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Abstract. Reaction-diffusion equations are ubiquitous as models of biological pattern for-
mation. In a recent paper [4] we have shown that incorporation of domain growth in a
reaction-diffusion model generates a sequence of quasi-steady patterns and can provide a
mechanism for increased reliability of pattern selection. In this paper we analyse the model
to examine the transitions between patterns in the sequence. Introducing a piecewise linear
approximation we find closed form approximate solutions for steady-state patterns by ex-
ploiting a small parameter, the ratio of diffusivities, in a singular perturbation expansion. We
consider the existence of these steady-state solutions as a parameter related to the domain
length is varied and predict the point at which the solution ceases to exist, which we identify
with the onset of transition between patterns for the sequence generated on the growing do-
main. Applying these results to the model in one spatial dimension we are able to predict the
mechanism and timing of transitions between quasi-steady patterns in the sequence. We also
highlight a novel sequence behaviour, mode-tripling, which is a consequence of a symmetry
in the reaction term of the reaction-diffusion system.

1. Introduction

Recent experimental observations on the skin pigmentation of certain species of
fish have shown that patterns evolve in a dynamic manner during the growth of the
developing animal. Kondo and Asai [15] describe observations on the marine angel-
fish Pomacanthus semicirculatus, where juveniles display a regular array of vertical
stripes which increase in number during growth, with new stripes appearing in the
gaps between existing ones as the animal doubles in length. This experimentally
observed pattern evolution also arises naturally in the reaction-diffusion mecha-
nism with underlying domain growth. These results have sparked renewed interest
in reaction-diffusion models for biological pattern formation and, in particular, the
role that domain growth may play in the pattern formation mechanism [34,26,2]. A
specific feature of reaction-diffusion patterns on growing domains is the tendency
for stripe patterns to double in the number of stripes each time the domain doubles in
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length, called mode-doubling. This appears to be a general result for a wide variety
of reaction-diffusion models with different reaction kinetics. We have suggested
that this mechanism can improve the reliability (robustness) of obtaining specific
patterns with many spatial oscillations by growing the pattern up from an initially
simple one on an initially small domain [4]. In a one-dimensional system which
has been nondimensionalised to the unit interval this phenomenon has been called
spatial frequency-doubling, and the behaviour was explored in our recent paper
(see also [17,1]). Numerical simulation of reaction-diffusion models with different
reaction kinetics demonstrates that frequency-doubling occurs through either the
splitting and separation of peaks in activator concentration, or by the appearance
of new activator peaks at the sites of concentration minima in the previous pat-
tern, which is called peak insertion. However, how the mechanism of transition is
determined by the reaction kinetics has been unclear.

In this paper we present an analysis of the model for reaction and diffusion on
growing domains in one space dimension that was developed in [4], where growth
is much slower than the rates of the reaction and diffusion processes. We exam-
ine the generation of Turing patterns of large amplitude, far from the bifurcation
from the homogeneous steady state. In particular we examine the onset of dynamic
transitions between patterns as the domain grows, and establish the factors which
determine the mechanism of transition: whether by peak splitting or insertion. Also
we find that under certain circumstances both mechanisms may operate simulta-
neously and a new pattern sequence, spatial frequency-tripling, is realised.

We will concentrate on transition-layer-type patterns, consisting of regions of
alternating high (peak) and low (trough) value. The width of the transition-layer
region decreases as the ratio of diffusivities tends to zero, while the width of the
peak (and the spatial location of the transition-layer) remains unaltered. Much of the
theory of transition-layers in reaction-diffusion systems was developed by Fife [9].
We will consider monostable systems where there is a single homogeneous steady
state which loses stability to a branch of Turing pattern solutions at a critical point.
The analysis is simplified by introducing a piecewise linear term for the nonlinear
reaction kinetics; an approximation which does not qualitatively affect the solution
behaviour. Solutions are analysed in the asymptotic limit as the ratio of diffusiv-
ities tends to zero, allowing prediction of the mechanism and timing of dynamic
transitions between patterns in a pattern sequence, driven by the domain growth.

2. The model: reaction and diffusion on growing domains

Following Crampin et al. [4] the concentration of a chemical species u(x, t) react-
ing in and diffusing through a growing one-dimensional domain x ∈ �(t), where
time t ∈ [0,∞), is governed by the evolution equation

ut + (au)x = ω−1Duuxx + R(u, v, . . . ) (1)

where R describes reaction with a set of chemicals (u, v, . . . ). We have scaled
the equations with a reaction rate ω which is characteristic of the reaction kinetics
such that the timescale for pattern formation in the absence of domain growth is
O(1). This equation arises from a kinematic description of domain growth, and
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produces two additional terms to the standard reaction diffusion model: a convec-
tion term aux and a dilution term axu due to local volume increase. Rather than
pose constitutive relations describing the mechanical properties of biological tissue
for a particular case, we consider a general framework in which the local flow rate
a(x, t) is determined by the local rate of volumetric expansion (strain rate) which
we impose on the system, and hence the domain growth may be defined by local
(i.e. cellular) processes only [3,6]. In the case of growth at constant strain rate [16]
(where all cells in the tissue may be thought of as proliferating at a constant rate)
the domain growth is spatially uniform and exponential in time and is described by

x = X exp (ρt) (2)

where X is the Lagrangian (initial) position and ρ is the strain rate.
For this uniform growth the dilution term axu = ρu, and by transforming the

domain to the unit interval we eliminate the advection term aux = ρxux . For the
interaction of two chemical species, and ordering the species with decreasing dif-
fusivity (with long-range inhibitor u and short-range activator v), we recover the
nonautonomous system

ut = γ−1uxx + f (u, v) − ρu (3)

vt = ε2γ−1vxx + g(u, v) − ρv (4)

