’([“) = KS + (K/(1 + d[C]))/d[S] + [S] ’ 

where K = ICp/kl is the Van Slyke-Cullen constant [2]. 

Substituting (5) in (4) yields the general velocity of product formation 

%X%X ISI I/-=- 
d, + [Sl ’ (6) 

where wmax = lcz[Eo] is the maximum velocity and 

K 

’ = Ks + 1 + d[C]/d[S]’ (7) 

Under certain conditions, one can use (6),(7) to derive simpler velocity equations to estimate 

the reaction parameters, namely w,,,, KS, and K. First, under the condition that the sum of 

initial substrate concentration ([So]) and KM greatly exceeds the initial enzyme concentration 

([Eo]), that is, 

PO1 
KM + [Sol 

<< 1, (8) 

biochemists, with the aid of the standard quasi-steady-state assumption (sQSSA), study the long 

time behaviour of reaction (1) [3,4]. Setting $$ x 

sQSSA velocity equation. 

Second, for conditions in which the initial enzyme 

substrate, that is, 

E&l 
[Sol ’ 

0, implies @ 
. 

-+ 0 and 4 = KM in the 

concentration greatly exceeds that of the 

(9) 

it can be shown that the sQSSA is invalid [2]. In this case, the appropriate assumption is the 

reverse quasi-steady-state assumption (rQSSA) [5] or equilibrium approximation (q w 0) and 

the velocity equation for the long time behaviour is of the form (6) with 4 = KS, 

Segel and collaborators [3,5] have shown that the sQSSA can provide a good approximation 

even when [Se] M [Eo] as long as [Eo] is small compared to KM. The positive [So]-[Eo] plane 
can be divided into regions in which these approximations hold, but in certain circumstances, 

there remains a region where neither holds. We illustrate this in Figure la, from which we note 

that in the shaded region, when both the sQSSA and rQSSA are invalid, the initial enzyme and 

substrate concentrations are comparable. Recently, Borghans and collaborators [6] re-examined 

the problem when there is an excess of enzyme and KM is small, so that (8) does not hold. 

They introduced a new variable, the total substrate concentration [>I = [S] + [Cl, to extend the 

parameter domain for which it is permissible to employ the classical assumption $$l M 0, with 

the following condition: 
Wol 

(KM + [Sol + [EoH2 e ‘- (10) 
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(a). Regions of validity of the sQSSA and rQSSA for 
the enzyme-substrate reaction (1) plotted using condi- 
tions (8) and (9). There are four regions: A where only 
the sQSSA is valid, B where only the rQSSA is valid, 
C where both assumptions are valid, and the shaded 
region where both are invalid. Note that in the latter 
region, the initial enzyme and substrate concentrations 
are comparable. 
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(b). Regions of validity of the sQSSA, rQSSA, and 
tQSSA plotted using conditions (8)-( 10). The positive 
[Sol-[&] plane is now divided into six regions. The 
sQSSA, rQSSA, and tQSSA are not valid in the shaded 
region. In region B’, the sQSSA and tQSSA are both 
invalid, but the rQSSA is valid. In region D, only 
the tQSSA is valid. The regions A, B, and C are as 
in (a), but here the tQSSA is also valid. Parameter 
values used are kr = 10, k-1 = 1, k2 = 10 (K = 1, 
KS = 0.1, Kbf = 1.1). 

Figure 1. 

This new condition is called the total quasi-steady-state assumption (tQSSA). By including the 
tQSSA in the plot (see, Figure lb), the positive [SO]-[Ea] plane is divided into six regions. It can 
be seen that the region in which none of the assumptions are valid is reduced considerably due 
to the tQSSA. However, this does not provide a practical advantage to biochemists, because the 
velocity equations for the substrate or product, used to determine the kinetic parameters, have 
not been derived into this region. 

The aim of this letter is to obtain velocity equations of substrate decomposition and product 
formation for reaction (1) with the aid of the tQSSA and a singular perturbation method for an 
aggregated variable. These equations allow biochemists to determine kinetics parameters under 
conditions in which neither the sQSSA nor the rQSSA are valid. 

2. THE TOTAL 
QUASI-STEADY-STATE ASSUMPTION 
AS AN AGGREGATION TECHNIQUE 

The total substrate concentration ([s]) is an aggregated or lumped variable. Aggregation or 
lumping techniques have been used in a number of areas to reduce systems of equations. This 
approach was initiated in chemistry by Wei and Kuo [7] and their work has been extended by Li 
and collaborators [8]. Aggregation techniques have been applied in ecology, population dynamics, 
and also in more general systems [9,10]. 

