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Abstract. A simple model of wound healing angiogenesis is presented, and investigated
using numerical and asymptotic techniques. The model captures many key qualitative fea-
tures of the wound healing angiogenic response, such as the propagation of a structural unit
into the wound centre. A detailed perturbative study is pursued, and is shown to capture all
features of the model. This enables one to show that the level of the angiogenic response
predicted by the model is governed to a good approximation by a small number of parameter
groupings. Further investigation leads to predictions concerning how one should select be-
tween potential optimal means of stimulating cell proliferation in order to increase the level
of the angiogenic response.

1. Introduction and biological background

Cutaneous wound healing has developed in higher organisms over the course of
evolution, resulting in complex mechanisms for the intricate control and orchestra-
tion of cells, soluble factors and extra-cellular matrix following integument injury.
The outer layer of the skin, the epidermis, lies on a basal lamina covering the
dermis, which is a matrix of collageneous fibres interwoven with blood vessels,
lymphatic vessels and nerves, and contains numerous free cells, such as fibroblasts,
lymphocytes and mast cells.

Dermal repair consists of three overlapping phases: inflammation, prolifera-
tion and remodelling. The inflammatory phase encompasses blood clot formation
and immune system response. Regeneration of the epidermis also begins during
this period, within hours after injury [3]. During the proliferative phase cells and
intercellular substances increase greatly, accompanied by the migration of macro-
phages, fibroblasts and blood capillaries across the wound bed. This migration is
observed to occur in a structural unit, often referred to as a wound module [16] or
healing unit [1], consisting of activated macrophages in the lead, followed by fibro-
blasts, then by capillary tips and, finally, capillaries. The macrophages, recruited
into the hypoxic wound bed, release chemotactic agents, continually attracting the
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fibroblasts and capillaries into the wound. The fibroblasts in turn produce an extra-
cellular matrix which facilitates further cell migration into the wound and provides
mechanical support for the new capillaries. The newly formed capillaries, in turn,
supply nutrients, enabling continued cellular function within the structural unit,
which consequently migrates across the wound due to the mutual interaction of its
constituents [16]. The tissue formed in the wound as a result of the structural unit’s
migration is capillary and cell rich, and referred to as granulation tissue.

The final phase, remodelling, involves wound contraction; the maturation of
the wound bed tissue, which gradually evolves from a highly cellular and vascular-
ised state to form scar tissue, with few cells and blood vessels; and the maturation
of the extra-cellular matrix, resulting in higher tensile strength and a less random
orientation of the collageneous fibres.

We briefly note that this relatively elegant picture is in fact far from complete.
Many other mechanisms are at work, as one has to expect from a real biological
system. In addition to chemotaxis and hypoxia, numerous signals produced by the
macrophages and surrounding tissue influence the wound healing system. For ex-
ample growth and chemokinetic factors are also observed to be present [17] as is
macrophage secreted lactate, which upregulates fibroblast collagen synthesis [16].
Furthermore, there is the possibility of numerous interactions between these various
signals; to illustrate, experiments have indicated that the production of macrophage
factors is controlled by oxygen levels [1]. To attempt to incorporate such detail is
inappropriate in a modelling study, and hence below we focus on the fundamental,
if basic, idea of a structural unit invading the wound bed, and even this framework
is considered in a simplified form to facilitate modelling.

Of central interest in this paper is the mechanism for new capillary formation, or
angiogenesis, within the structural unit, and we proceed to describe this subprocess
in detail. Consider the structure of a blood capillary near the wound edge. Aside
from the blood constituents it carries, the capillary is a cylinder of endothelial cells,
enveloped by a basement membrane. Angiogenesis begins with the degradation of
the basement membrane at localised sites which face the wound. This is followed
by the migration of endothelial cells out of the vessel, aligning so as to form a
tube, or “sprout”, which extends from the parent vessel. Cells behind the newly
formed “capillary tips” proliferate, extending the sprouts further in the direction of
the wound. These tips can branch and eventually join up with other sprouts (anas-
tomosis) to form a complete circuit through which blood can flow. The sprouting
process begins again from these new vessels, until the wound space is permeated
by a network of new capillaries (see Figure 1), covered first by a provisional layer
and later a true basement membrane, both synthesized by the cells of the capillaries
[3, pages 18–19].

Many aspects, though certainly not all, of the picture of dermal wound heal-
ing described above have been the subject of modelling investigations, includ-
ing collagen fibre formation and orientation [4], and wound contraction [8]. In
particular, there are a number of models for dermal wound healing angiogenesis
(DWHA) in the literature [2,10,13,14]. These works involve developing relative-
ly complex models, which are investigated primarily using numerical techniques
with the aim of firstly achieving agreement with experimental observation and,
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Fig. 1. Sprout tips branch and join up to form a capillary network

secondly, acquiring insight into the important factors and parameters influencing
DWHA.