γt = 2ργ0 exp (2ρt) (5)

defined on

x ∈ [0, 1] , t ∈ [0,∞) (6)

where f and g are the reaction kinetics in a well-stirred medium and ε2 = Dv/Du

is the ratio of diffusivities. γ (t) is a time-dependent scaling parameter which is
proportional to the square of the domain length. Thus for uniform domain growth
the model reduces to a reaction-diffusion system with time-dependent diffusivity.

Typically in such models the ratio of diffusivities ε2 = Dv/Du is taken to be
small. In [4] we found that pattern sequences are formed under the assumption of
slow domain growth. This is a natural assumption to make for biological systems,
where the reaction and diffusion of chemicals will take place on a timescale much
faster than the timescale on which cellular machinery required for tissue growth
will operate. We have scaled the equations with a reaction rate ω so that pattern
formation takes place on a timescale of O(1). The timescale characterising domain
growth is ρ−1, and so for slow growth we have two small parameters in the problem

0 < ρ � 1 and 0 < ε � 1. (7)

To close the problem we impose zero flux conditions at the domain boundary
which further restricts the pattern behaviour (although zero flux conditions are not
a necessary requirement for the frequency-doubling phenomenon):

ux = vx = 0 on x = 0, 1. (8)
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Initial conditions are random perturbations about the homogeneous steady state of
the kinetics, (us, vs) where

f (us, vs) = g(us, vs) = 0. (9)

The initial domain length is contained in the time-zero scaling parameter γ0 =
ωL2

0/Du and standard bifurcation techniques show that there is a critical value of γ
corresponding to a minimum domain length requirement for pattern formation [5].

In our previous paper [4] we showed that the solutions to this system consist
of sequences of quasi-steady patterns (standing waves), after initial transients and
for γ > γc, with rapid transitions between quasi-steady patterns (pattern reor-
ganisation). The system has two timescales, a slow timescale τ = ρt and a fast
timescale t . We analyse the system in the asymptotic limit ρ → 0. Then where
uτ , vτ � O(ρ−1) we have the slow system

0 = uxx + γf (10)

0 = ε2vxx + γg (11)

γ (τ) = γ0 exp (2τ) (12)

for which quasi-steady solutions to the fixed domain problem are parameterised by
γ . The slow system holds except where uτ , vτ ∼ O(ρ−1) for which we have the
fast system,

ut = γ−1uxx + f (13)

vt = ε2γ−1vxx + g (14)

where on the fast timescale γ is constant, which governs the reorganisation of pat-
terns away from the quasi-steady regime. We note that the dilution term does not
appear in either of these expressions and so is safely neglected in the limit ρ → 0.

Previously we investigated the pattern sequences generated under different
functional forms of γ (t) corresponding to different schemes for the domain growth.
In particular we were interested in the robust generation of pattern: reliable and re-
peatable pattern formation that is not strongly sensitive to the initial conditions,
model parameters and functional form of the kinetics. Under certain conditions on
the domain growth the evolution equations generate a regular doubling of the spatial
frequency of the quasi-steady standing wave pattern. We found that the incorpo-
ration of domain growth was a mechanism for robust pattern formation through
the generation of a mode-doubling sequence. Robustness implies that for a large
set of initial conditions the same pattern sequence is generated, such that at any
time subsequent to initial transients the solution is approximately the same and is
independent of the initial conditions, provided that the initial conditions admit the
initial Turing bifurcation. It is easier to select patterns at low modes with the equa-
tion parameters, and so this presents a mechanism for generating patterns of high
spatial mode reliably. In particular, if the initial domain length is below the critical
domain length for Turing bifurcation then provided that the initial conditions admit
growth of the first mode the sequence of modes 1,2,4,8 . . . will be generated.



Reaction-diffusion patterns on growing domains 111

In the rest of this paper we investigate the parameterisation by γ of solutions
in the slow regime where patterns are in the quasi-steady state. Our method is to
exploit the small parameter ε to construct solutions to the steady-state reaction-dif-
fusion system in the limit ε → 0 (see for example the books by Grindrod [12] and
Kerner and Osipov [14]), and from this to show that the slow dynamics carry the
system to a point where the quasi-steady solution ceases to exist, at which point
reorganisation of the pattern ensues in the fast regime. The analysis is limited to
the slow dynamics, but the identification of mechanisms of reorganisation arises
naturally. The analysis predicts the value of γ (and hence the point in time) and the
mechanism by which reorganisation proceeds, and how this is determined by the
reaction term R(u, v) in the equations.