We nondimensionalise the system (2),(3) with the aid of the tQSSA [6] which provides the 
appropriate dimensionless variables for the application of an aggregation technique. Substituting 

ISI 
“=[sol’ 

c = KM + PO1 + [Sol [C] 

~~ol[sol ’ T = KM +‘;z + [So] t7 (11) 

into (2) and (3) and rearranging the terms, we define the dimensionless parameters 
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KPOI 
’ = (KM + [Eo] + [SO])~’ 

[Sol 
g = KM + (Eo] + [so] ’ 

K 

K. = KM + [Eo] + [So] ’ Kc, = KM + g] + [SO] ’ 

KS 
IEs = KM + [Eo] + [so] ’ 

This yields the following nondimensional governing equations for reaction (1): 

(12) 

2 = ; [(UC - 1)s + K&l , (13) 

c !& = (1 - ac)s - Kc,C, (14) 

together with the uncoupled velocity equation of product formation 

and the enzyme and substrate conservation laws with initial conditions (s, c)(O) = (l,O). Equa- 

tion (13) can also be written 

-g = ; (ac - 1)s + PC, 

where p = K,/~E = k-l/k2 is the ratio of the fission constants for the enzyme-substrate complex. 

We can now employ the singular perturbation method introduced by Li and collaborators [ll] 

to determine an approximate aggregated differential equation for the substrate decomposition. 

We first define a purely fast variable by separating the fast and slow variables as follows; let 

3 = c + h[s], (17) 

where h[s(T)] is a first-order differentiable variable. Multiplying by E and differentiating, we have 

ds dc 

edT =cdT+e 

dh[s] ds -- 
ds dT’ 

which, after substitution from (16) and (14), becomes 

Employing (17) to eliminate c, after some algebra we find that 

As E --t 0, we obtain the purely fast differential equation, 

p+;s )] 3 = -y(s, c)a, 

provided that h(s] satisfies the following equation: 

6% [++(,+;s)h[s]] -(fic,+as)h[s]-s=o. 

(20) 

(21) 

(22) 
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Let us assume that h[s] and q have expansions of the form 
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h[s] = 2 2hi[S], (23) 
i=O 

ds=~ci!b$. WI 
(24) 

i=O 

Substituting (23) and (24) into (22), and equating powers of e, allows us to determine hi[s] 

and y s. We only take the first two terms of the expansion of h[s] and y as higher-order 

terms rapidly become messy and, for our purposes, the first two terms provide sufficient accuracy. 

In summary, we obtain 

(26) 

Li and collaborators [ll] solved the differential equation (21) using a singular perturbation 

method. Considering S as a scalar function, without expanding it, they found that the solution 

for s only consists of an initial layer expansion and has the form 

S(T) = a(O) exp (-YNO), 4 T) 1 (27) 

with the initial condition S(0) = c(0) + h[s(O)] = h[s(O)]. N o ice that B(T) is an exponential t 

function which approaches 0 after the initial transient, that is T > E. 

The value of c(T) can be obtained by substituting (27) into (17), 

0) = h[s(O)l exp (-MO), 61 z) - WT)l. 

Now, we can obtain the aggregated velocity equation for substrate decomposition by substitut- 

ing (28) into (16), 

ds 1 

dT- K, 
---s-(P+,~s) [h[s]-h[s(O)]exp(-y[s(O),rjT)]. 

In Figure 2a, the numerical solutions of the approximations (28),(29) are shown (cross symbols) 

along with the numerical solutions of system (13),(14) ( so i curve) for an illustrative example. 1 d 

The approximations are indistinguishable during the initial transient (T < E) and are in close 

agreement with the numerical solutions for the slow transient. We also find that the velocity 

equation for substrate decomposition is in close agreement with the numerical solutions for con- 

ditions in which the sQSSA or rQSSA are valid. In some cases, higher-order approximations are 

almost indistinguishable over most of the interval. However, under certain conditions, i.e., larger 

values of E, higher-order approximations cannot provide a good approximation after the initial 

transient. This situation can be corrected by expanding the singular perturbation solution of s 

(equation (27)) d an matching appropriately. Hence, in principle, the kinetic parameters can be 

determined from progress curves by numerically integrating (29). This has been done previously 

for the Michaelis-Menten equation [12]. 