For example Pettet et al. [14] develop a six variable model incorporating densi-
ties of capillary tips, blood vessels, fibroblasts, macrophage-derived chemoattrac-
tants, oxygen and extracellular matrix, and it is shown that numerical simulations
produce results in qualitative agreement with experimental observations. Other pa-
pers consider further simplified systems. Olsen et al. [10] consider a two variable
model to investigate how the extracellular matrix density influences endothelial
cell densities. Models incorporating capillary tips, blood vessels and macrophage-
derived chemoattractants are considered in [2,13]. In the former paper, the beha-
viour of front propagation speeds are compared to experimentally observed wound
healing speeds. In the latter paper, the numerics is supplemented with an analysis
investigating bounds on both the travelling wavespeeds and healed blood vessel
densities.

The focus for this paper concerns a minimalist, but certainly non-trivial, model
of DWHA phenomenology in terms of only two model constituents, namely den-
sities of capillary tips and endothelial cells. We show that the model constructed in
this paper displays the qualitative features of the structural unit observed empirical-
ly. Straightforward estimates for wound healing speeds are deduced, as is perfectly
possible with previous models. A key aspect of this model is that other features of
the model’s structural unit are amenable to detailed analytical investigation. This is
used to demonstrate the non-intuitive result that the maximum blood vessel density
and the maximum density of “capillary tips” (at least as predicated by the model)
depend on a very limited number of parameter groupings to a good approximation
and such insight is confirmed numerically.

One may interpret maximal blood vessel densities as a measure of the system’s
angiogenic ability and its ability to supply nutrients to the wound healing structural
unit. Consequently, the prediction that such ability should be regulated by a small
number of parameters yields the possibility of substantial insight into what factors
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may be responsible for angiogenesis, or its failure, within the structural unit. This
is investigated leading to a novel modelling prediction of how one should select be-
tween one of two potentially optimal means of increasing the system’s angiogenic
response.

The outline of this paper is as follows: in Section 2 the model is developed,
while in Section 3 numerical travelling wave solutions are presented. In Section 4,
we investigate the model analytically using perturbation theory. Finally, in Sec-
tion 5, the relevance, implications and future uses of the model and its associated
results are discussed.

2. The model

The model will describe healing of a slit excisional wound which is much longer
than it is wide, and much wider than it is deep, in those parts of the wound far from
the corners. Thus one may consider a model with one spatial degree of freedom with
reflection symmetry about a plane drawn parallel to the long edges of the wound
and equidistant from both. As we are not explicitly considering the mechanisms
of initial endothelial cell stimulation, we consider the dynamics only after a small
(relative to the capillary tip carrying capacity) initial distribution of active sprout
tips has formed at the wound edge. The averaged capillary tip and endothelial cell
(i.e. blood capillary vessel building block) densities are respectively denoted by
n(x, t) and b(x, t) at position x and time t . We choose x = 0 to denote the reflec-
tion plane of symmetry described above. Note that for simplicity, the variable b
represents both new and old capillaries.

2.1. The capillary tip density equation

For the tip concentration n, we use the standard form of the conservation equation

∂n

∂t
= −∂J (n)

∂x
+ f (n, b), (1)

where J (n) is the tip flux and f (n, b) describes the tip kinetics. We take the tip
flux to be

J (n) = −D1
∂n

∂x
−D2n

∂b

∂x
. (2)

This flux term captures the phenomenologically reasonable supposition that cap-
illary tips migrate via a biased random walk with such bias, modelled by the
−D2n∂b/∂x term, in the direction of decreasing blood vessel density.

We briefly note this term replaces the bias of capillary tips in previous models;
for example, it replaces the chemotactic bias in [13] and the haptotactic bias in [10]
(though the model in this article has no analogue of the haptokinesis considered
[10]). One can compare the contribution to the capillary tip flux from chemotaxis
in [13], to the term −D2n∂b/∂x as predicted by their model, and observe that
they have the same qualitative features for a travelling wave solution, exhibiting
peaks within the front of the travelling wave. See, for example, figures 2(a), 2(b)
and (5) in [13]. Analogous comments apply on comparing the haptotatic flux and
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Fig. 2. An initial simulation, at 23 days, of the model with parameters given in Table 1
showing the development of a wave-like profile, possessing a ‘structural unit’. To distin-
guish between the capillary tip density and the endothelial cell density in this figure, note
that the capillary tip density is (essentially) zero for large x, whereas the blood vessel density
is unity. This applies for all similar figures below