3. Reaction kinetics

Various schemes have been proposed in the literature as models of biochemical
reactions with the prerequisites for the Turing bifurcation in a reaction-diffusion
system. We will consider a reaction scheme of polynomial type, and seek to under-
stand the influence of the nonlinearities on sequence formation. We will consider
the role that cubic and quadratic nonlinearities play in pattern formation and, in
particular, in the transitions between patterns. Ermentrout [8] studied a similar mod-
el to investigate the role of the nonlinear kinetics in the selection of spotted and
striped patterns on the square two-dimensional domain. It is expedient to expand
the kinetic function about the steady state, so that the order of different terms is
established. For two interacting species, writing c = (ū, v̄) = (u−us, v−vs), any
kinetic function R may be expanded as

R(c) = Ac + N (c) (15)

= Ac + N2(c, c) + N3(c, c, c) + . . . (16)

and we will assume that f and g can be expanded in this way. In what follows we
will drop the over-bars on the variables (for notational convenience), noting that
we no longer expect everywhere-positive solutions for c(x, t).

For kinetic terms written in this form, the linearized equation contains simply
the Jacobian A, which should satisfy the conditions for Turing bifurcation (see, for
example, the book by Murray [22]). The nonlinearities N2 and N3 are respectively
quadratic and cubic combinations of the concentrations, and no higher nonlineari-
ties will be considered as these are the highest order terms associated with kinetics
such as the Schnakenberg [32], glycolysis [33] and Gray-Scott [11] models. The
problem may be simplified further by considering only nonlinearities in v, appear-
ing only in the activator equation, such that f (u, v) is linear in u and v. We show
later that such a situation can give rise to Turing bifurcation to finite amplitude
pattern, and that a sequence of patterns may form on the growing domain as nor-
mal. More complicated functional forms for f (u, v) may be considered, but do
not qualitatively change the solution behaviour. We will be interested in reaction
terms which consist solely of odd powers of the dependent variables such that the
reaction-diffusion system is invariant under the parity transformation

(u, v) → (−u,−v) (17)
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which is clearly broken by the presence of quadratic terms. Therefore we choose
to study a kinetic system with cubic nonlinearity, and then investigate the effect
of adding a small quadratic contribution to the reaction term. We stress that we
have transformed the equations from the physically significant variables so that the
kinetic steady state is at the origin. This simplifies the subsequent analysis. The
aim of the analysis is to demonstrate the manner in which the reaction kinetics
determine the mechanism of pattern transitions and for this reason it is expedient
to consider the symmetric problem, and perturbations which break this symmetry.

The linear part of the reaction term can be chosen to admit the Turing bifurca-
tion, and we can specify the relative polarities of the spatial profiles for activator
and inhibitor species according to the signs of the entries in the matrix A (see for
example Dillon et al. [5]). We choose a pure kinetic system, in which the Fourier
modes destabilising the spatially homogeneous state are spatially in phase for the
activator and inhibitor. Cross kinetics, for which the spatial oscillations are out of
phase for the two species, may be studied in the same way, and the analysis is little
changed. The general nonlinear kinetic system that we study is given by f and g

where

f (u, v) = −σu + v (18)

g(u, v) = −u + µv + Qv2 − v3 (19)

for which the positive constants σ and µ are such that the linearized system with
Jacobian matrix

A =
(−σ 1

−1 µ

)
(20)

admits the Turing bifurcation. With suitable rescaling of u, v and time t any pure ki-
netic scheme may be transformed such that it has a Jacobian of the above form. We
will investigate the effect of quadratic terms on the behaviour of a predominantly
cubic system by introducing a small quadratic contribution, |Q| � 1.

Now assuming that f and g are O(1) it is straightforward to show that the
steady-state equations contain two distinct spatial scales. In the asymptotic limit
ε → 0 we have

uxx = −γf (u, v) (21)

0 = g(u, v) (22)

which is the outer subsystem, and rescaling in the inner variable ξ = x/ε we
recover the inner subsystem

uξξ = 0 (23)

vξξ = −γg(u, v) (24)

which determines the transition layer, which in the limit has zero width. We study
matched solutions of the outer and inner subsystems in the singular limit. In fact
the leading order expressions are sufficient for our purposes.
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The form of the activator nullcline g(u, v) = 0 is critical in determining the
solution behaviour in the outer region which, for the nullcline in nonlinear sys-
tem (19), is cubic in v. In fact the nonlinearities in the equations are such that in
practice this is a nontrivial exercise. The inner equations can be integrated, but in
the outer solution v is substituted with the root of a cubic and in general a closed
form solution cannot be found. However, the essential features of the kinetic system
are well approximated by taking a piecewise linear approximation to the reaction
term (see for example Rinzel and Keller [31], where a piecewise linear scheme is
used to study travelling wave solutions to the FitzHugh-Nagumo model for nerve
conduction).