We can also determine a velocity equation for product formation. After an initial transient, 

that is T > E, s x 0. The inertial manifold which attracts all solution trajectories can then be 

obtained from (17) as 

c = -h(s]. (30) 
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S,C 

(a). Graph of the numerical solutions (solid curve) and 
approximate solutions obtained with the aggregation 
technique (cross symbols) for the reaction (1). 
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(b). Representation of the sQSSA (dashed curve) and 
rQSSA (dotted curve) velocity equations for product 
formation obtained from the general velocity equation 
(6) along with the tQSSA velocity equation for prod- 
uct formation (solid curve, (31)]). Initial conditions 
[So] = 2.5, [Eo] = 2.5; n = 0.0901, n, = 0.0090, 

am = 0.0991, c = 0.8115 x 10-5, p = 0.1000, 
o = 0.9008. With these parameter values, K = 1, 
KS = 0.1, KM = 1.1, and only the tQSSA is valid. 

Figure 2. 

Therefore, the aggregated velocity equation of product formation can be derived from (15) by 

substituting (25) and (30) yielding 

v= 
tcE, 1 OS + E (K,“+““,,)4 + *. ’ . (31) 

We call this equation the tQSSA velocity equation. This equation can also be derived from (28) 

by ignoring the contribution of the term h[s(O)] exp(-y[s(O), E] (T/E)). Notice that this can only 

be a good approximation after the initial transient, that is T > E. In Figure 2(b), the tQSSA (31), 

sQSSA and rQSSA velocity equations of product formation are plotted in conditions when the 

sQSSA and rQSSA are not valid, but the tQSSA is valid. It can be seen that the tQSSA velocity 

curve lies between the sQSSA and rQSSA velocity curve when the initial enzyme and substrate 

concentrations are comparable and the sQSSA is not valid. 

To illustrate the extended range of validity of the tQSSA velocity equation for product forma- 

tion, we compare it with the sQSSA and rQSSA velocity equations for product formation under 

conditions in which the sQSSA is valid (see, Figure 3a) or the rQSS is valid (see, Figure 3b). If 

the sQSSA is valid, the tQSSA velocity equation for product formation is almost indistinguish- 

able from the sQSSA over most of the interval (Figure 3a). If the rQSSA is valid, the tQSSA 

velocity equation for product formation is in very close agreement with the rQSSA velocity equa- 

tion (Figure 3b). In this plot, the parameters and initial values chosen provide a representative 

example of the ranges of validity of the sQSSA and rQSSA. 

3. DISCUSSION 

One of the key practical problems associated with the single enzyme-substrate reaction (1) is 

identifying parameter regimes in which various analytical approximations hold, as these are then 

used to calculate kinetic parameters from experimental data. We have derived velocity equations 
for substrate decomposition and product formation with the aid of the total quasi-steady-state 
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(a). Initial conditions [So] = 10, [&I = 0.001; K = (b). Initial conditions [So] = 0.001, [Eo] = 10; K. = 
0.0901, n, = 0.0090, n, = 0.0991, E = 0.8115 x 10-5, 0.0901, fcs = 0.0090, fcm = 0.0991, c = 0.0812, p = 
p = 0.1000, u = 0.9008. With these parameter values, 0.1000, u = 0.0001. With these parameter values, 
K = 1, KS = 0.1, K 

M 
- - 1.1, and both the sQSSA K = 1, Ks = 0.1, KM = 1.1, and both the rQSSA 

and tQSSA are valid. and tQSSA are valid. 

Figure 3. Representation of the sQSSA (dashed curve) and rQSSA (dotted curve) ve- 
locity equations for product formation obtained from the general velocity equation (6) 

along with the tQSSA velocity equation for product formation (cross symbols, (31)). 
Parameter values are kl = 10; k-1 = 1, k2 = 10. 

assumption. This allows us to enhance the regions in parameter space for which analytical 

approximations are valid. In some cases, the tQSSA provides a good approximation in regions 

where either one or other of the standard quasi-steady-state assumption and the reverse quasi- 

steady-state (or equilibrium) assumption hold. Additionally, a fitting procedure can now be used 

to determine the kinetic parameters far from the standard quasi-steady-state and equilibrium. 

This method would fix experimental data on the variation of substrate or product concentration as 

a function of time with numerical simulations of the velocity equations derived in this manuscript. 

The analytic framework presented here can be easily extended to other enzymatic modes of 

action which may be more realistic than (l), and therefore, our results may have broader appli- 

cation. 
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