−D2n∂b/∂x in [10]. This, along with relative simplicity, provides the motivation
for considering the −D2n∂b/∂x term as a model for bias in the capillary tip flux.
We take the tip kinetics to be

f (n, b) = λ2n︸︷︷︸
tip branching

− λ3n
2︸︷︷︸

tip-tip anastomosis

− λ4nb︸︷︷︸
tip-sprout anastomosis

. (3)

The term λ2n describes the splitting of a tip into two separate branches; it is as-
sumed that in a given length of time, a fixed proportion of existing sprouts will
branch, while the term −λ3n

2 describes the joining of two tips to create a complete
circuit, and −λ4nb describes the joining of a tip to the side of a capillary, produc-
ing a complete circuit. Note that such terms for modelling branching anastomosis
were first used by Edelstein in a model of fungal growth [20], and have since been
applied on numerous occasions in modelling angiogenesis [13,19].

2.2. The endothelial cell density equation

We assume that the capillary sprouts are not capable of independent movement,
but instead that their movement is determined by the fact that they passively follow
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their leading tip. This yields proportionality between the flux of the capillary tips
and the contribution to the endothelial cell flux arising from the invasion of the
capillary tips into the wound bed. Thus we have that the flux of the endothelial cell
density is given by

−λ5

(
D1
∂n

∂x
+D2n

∂b

∂x

)
(4)

where λ5 is the (average) number of endothelial cells in a capillary tip.
The kinetics of the endothelial cells are phenomologically modelled by

g(n, b) ≡ λ6νb (b0 − b)︸ ︷︷ ︸
ordinary logistic remodelling

+ λ6χnb(b1 − b)︸ ︷︷ ︸
tip-modulated logistic growth

+ λ5(λ3n
2 + λ4nb)︸ ︷︷ ︸

endothelial cells from the capillary tip compartment

.

This models three processes. The first, ordinary logistic remodelling, describes
the proliferation of endothelial cells under standard conditions. This process has
a carrying capacity of b0, and takes place at a rate characterised by ν. During an-
giogenesis a different contribution to the kinetics, occurring on a faster timescale,
is observed in the immediate vicinity of a capillary tip [2, 4]. This is captured
phenomenologically in the second term which possesses a characteristic rate pro-
portional to the capillary tip density, n and a carrying capacity of b1. The fact this
process proceeds at a faster rate entails that nmaxχ � ν, as discussed further in Ap-
pendix (A.2), where parameter estimation is detailed. The third process describes
the contribution to the endothelial cell density kinetics arising from anastomosis
(see equation (3)). Finally, note that the ordinary logistic modelling term cannot be
simply ignored as one may readily anticipate regions of the spatial domain where
χn � ν.

2.3. Initial and boundary conditions

We suppose that initially there are neither capillaries nor tips in the wound space,
and that the capillary density outside the wound is at the normal unwounded level,
b0. We assume an initial perturbation of capillary tip density which lies in a band
of width ς at the wound edge and is small (compared to the characteristic scale of
the carrying capacity for the capillary tip kinetics). The equations are to be solved
on the domain x ∈ [0,∞), where x = 0 is the wound centre and x = x0 the wound
edge. The initial conditions are

n(x, 0) =
 0 x ∈ [0, x0),

ninit x ∈ [x0, x0 + ς ],
0 x ∈ (x0 + ς,∞),

b(x, 0) =
{

0 x ∈ [0, x0),

b0 x ∈ [x0,∞); (5)

though in numerical simulations we smooth the edges of these step-function-type
conditions.
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For the boundary conditions, we have that far from the wound, at x = ∞, the
vessel density remains that of the normal unwounded dermis and the tip density is
zero. Also, as the wound is symmetric about its centre, we can apply the symmetric
boundary condition at x = 0, and hence

n(∞, t) = 0, b(∞, t) = b0, (6)

∂n

∂x
(0, t) = ∂b

∂x
(0, t) = 0. (7)

2.4. The nondimensionalised equations

Details of the nondimensionalisation can be found inAppendixA.1. Omitting tildes
used in this appendix for notational simplicity, the nondimensionalised model is

∂n

∂t
= ∂

∂x

[
C1
∂n

∂x

]
︸ ︷︷ ︸

diffusion

+ ∂

∂x

[
C2n

∂b

∂x

]
︸ ︷︷ ︸

movement away from capillaries

+ f (n, b)︸ ︷︷ ︸
tip kinetics

, (8)