4. Piecewise linear approximation

We introduce a piecewise linear scheme which retains the qualitative features of
the nullclines for the nonlinear system. Piecewise linear kinetics are defined such
that for the case Q = 0 the turning points in the v-nullcline coincide with those for
the full nonlinear problem. If we insist that the steady state of the kinetics is at the
origin (0, 0) so that the linearized system is simply the linear part of the kinetics,
then the nullcline must pass through the origin, where for simplicity we want the
kinetics to be continuous. Therefore we approximate the nullcline by three linear
regions. We will simulate the effect of introducing a non-zero quadratic contribu-
tion by removing the symmetry of the nullcline, as will be shown in detail later.
Also in general the gradient of the nullcline can be different in each of the linear
regions, but to preserve the symmetry we take equal gradients modulo their sign.
The piecewise linear reaction term is

f (u, v) = −σu + v (25)

g(u, v) = gi =


g1
g2
g3

=



−u − η(v + 2θ1), v < −θ1
−u + ηv, −θ1 ≤ v ≤ θ3
−u − η(v − 2θ3), v > θ3

(26)

where i = 1, 2, 3 define the three branches of the g nullcline, dividing (u, v) space
into 3 regions at the turning points where v = −θ1 and v = θ3 respectively, for pos-
itive constants θ1 and θ3. We will use subscripts to refer to these three regions. The
piecewise linear kinetics are such that the reaction term is continuous at v = −θ1
and v = θ3 for all u. In order that the turning points for the nonlinear and piecewise
linear kinetics coincide we modify one of the parameters in the linearized equations,
taking

η = 2

3
µ. (27)

This does not qualitatively alter the behaviour of the equations. The manner in
which the turning points depend continuously on Q for the full nonlinear problem
is approximated by taking

θ1,3 = 1

3

(√
3µ + Q2 ∓ Q

)
. (28)
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We have chosen parameters such that the Turing bifurcation is still admitted in the
linearized system with Jacobian

A =
(−σ 1

−1 η

)
. (29)

Solutions to evolution equations (3–5) for the activator species, v(x, t), with
nonlinear kinetics (18–19) and for the piecewise linear scheme (25–26) are com-
pared in Fig. 1. In the figure the three sequence types are illustrated: frequency-
doubling by peak splitting (a), (b) and peak insertion (e), (f), and frequency-tripling
(c), (d). The different sequences are achieved according to whether a small qua-
dratic perturbation is added to the cubic kinetics, and according to the sign of the
perturbation. For the piecewise linear kinetics the parity symmetry is broken by
moving the turning points according to equation (28). In each case the nonlinear
and corresponding piecewise linear kinetics can be seen to give qualitatively similar
behaviour. Nullclines for this system, given by

f (u, v) = 0, u = 1

σ
v (30)

g(u, v) = 0, u =



−η (v + 2θ1) , v < −θ1
ηv, −θ1 ≤ v ≤ θ3
−η (v − 2θ3) , v > θ3

(31)

are drawn in Fig. 2 for the symmetric caseQ = 0 and for an example whereQ �= 0,
and we have superimposed the g nullcline for the full nonlinear system (19).

The linear system that we study may, naturally, be solved exactly in each of
the linear regions of the reaction term, and the undetermined constants eliminated
by patching these solution segments together appropriately. However, such an un-
dertaking is algebraically challenging, sufficiently so to obscure the insights to be
gained from the simplifying approximation we have made, and indeed we quick-
ly find that the solution cannot be expressed in closed form. Thus we pursue an
asymptotic approximation and consider only the leading order in an expansion
in ε.

The outer solution is constrained to lie on the three-branched nullcline g = 0.
Then locally, and away from the quasi-steady state, we find in the outer approxi-
mation

vt = g(u, v) (32)

and with the form of g given in (19) it is straightforward to show that branch 2
is unstable to small perturbations in v for all u. Therefore the time-independent
(steady state) outer solutions lie on branches 1 and 3, corresponding to low and
high v (and u for a pure kinetic system) respectively.

For illustrative purposes we will consider the simplest pattern admitted as a
solution of the system: a pattern of lowest mode, and with negative polarity such
that there is a single internal transition layer from low to high v across the domain.
We locate the internal transition layer at

x = x∗ ∈ [0, 1] (33)
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Fig. 1. Numerical solutions to evolution equation (3–5) comparing nonlinear (19) and cor-
responding piecewise linear (25–26) kinetics for ε = 0.1. Here and elsewhere γ0 = 1.0 and
ρ = 0.001.

which will be determined by the analysis. The inner equation (23) subject to match-
ing constraints gives the inner approximation

u(ξ) = u∗ (34)

where u∗ is constant, and hence, trivially, that u is continuous in the inner region.
For the full problem, direct integration of the steady-state inhibitor equation (10)

over the domain with boundary conditions (8) gives∫ 1

0
f (u, v) dx = 0 (35)
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(a) Symmetric case Q = 0 (b) Q ≠ 0 

Fig. 2. Nullclines for the piecewise linear kinetic scheme (2). Superimposed are the null-
clines for nonlinear cubic autocatalysis (19) (dashed line). In (a) Q = 0 and in (b) Q = 0.2
(dotted lines showing the symmetric case), with σ = 1.0 and µ = 0.8 in both.

which we require of our asymptotic solutions, so that the gradient in u is continuous
across the inner region. Also the equations admit a first integral and from (11) we
have

1

2
(εvx)

2 + γ

∫ v(x)

v(0)
g dv = 0 (36)

so that evaluating over the domain we require

∫ v(1)

v(0)
g(u, v) dv = 0 (37)

where the integrand is zero except in the inner region. Integrating, we find that

u∗ = 1

2
η (θ3 − θ1) (38)

and we conclude that the value of u in the inner region, u∗, does not depend on γ .
We construct solutions such that v and its first derivative are continuous across the
inner region. We defer detailed discussion of the construction of solutions to the
Appendix. Composite solutions after matching are

u(x) ∼ a1 cosh
(
λ
√
γ x

) − 2θ1

λ2
, 0 ≤ x < x∗ (39)