∂b

∂t
= k5

∂

∂x

[
C1
∂n

∂x
+ C2n

∂b

∂x

]
︸ ︷︷ ︸

capillaries follow tips

+ g(n, b)︸ ︷︷ ︸
capillary kinetics

; (9)

f (n, b) = k2n− k3n
2 − k4nb, (10)

g(n, b) = χnβb

(
1 − b

β

)
+ νb(1 − b)+ k5k3n

2 + k5k4nb

= χnβ1b

(
1 − b

β1

)
+ νb(1 − b)+ k5k3n

2 (11)

where β1
def= β + k5k4/χ . The parameters C1, C2, k2, k3, k4, k5, χ , ν, β, ς and

ninit are non-negative constants resulting from the rescalings of D1, D2, λ2, λ3,
λ4, λ5, χ , ν, b1, ς and ninit . The initial and boundary conditions are

n(x, 0) =
 0 x ∈ [0, 1),
ninit x ∈ [1, 1 + ς ],
0 x ∈ (1 + ς,∞),

(12)

b(x, 0) =
{

0 x ∈ [0, 1),
1 x ∈ [1,∞),

(13)

n(∞, t) = 0, b(∞, t) = 1, (14)

∂n

∂x
(0, t) = ∂b

∂x
(0, t) = 0. (15)



344 E.A. Gaffney et al.

2.5. Steady states of the model

For future reference, we briefly consider the steady states of the model. Taking
k4 > k2, as motivated in Appendix (A.2), there are three non-negative steady-states
given by

(n, b) = (0, 0), (0, 1), (
k2

k3
= 1, 0).

The first of these corresponds to the wounded steady-state. The second is the un-
wounded steady-state and the third is a biologically irrelevant state consisting of
capillary tips and no blood vessels. One can readily deduce that, on an infinite
domain with Neumann conditions, and subject to spatially homogeneous pertur-
bations that the steady-state (n, b) = (0, 1) is stable, whereas the steady-states
(n, b) = (0, 0), ( k2

k3
= 1, 0) are both unstable, as one would intuitively expect.

3. Initial simulations

The numerical method used is discussed inAppendix B, while parameter estimation
is discussed in detail in Appendix A.2, and is summarised in Table 1.

Table 1. Reference parameter set. Note that we fix k3 = k2. This, together with all aspects
of parameter estimation, is detailed in Appendix A.2.

C1 = 3.5 × 10−4 k2 = 0.83 β = 9.29
C2 = 3.5 × 10−4 k3 = 0.83 χ = 0.3
k4 = 0.85 ν = 2.5 × 10−3 ninit = 0.25
k5 = 0.25 ς = 0.25 β1 = 10.0

3.1. Initial simulations and observations

The simulation in Figure 2 shows the development of a wave-like profile progress-
ing towards the centre of the wound. Note that the solution has the qualitative
features empirically observed in cutaneous wound healing. It exhibits a ‘structural
unit’, whereby a unit consisting of a peak in the capillary tips, closely followed
by a peak in blood vessel density, move in concert towards the wound centre; it
also exhibits elevated blood vessel density throughout the wounded region, as one
would expect with the formation of granulation tissue in the wound.

Note that in Figure 2 there is a secondary peak in the endothelial cell density
b near x = 1 which arose during the transitory period, before the development of
the front of the wave profile. Its persistence is due to the fact that a travelling wave
has not yet developed on the domain. Indeed, the secondary peak in the tail of the
endothelial cell density, b, is not translated as time increases, as can be seen by
comparing Figures 2 and 3.

One can understand why travelling waves do not develop given the assumption
that n → 0 much faster than b → 1 for relatively large x, as the solution approaches
the unwounded steady state (n, b) = (0, 1). Such an assumption is consistent with
Figures 2 and 3. To presume otherwise would be biologically counter-intuitive,
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Fig. 3. An initial simulation, at 20 days, of the model with parameters given in Table 1.
Comparison with Figure 2 clearly shows that a travelling wave does not develop, in that the
profile of the endothelial cell density (i.e. the profile which is essentially unity for large x)
is not simply translated with increasing time

in that we anticipate there should be a significant density of capillary tips only
at, or near, the edge of the invading structural unit, but a raised concentration of
blood vessels in the forming granulation tissue at, and behind, the invading struc-
tural unit. With this assumption, we consider the endothelial cell density equation,
transformed into travelling wave coordinates. Thus we have

k5C1N̂
′′ + k5C2(N̂B̂

′)′ − cB̂ ′ + g(N̂, B̂) = 0; (16)