∼ a3 cosh
(
λ
√
γ (1 − x)

) + 2θ3

λ2
, x∗ ≤ x ≤ 1 (40)
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and

v(x) ∼ −a1

η
cosh

(
λ
√
γ x

)
+ (θ1 + θ3) exp

[√
γ η

(
x − x∗

ε

)]
− 2σθ1

λ2
, 0 ≤ x < x∗ (41)

∼ −a3

η
cosh

(
λ
√
γ (1 − x)

)
− (θ1 + θ3) exp

[
−√

γ η

(
x − x∗

ε

)]
+ 2σθ3

λ2
, x∗ ≤ x ≤ 1 (42)

where λ = √
σ + 1/η, the location of the transition layer x∗(γ ) is unknown at this

stage, and a1 and a3 are constants which may depend on x∗ and γ . Matching inner
and outer solutions gives

a1(x
∗) = 1

cosh(λ
√
γ x∗)

(
u∗ + 2θ1

λ2

)
(43)

a3(x
∗) = 1

cosh(λ
√
γ (1 − x∗))

(
u∗ − 2θ3

λ2

)
(44)

where u∗ is determined above, and from equation (35) we have

a1 sinh
(
λ
√
γ x∗) = −a3 sinh

(
λ
√
γ (1 − x∗)

)
. (45)

Now we can find the location of the transition layer x∗(γ ) from the expressions for
constants a1 and a3 which gives for x∗(γ )

θ̄1 tanh(λ
√
γ x∗) = θ̄3 tanh(λ

√
γ (1 − x∗)) (46)

where we have defined

θ̄1 ≡ 2θ1

λ2
+ u∗, θ̄3 ≡ 2θ3

λ2
− u∗. (47)

Clearly for the symmetric case θ1 = θ3, x∗ = 1/2 and the transition layer does not
move with γ (and hence domain length), but in general we solve (46) by writing
z = exp(2λ

√
γ x∗), rearranging to obtain the quadratic in z(γ )(

θ̄1 + θ̄3
)
z2 + (

θ̄1 − θ̄3
) (

exp
(
2λ

√
γ
) − 1

)
z − exp

(
2λ

√
γ
) (
θ̄1 + θ̄3

) = 0
(48)

and, taking the positive solution z+, we find that

x∗(γ ) = 1

2λ
√
γ

ln z+ (49)

which completes the construction of solutions to the steady-state problem.
In Figs. 3 and 4 we plot steady-state numerical solutions of equations (13–14)

and the analytical approximations given by equations (39–42) for both Q = 0 and
for Q �= 0. The analytical solution is shown to be close to the numerical solution,
and the approximation improves as ε decreases.
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Fig. 3. The symmetric case: numerical solution of equations (3–5) (solid line) and asymp-
totic approximation (39–42) (dashed line) for piecewise linear kinetic scheme (25–26) with
Q = 0. Activator solutions (v) are of larger amplitude than inhibitor solutions (u), both are
shown. Figures (a) and (b) have ε = 0.1 while (c) and (d) have ε = 0.05. Left-hand figures
have γ = 2.0 and right-hand figures have γ = 6.0.

5. Transitions between patterns

The construction that we have described above generates an approximation to the
true solution of the time-independent problem up to the point at which a pattern
of higher mode (higher spatial frequency on [0, 1]) is established. However, we
can estimate the limit for such construction as γ increases through critical values,
which determines the mechanisms of breakdown for the full PDE system.

The outer solution is constrained to lie on the v-nullcline g = 0 in regions 1
and 3. The solution evolves with γ until this constraint can no longer be satisfied.
As γ is increased the solutions are limited by the turning points of the v nullcline
g = 0, the critical points

vc1 ≡ −θ1, uc1 ≡ ηvc1 = −ηθ1 (50)

vc3 ≡ θ3, uc3 ≡ ηvc3 = ηθ3 (51)

and the solution we have constructed breaks down at these values. For the lowest
pattern mode u is monotonic across the domain, and the maximum and minimum
occur at the domain boundaries. As γ is further increased, at one of the bound-
aries u is pushed past the critical value. Splitting or insertion follows (which is not
quasi-steady and thus may not be directly studied by this method) depending on
which of the critical points (uc1, v

c
1) or (uc3, v

c
3) is reached first. In the symmetric

case, where θ1 = θ3, both the critical points are reached at the same time giving



Reaction-diffusion patterns on growing domains 119

Fig. 4. The asymmetric case: numerical solution of equations (3–5) (solid line) and as-
ymptotic approximation (39–42) (dashed line) for piecewise linear kinetics (25–26) with
Q = 0.2. Activator solutions (v) are of larger amplitude than inhibitor solutions (u), both
are shown. Figures (a) and (b) have ε = 0.1 while (c) and (d) have ε = 0.05. Left-hand
figures have γ = 2.0 and right-hand figures have γ = 5.0.

rise to simultaneous splitting and insertion, as realised in the numerical simulations
showing frequency-tripling (Fig. 1 (c) and (d)). We can use the critical values to
predict the value of γ at which the breakdown occurs, and by what mechanism, for
specific parameter sets.