where z = x + ct , with c > 0 the travelling wave speed, ′ denotes d/dz and
N̂(z) = n(x, t), B̂(z) = b(x, t). On linearising this equation about the unwounded
steady state (n, b) = (0, 1), with the above assumption, |b−1| = |B̂−1| � n = N̂ ,
one can readily show that B̂ = 1 + Ee−νz/c where E is a constant of integration.
Thus, the (non-dimensionalised) characteristic lengthscale of the decay for the en-
dothelial cell density tail on approaching the unwounded steady state (n, b) = (0, 1)
for large z is given by c/ν ∼ 400c, while the non-dimensionalised wound domain
occupies the unit interval. Consequently, providing the characteristic speed of the
wave is sufficiently large (we find later 400c ∼ O(10)), the tail of the travelling
wave never forms on a biologically realistic domain size, as the travelling wave tail
decays on a much larger spatial scale than the scale of a realistic domain.
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This can be confirmed by seeing if a travelling wave type solution forms if ν
is increased (even if such an increase is not biologically realistic). The resulting
(n, b) profile has been plotted in Figure 4, and a much steeper b tail is exhib-
ited. This profile is further observed to be that of a travelling wave (to an ex-
cellent approximation), whereby it is simply translated with increasing time (not
shown).

Even when travelling wave solutions are not seen in wound healing models,
owing to the fact that the realistic domain size is too small to allow them to develop
from the initial conditions, features of the travelling wave solutions can prove to
be useful approximations for many features of the wave-like solutions of the full
partial differential equations (see e.g. [11,12]). Thus, we will examine the travelling
waves associated with this system, deriving estimates for the speed of the ‘structural
unit’, i.e. the concentration of capillary tips and blood vessels, and approximations
for the peak densities of capillary tips and blood vessels. We will proceed to verify
that such approximations hold for the solutions to the partial differential equations
to a good approximation for numerous variations in the model parameters, which
will greatly facilitate further investigation.

Fig. 4. Here the parameters are as given in Table 1, except that ν has been increased to 0.25.
Note that the endothelial cell density tail decays to its asymptotic value of unity. One may
further observe from the numerics that the resulting (n, b) profile evolves to a travelling
wave (to an excellent approximation), whereby the above profile is simply translated (not
shown)
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4. Detailed travelling wave analysis

4.1. Travelling wave speed of the structural unit

Consider the travelling wave coordinate z = x + ct , where c > 0 is the wave
speed, and the travelling wave variables N̂(z) = n(x, t), B̂(z) = b(x, t). The
model equations become

C1N̂
′′ + C2(N̂B̂

′)′ − cN̂ ′ + f (N̂, B̂) = 0, (17)

k5C1N̂
′′ + k5C2(N̂B̂

′)′ − cB̂ ′ + g(N̂, B̂) = 0; (18)

where the prime denotes d/dz. Far behind the wave is unwounded dermis and far
ahead of the wave is the unhealed wound, so the boundary conditions are B̂(∞) = 1,
B̂(−∞) = 0, N̂(∞) = 0, N̂(−∞) = 0.

A standard investigation of the eigenvalues at the steady states (N̂, B̂) = (0, 0)
yields a minimum wave speed, given by

c2 ≥ 4C1k2. (19)

Note that, on assuming a spatially infinite domain, the model’s initial conditions are
positive semi-definite for both n and b, the initial conditions for n are of compact
support and finally that the initial conditions for b satisfy b = 0 for all x < K for
some finiteK . Given such constraints on initial conditions, we hypothesise that the
minimum wavespeed of the travelling wave yields a good estimate for the speed
of propagation of the structural unit (i.e. the capillary tip peak and endothelial cell
front) observed in Figures 3 and 4. Rigorous proofs of analogous hypotheses are
well-known for scalar equations, but are typically lacking for systems of equations,
especially those exhibiting non-monotonicity. However, our above hypothesis is
completely consistent with all our numerical observations on the behaviour of this
model. For example, one can compare Figures 2 and 3 to see that the wave pro-
file has propagated a non-dimensionalised distance of approximately 0.1 (more
accurately 0.105) in three time units (days), giving a non-dimensionalised speed
of 0.035, whereas

√
4C1k2 = 0.040. The discrepancy between the observed speed

and the minimum travelling wave speed is relatively small and arises due to the fact
the wave front is still evolving to its attractor on the biological domain. We briefly
note that this discrepancy has been observed to tend to zero at large times on a
biologically unrealistic, extended, wound bed. Such observations are well-known
and frequently made for the form of reaction diffusion systems commonly used in
wound healing modelling [11,12]. Thus we have, as is standard, the observation
that the propagation speed of the structural unit is accurately approximated by a
single parameter grouping.

4.2. Asymptotic investigation of the structural unit

We proceed to study the travelling wave equations in more detail. Since the model
has more than one small parameter, the variables are rescaled and new parameter
groupings defined in order to express the equations in terms of only one explicit
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small parameter, ε. The equations are subsequently investigated via an expansion
in ε, with the aim of extracting analytical information concerning the structural
unit. In particular, we focus on the maxima of the endothelial cell density within
the structural unit, as this represents a measure of the system’s angiogenic ability.
In the following we have three distinct asymptotic regions which are matched (or
rather “patched”) at two distinct points. We subsequently determine the approx-
imation for the endothelial cell density maximum in terms of model parameters,
and illustrate the correlation between our analytic predictions, and the numerical
model.

A convenient rescaling of the non-dimensionalised PDE model is

τ = k2t, y =
√
k2

C1
x, n̂ = k3

k2
n (20)

which gives (on dropping the hat for convenience)

∂n

∂τ
= ∂2n

∂y2 + C2

C1

∂

∂y

[
n
∂b

∂y

]
+ (n− n2)− k4

k2
nb,

∂b

∂τ
= k5

(
∂2n

∂y2 + C2

C1

∂

∂y

[
n
∂b

∂y

] )
+

(
χβ1

k3
n+ ν

k2

)
b −

(
χ

k3
n+ ν

k2

)
b2

+ k5k2

k3
n2.

Some of the coefficients of the above terms are of order 1, so we define O(1)
parameters as follows:

ρ1 = C2

C1
∼ O(1), ρ2 = k4

k2
∼ O(1), ρ3 = χ

k3
∼ O(1).

We now transform to travelling wave coordinate

z = y + cτ,

with the variables
N(z) = n(y, τ ), B(z) = b(y, τ ).

The equations become

d2N

dz2 + ρ1
d

dz

[
N
dB

dz

]
− c

dN

dz
+ (N −N

2
)− ρ2N B = 0,

(
d2N

dz2 + ρ1
d

dz

[
N
dB

dz

] )
+ ρ1N

dB

dz
− c

dB

dz
+

(
Bβ1ρ3N + ν

k2

)
B

−
(
ρ3N + ν

k2

)
B

2 + k5k2

k3
N

2 = 0,
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with the travelling wave boundary conditions

B(∞) = 1, B(−∞) = 0, N(∞) = 0, N(−∞) = 0. (21)

Note that the original travelling wave coordinate was

z = x + ct =
√
C1

k2
y + c

k2
τ =

√
C1

k2

(
y + c√

C1k2
τ

)
.

So if we set c = c√
C1k2

we have z =
√
C1
k2
z. The theoretical minimum of c is√

4C1k2, hence
c ≥ 2,

so we can use c to define a small parameter

ε = 1

c2 ≤ 1

4
. (22)

Given the above observations that the front of the structural unit attains the mini-
mum travelling wave speed, we hypothesise that the trajectory in phase space which
actually corresponds to the PDE model attractor is the one of minimum travelling
wavespeed for non-negative solutions. Thus below we take

c = 2, ε = 1

4
.

For convenience, we define the O(1) parameter, ρ4 by

ρ4 = ν

k2
ε−4 (23)

4.3. Inner and outer solutions

Consider a general rescaling based on ε:

ξσ = εσ+ 1
2 z, N(z) = N(ξ), B(z) = B(ξ),

where σ will be chosen to give the appropriate scaling. The only value of σ which
will allow us to match algebraic terms with a derivative, as required for nontrivial
behaviour, is σ = 0. The travelling wave equations then become

ε
d2N

dξ2
0

+ ρ1ε
d

dξ0

[
N
dB

dξ0

]
− dN

dξ0
+ (N −N2)− ρ2NB = 0, (24)

k5ε

(
d2N

dξ2
0

+ ρ1
d

dξ0

[
N
dB

dξ0

])
− dB

dξ0
+ (ρ3β1N + ρ4ε

4)B − (ρ3N + ρ4ε
4)B2

+k5k2

k3
N2 = 0. (25)
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4.3.1. Inner solution
The numerical simulations of the previous sections show that while there exists
an ‘inner’ region with N,B � ε4, N and B are both small in the wavefront, and
N is small in the waveback; see Figure 5. To capture the inner solution, we use a
standard expansion

N = N0 + εN1 + ε2N2 + · · · ,
B = B0 + εB1 + ε2B2 + · · · ,

with the implicit assumption that B,N ∼ O(1) at leading order. Ignoring terms of
O(ε), equations (24) and (25) yield

dN0

dξ0
= N0(1 −N0 − ρ2B0), (26)

dB0

dξ0
= N0ρ3β1

[(
1 − B0

β1

)
B0 + k5k2

k3ρ3β1
N0

]
(27)