Working with u at the domain boundaries, from equations (39, 40) we have

u(0) = a1 − 2θ1

λ2
, u(1) = a3 + 2θ3

λ2
. (52)

Now if u(0) reaches uc1 at γ = γ c
1 then substituting for a1 we have

λ
√
γ x∗ = cosh−1

[
λ2θ̄1

2θ1 − ηλ2θ1

]
≡ φ1 (53)

where x∗ = x∗(γ ). We substitute this into equation (48) with z = z1 = exp 2φ1
and after some algebra we find

γ c
1 =

{
1

2λ
ln

[
(θ̄1 + θ̄3)z

2
1 − (θ̄1 − θ̄3)z1

(θ̄1 + θ̄3) − (θ̄1 − θ̄3)z1

]}2

. (54)

Similarly, if u(1) arrives at uc3 when γ = γ c
3 then we have

λ
√
γ x∗ = cosh−1

[
λ2θ̄3

2θ3 − ηλ2θ3

]
≡ φ3 (55)
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from which we have

γ c
3 =

{
1

2λ
ln

[
(θ̄1 + θ̄3)z

2
3 + (θ̄1 − θ̄3)z3

(θ̄1 + θ̄3) + (θ̄1 − θ̄3)z3

]}2

(56)

for z3 = exp 2φ3.
On reaching one (or both) of these critical points, the solution we have con-

structed ceases to exist. In the outer region where x < x∗, and in particular at x = 0
we have

du(0)

dγ
< 0 (57)

so that the quasi-steady approximation breaks down as u(0) decreases through uc1.
Then locally g < 0 and so vt < 0 and so when u < uc1, branch 3 of the nullcline
g = 0 is attracting and the v solution relaxes to this branch on the fast timescale,
giving a sudden growth of activator at the boundary (a minimum in the solution
profile). This mechanism describes the onset of insertion of new activator peaks,
shown schematically in Fig. 5. Similarly at x = 1 we find

du(1)

dγ
> 1 (58)

and the solution breaks down as u(1) increases through uc3. Here g > 0 and vt > 0
and the v solution relaxes to branch 1 of the nullcline on the fast timescale giving
a sudden collapse at the activator peak, producing dynamic pattern change by ac-
tivator peak splitting. When the boundary values pass through these critical points
at the same value of γ due to the symmetry of the kinetics (when Q = 0) both
splitting and insertion occur simultaneously.

Analytical predictions and the results of numerical simulations for the piece-
wise linear kinetics are presented in Fig. 6, where the dashed line shows γ c

1 (Q)

corresponding to insertion and the dotted line is γ c
3 (Q) which corresponds to split-

ting. We note that both curves extend on each side of Q = 0, but in simulations
of the full PDE we expect to observe which ever occurs at lower γ c. In Fig. 7 the

Fig. 5. Schematic diagram illustrating the
mechanisms of insertion (I) and splitting (S)
of new activator peaks when domain growth
(increasing γ ) drives the solution in the outer
region to the limiting points of the nullcline,
(uc1, v

c
1) and (uc3, v

c
3) respectively.
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Fig. 6. Analytical prediction of pattern reorganisation by peak insertion, γ c
1 (Q) (dashed

line), and insertion, γ c
3 (Q) (dotted line), given by equations (54) and (56) respectively. The

dependence of these values on Q is determined by the dependence of θ1 and θ3 given by
equation (28). Numerical points for piecewise linear kinetics with Q ≥ 0 show pattern reor-
ganisation by peak insertion (marked +) and simultaneous splitting and insertion (marked
∗), and the numerical results are plotted for ε = 0.1 and ε = 0.05 (circled symbols). The
transition is between pattern modes 1 and 2.

Fig. 7. Analytical predictions for transition points showing numerical results for piecewise
linear kinetics and nonlinear kinetics (circled symbols). The dotted line gives the analytical
prediction for peak splitting and the dashed line shows the prediction for peak insertion.
Numerical points for splitting are marked × and for insertion +. Simultaneous splitting and
insertions are marked ∗.

values of γ at which transitions between patterns occur for the full nonlinear system
are plotted for small Q, showing qualitatively similar behaviour to the piecewise
linear approximation.
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6. Discussion

In this paper we have considered a piecewise linear reaction-diffusion model and
we have determined the method of pattern reorganisation on the growing domain
by considering the existence of solutions to the associated steady-state problem. We
have not explicitly considered the stability of the constructed solutions, rather we
infer stability properties from numerical simulations. Previous results for the full
PDEs suggest that stability depends on domain growth [4], i.e. γ (t), in a nontrivial
way. For example, linear domain expansion (rather than the exponential case con-
sidered above) leads to the breakdown of the frequency-doubling sequence at some
particular domain size, when one or more peaks fail to split (or insert) concurrently
with others.