Fig. 5. Schematic indicating the three asymptotic regions of the travelling wave; the high-
er peak corresponds to the endothelial cell density, the lower peak to capillary tip density.
Between the two dashed lines lies the inner region. To the left of inner region is the outer
wavefront region, whereas to the right of the inner region is the outer waveback region.
The left-hand dashed line indicates the approximate position of the first matching point (on
the spatial domain). This is denoted matching point 1. Similarly the right hand dashed line
indicates the approximate position of the second matching point, which is denoted matching
point 2
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However, as motivated in Appendix A.2, k5/(ρ3β1) � 1 may be treated as asymp-
totically small. Thus, we have, at leading order, the approximation

dB0

dξ0
= N0ρ3β1

(
1 − B0

β1

)
B0. (28)

Dividing equation (26) by equation (28), and integrating, we have

N0 =
(
β1 − B0

B0

) 1
ρ3β1

[D +H(d,B0)] (29)

where

H(a, b) =
∫ b

a

1 − ρ2B
′

ρ3β1B ′
(

1 − B ′
β1

) (
B ′

β1 − B ′

) 1
ρ3β1

dB ′ (30)

and D, d are constants related by whatever choice is made for the lower limit, d,
of the integration.

4.3.2. Outer waveback solution
We now consider the outer solution in the waveback. Note that essentially when we
ignored terms ofO(ε) in the inner solution, we were assuming that the ρ4ε

4 terms
in (25) were dominated by the ρ3β1N and ρ3N terms. This will not be the case in
the outer waveback region, as we require N → 0 as ξ0 → ±∞. Thus we assume
thatN is of order not more than ε4, and so try a perturbation expansion of the form

N = ε4N0 + ε5N1 + · · · ,
B = B0 + εB1 + ε2B2 + · · · .

Substituting into equation (24) and (25) gives, at leading order,

dN0

dξ0
= N0[1 − ρ2B0],

dB0

dξ0
= ρ4ε

4B0(1 − B0). (31)

The term of order ε4 is retained in the latter equation, as required for consisten-
cy with the boundary conditions. (No appropriate scaling will remove the ε4, and
without the term’s retention one would quickly come across inconsistencies (see
below)). Dividing and integrating,

N0 = KB

1
ρ4ε

4

0 |1 − B0|
ρ2−1

ρ4ε
4
, (32)

where K is a constant.
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4.3.3. Outer wavefront solution
Analogously to the waveback, we take it that N is not of order more than than ε4

in the wavefront, as the boundary of the wavefront and inner region is similarly
determined according to whether the ρ4ε

4 terms in (25) dominate the ρ3β1N and
ρ3N terms. We also assume in the wavefront that B is small. Thus we consider an
expansion of the form

N = ε4N0 + ε5N1 + · · · , (33)

B = εµ
(
B0 + εB1 + ε2B2 + · · ·

)
, µ > 0. (34)

Use of the expansion (34) in equation (25) only gives a nontrivial leading order
perturbative approximation for µ = 5, whereupon

B ′
0 = k5N

′′
0 (1 +O(ε4B0, ε

4B ′
0, ε

4B ′′
0 )) (35)

Note that we do not expect any boundary layers in the wavefront, i.e. we do not ex-
pect to have to rescale ξ0 due to large gradients inN0 orB0, and hence one does not
have to apply matched asymptotic techniques to correctly incorporate higher order
derivatives in a perturbative expansion of the wavefront equations. Thus the higher
order terms in (35) are neglected, and one can deduce B0 = k5N

′
0(1 + O(ε4)),

with the constant of integration determined by boundary conditions as ξ0 → −∞.
Substituting the expansion (33) into equation (24) yields N ′

0 = N0(1 + O(ε)).

Hence in the waveback at leading order we have

B0 = k5N0(1 +O(ε)). (36)

4.4. Solution matching

For notational simplicity below, we denote the leading order approximation to N
and B by the same symbols.

We will match when the ρ4ε
4 terms in equation (25) are the same size as the ρ3β1N

and ρ3N terms. So at each matching point, |ρ3β1NB − ρ3NB
2| = |ρ4ε

4B −
ρ4ε

4B2|, i.e.

|ρ3N(β1 − B)| = |ρ4ε
4(1 − B)|. (37)

We need to match at two points, as described in Figure (5). Let N(1), B(1) be the
values of N and B at the matching point between the inner region and the outer
wavefront region, i.e. matching point 1 of Figure (5). Similarly, letN(2),B(2) denote
the values ofN and B at the matching point between the inner region and the outer
waveback, i.e. matching point 2 of Figure (5).