Spatial frequency-doubling has been explored previously using symmetry
arguments [4]. The domain may be divided into subdomains on each of which
the solution evolves identically. Furthermore the solution on each subdomain is the
same as the solution on the whole domain at some earlier time, and evolves in the
same way as the earlier solution. We used a self-similarity argument: the solution
at a particular value of γ = γ ∗, transformed under the ‘doubling map’

p2(x) =
{

2x,
2(1 − x),

0 ≤ x < 1
2

1
2 ≤ x ≤ 1

(59)

is a solution of the equation at γ = 4γ ∗. This result confirms that the pattern will
double in frequency when the domain doubles in length (as γ is proportional to the
length squared). A similar argument has recently been given by Nishiura and Uey-
ama [24] to explain a hidden bifurcation structure leading to peak splitting in tran-
sient patterns in bistable reaction-diffusion equations on the fixed domain, which
they have called doubling-up. Here we have described a new pattern sequence,
spatial frequency-tripling, which is realised when the reaction-diffusion equation
is symmetric under the transformation (u, v) → (−u,−v). Then we must amend
the symmetry analysis for this new sequence. Accordingly it is straightforward to
show that the equation is also invariant under the transformation

(x, γ ) → (p̄3(x), γ /9) (60)

corresponding to a tripling of the domain length, where the ‘tripling map’ is

p̄3(x) =




1 − 3x,

3x − 1,

3(1 − x),

0 ≤ x < 1
3

1
3 ≤ x < 2

3
2
3 ≤ x ≤ 1

. (61)

Hence the new sequence is consistent with the symmetry arguments, which are
described in more detail in the previous paper. It is interesting to note that the sym-
metry required for frequency-tripling is the same as that required for preferential
selection of stripes over spots in two-dimensional pattern formation in reaction-dif-
fusion systems [8,21].

Our choice of pattern, the simple monotonic gradient for u and correspond-
ing transition layer for v, may first appear to be rather a restricted case. However,
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the results are easily generalised to patterns of higher mode using such symmetry
arguments as presented above. While we chose to construct a pattern of negative
polarity (transition from low to high v with increasing x), the invariance of the reac-
tion-diffusion equations under the transformation x → −x shows the equivalence
of patterns of opposite polarity. Furthermore, any pattern of higher mode may be
constructed from suitably spatially scaled segments consisting of the lowest mode
pattern that we constructed above. Also the analysis extends mutatis mutandis to
the case of cross kinetic schemes, where the spatial oscillations in u and v are out
of phase.

The model studied in this paper considers perhaps the simplest possible form
of domain growth, where cellular proliferation rates are constant in space and time.
We study the effects of domain growth, rather than modelling the mechanics of
tissue movement and expansion itself. The formalism used allows consideration of
domain growth in higher spatial dimensions and domain growth that is not uniform
in space where, for example, the cellular proliferation rate in one part of the tissue
is greater than it is elsewhere. The implications of nonuniform domain growth on
pattern formation are currently under investigation, however, initial results suggest
that gentle gradients in strain rate across the domain do not significantly perturb
the behaviour discussed above. Extension of the solution behaviour described here
to domains of higher spatial dimension has also been studied; the results will be
reported elsewhere. However, in the context of the one-dimensional model, it is
important to note that simulations on a two-dimensional growing domain indicate
that pattern sequences for stripe patterns may be generated (for reaction kinet-
ics that select stripes in two dimensions, such as those studied here), analogously
to the one-dimensional case. Indeed splitting or insertion of stripes during domain
growth may be a mechanism for stabilising the orientation of the stripe pattern. This
is important for the comparison with the growing angelfish Pomacanthus semicir-
culatus, as discussed in the introduction, where new vertical stripes are inserted as
the animal grows concurrently along the anterio-posterior (head-to-tail) axis and
the dorso-ventral (top-to-bottom) axis. However, it is clear that to fully extend the
results to higher spatial dimensions it will be important to consider the effects of
curvature and changing geometry of the domain in the model.

Self-replication phenomena similar to peak splitting have been reported in nu-
merical studies of bistable reaction-diffusion systems on domains of fixed size in
two spatial dimensions (self-replicating spots) [27,19] and in chemical experiments
([18], reviewed by Lee and Swinney [20]), and related behaviour has been stud-
ied in one spatial dimension [28,29]. The reaction term used in these studies, the
Gray-Scott model [11] in the vicinity of the bistable parameter regime, gives rise to
spike-type patterns. Spike solutions to reaction-diffusion systems have sharp peaks
in the vicinity of one or more spatial points, where the width of the peak tends
to zero with the ratio of diffusivities [23,13]. Self-replication has been investigat-
ed analytically in several papers which exploit the ratio of diffusivities as a small
parameter [30,7]. Osipov and Severtsev [25] have used an asymptotic approach
for spike solutions and have discussed replication and periodic patterns on infinite
domains.
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Monostable systems of the type that we consider in this paper do not undergo
spontaneous self-replication. However, as we have demonstrated, peak splitting
may be driven by domain growth in such systems. The kinetic scheme that we have
studied gave rise to transition-layer-type patterns. Spike solutions are also found in
systems which do not undergo self-replication phenomena, such as the Schnaken-
berg [32] and Gierer-Meinhardt [10] models, which have no bistable regime. These
systems, which are commonly employed to model biological pattern formation,
demonstrate respectively splitting and insertion of activator peaks when driven by
domain growth.

Appendix

The outer solutions lie on the nullcline g = 0 in regions 1 and 3, the former corre-
sponding to v < 0 and the latter to v > 0. Choosing to construct a pattern of mode
m = 1 with negative polarity (corresponding to linear mode

√
(x) = − cosπx) we

take v < 0 near x = 0. In region 1, g1(u, v) = 0 gives v = v1(u) and equation (21)
becomes

uxx − γ λ2u = 2γ θ1, ux(0) = 0 (62)

with solution

u1(x) = a1 cosh
(
λ
√
γ x

) − 2θ1

λ2
(63)

where

λ ≡
√
σ + 1

η
. (64)

Similarly in region 3, where the nullcline g3(u, v) = 0 gives v = v3(u) we have

u3(x) = a3 cosh
(
λ
√
γ (1 − x)

) + 2θ3

λ2
. (65)

These equations also determine the activator profiles in the outer regions through
the relations gi(ui, vi) = 0 with i = 1, 3, giving

v1(x) = −a1

η
cosh(λ

√
γ x) − 2σθ1

λ2
(66)

v3(x) = −a3

η
cosh

(
λ
√
γ (1 − x)

) + 2σθ3

λ2
. (67)

The transition layer is determined by the inner approximation from equa-
tion (23), where we take u constant in the inner variable. This is the only possibility
admitted by the equations given that the inner solution must decay (or at least not
grow) away from x∗ to match the outer solution in regions 1 and 3. For the inner
solution (U, V ) we have

U = u∗ (68)
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which is determined by integral condition (37)∫ v(1)

v(0)
g(u, v)dv = 0, (69)

which we can divide into regions, yielding outer and inner contributions, giving

u∗ = 1

2
η (θ3 − θ1) (70)

and so we find that the value of u in the inner region does not depend on γ . We note
that u∗ is located symmetrically between the extrema uc1 = −ηθ1 and uc3 = ηθ3,
such that at x = x∗ we have v = (θ3 − θ1)/2.

The inner equation, Vξξ = −γg(u∗, V )with Vξ → 0 as ξ → ±∞, has transla-
tional invariance, and so V (ξ + α) is a solution for arbitrary constant α. Therefore
we define the transition x∗ to be the point where Vξ takes its maximum value.
Construction of the inner solution for V is complicated by the fact that we must
patch together solutions for regions i = 1, 2 and 3, where we require continuity of
the inner solution for V when the kinetics change abruptly at V = −θ1 and again
at V = θ3. With inner variable ξ = (x − x∗)/ε, for region 1 where g = g1(u

∗, V )

we have

Vξξ − γ ηV = 1

2
γ η (3θ1 + θ3) (71)

and we take the solution which decays as ξ → −∞

V1(ξ) = b1 exp
(√

γ ηξ
) − 1

2
(3θ1 + θ3) . (72)

Similarly in region 3 we find

V3(ξ) = b3 exp
(−√

γ ηξ
) + 1

2
(θ1 + 3θ3) (73)

which decays as ξ → ∞. In region 2 the inner solution satisfies

Vξξ + γ ηV = 1

2
γ η (θ3 − θ1) (74)

which gives

V2(ξ) = b2 sin
(√

γ ηξ + α
) + 1

2
(θ3 − θ1) (75)

where b1, b2 and b3 are constants. The transition point, where x = x∗, occurs
within region 2 and so at ξ = 0 we impose Vξ = 0 to find α = 0. We require
that the inner solution and derivative are continuous where the nullclines change
between regions 1 and 2 at V = −θ1 and between regions 2 and 3 at V = θ3, where
ξ = ξ12 and ξ23 respectively, giving

ξ12 = −π

4
√
γ η

, ξ23 = π

4
√
γ η

(76)
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and

b1 = 1

2
(θ1 + θ3) exp (−π/4) (77)

b2 = 1√
2
(θ1 + θ3) (78)

b3 = −1

2
(θ1 + θ3) exp (π/4) . (79)

The resulting expression for v(x) is somewhat cumbersome, however, we no-
tice that by neglecting the inner solution in region 2 and considering the solutions
in region 1 and 3 only, we do not change the matching condition for the leading
order calculation and retain a good approximation to the numerical solution (see
Figs. 3 and 4). Then requiring continuity of the inner solution and its derivative at
ξ = 0 we can find the constants b1 and b3,

b1 = −b3 = (θ1 + θ3). (80)

Explicit computation readily shows that the maximum absolute error in region
2 associated with the above approximation is (θ1 + θ3) (1/2 − exp (−π/4)) ≈
0.04 (θ1 + θ3), and this along with the maximum relative error in regions 1 and 3
introduced by neglecting region 2 is sufficiently small for our purposes.

To match inner and outer approximations we require

u∗ = a1 cosh(λ
√
γ x∗) − 2θ1

λ2
(81)

and

u∗ = a3 cosh(λ
√
γ (1 − x∗)) + 2θ3

λ2
(82)

from which we recover equations (43) and (44). The final condition that we require
to calculate the location of the transition layer, x∗, comes from integral condi-
tion (35)

∫ 1

0
f (u, v) dx = 0 (83)

which gives

a1 sinh
(
λ
√
γ x∗) = −a3 sinh

(
λ
√
γ (1 − x∗)

)
(84)

and is equivalent to the requirement that the gradient in the outer region be contin-
uous at x∗. This completes the construction of the leading order solutions.
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