At the first matching point, B(1) < 1 and thus (36), (37) give

B(1) = k5εN(1)(1 +O(ε)) (38)

ρ3N(1)(β1 − B(1)) = ρ4ε
4(1 − B(1)) . (39)
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The appearance of the factor of ε in relation (38) arises due to the different scalings
of B0 and N0 in the wavefront. Taking d = B(1) in equation (29) gives

N(1) = D

(
β1 − B(1)

B(1)

) 1
ρ3β1

. (40)

Now consider the second matching point. Equation (28) shows that the only
turning point of B = B0 in the inner region forN0 �= 0 is B = B0 = β1. However,
all numerical simulations suggest that bmax < β1. Similarly, equation (31) for dB0

dξ
in the outer waveback region shows that the only turning point of B = B0 in the
waveback for N0 �= 0 is B = B0 = 1; however, all numerical simulations suggest
that bmax > 1. Hence as we approach the matching point from below,Binner increas-
es towards β1, and as we increase ξ0 to pass beyond the matching point, Bwaveback

decreases towards 1. So B(2) is actually the maximum value of B in our matched
solution. Thus if we can findB(2) in terms of the parameters, we should have a good
approximation to the value of bmax. Thus, we explicitly anticipate that B = B0 is
not constant in the outer waveback, and thus one must maintain the O(ε4) term in
equation (31) for the outer waveback.

As we expect 1 < B(2) < β1 equations (32) and (37) give

N(2) = ε4KB

1
ρ4ε

4

(2) (B(2) − 1)
ρ2−1

ρ4ε
4
,

ρ3N(2)(β1 − B(2)) = ρ4ε
4(B(2) − 1), (41)

while (29) implies

N(2) =
(
β1 − B(2)

B(2)

) 1
ρ3β1 [

D +H(B(1), B(2))
]
. (42)

Note that we have six unknowns (N(1),N(2),B(1),B(2),K andD) and six equa-
tions. Thus, one can in principle solve to determine N = N(B), and integrate to
find N(ξ0), B(ξ0). However, in practice, even analytically solving for (N(1), N(2),
B(1), B(2), K and D) is too cumbersome to perform. One can make a number of
important observations by considering the expressions for (B(1), N(1), D), without
solving for (B(2), N(2), K). For future reference, we note that equations (39) and
(40) can be readily solved to give

B(1) = k5ρ4

ρ3β1
ε5(1 +O(ε)), N(1) = ρ4

ρ3β1
ε4(1 +O(ε5)),

D = ρ4

ρ3β1
ε4

(
k5ρ4

ρ3β
2
1

ε5
) 1
ρ3β1

(
1 +O

(
ε

ρ3β1

))
. (43)
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4.5. Capillary tip density maximum

4.5.1. Analytical approach
In this section we use the above asymptotic framework to determine the maximum
value of the capillary tip density, and we will proceed to verify this numerically for
a number of parameter variations.

Since the inner equations (26), (28) are valid in the region where the capillary
tip density is largest, and as N = N0, B = B0 in the inner region, the maximum
value attained by N occurs when N = 1 − ρ2B. Hence

Nmax = 1 − ρ2B(N
max). (44)

We now seek B(Nmax); Nmax itself can then easily be determined from (44). For
simplicity of notation, we define

B∗ = B(Nmax).

From equation (29), we have an expression for N(B) = N0(B0), and hence

1 − ρ2B∗ =
(
β1 − B∗
B∗

) 1
ρ3β1 [

D +H(B(1), B∗)
]

=
(
β1 − B∗
B∗

) 1
ρ3β1

[
O(ε4)+H(B(1), B∗)

]
. (45)

One can simplify (30) to obtain

H(a, b) = (1−ρ2β1)

[(
b

β1−b
) 1
ρ3β1−

(
a

β1 − a

) 1
ρ3β1

]

+ ρ2β1

∫ (
b

β1−b
) 1
ρ3β1(

a
β1−a

) 1
ρ3β1

ds

1 + sρ3β1
. (46)

With the definitions

ψ∗ = (B∗/(β1 − B∗))1/(ρ3β1)

ψ1 = (B(1)/(β1 − B(1)))
1/(ρ3β1) =

(
k5ρ4

ρ3β1
ε5

) 1
ρ3β1

(
1 +O

( ε

ρ3β1

))
substituting (46) into (45), neglecting orders of ε4 yields,∫ ψ∗

0

ds

1 + sρ3β1
= ψ∗

1 + ψ
ρ3β1∗

− ρ2β1 − 1

ρ2β1
ψ1 +

∫ ψ1

0

ds

1 + sρ3β1

= ψ∗
1 + ψ

ρ3β1∗
+ 1

ρ2β1
ψ1 +O

(
ψ1ψ

ρ3β1
1

β1
∼ ε5

β2
1

)
. (47)
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We now consider the anzatz ψρ3β1∗ � 1. Neglecting terms at order ψ2ρ3β1∗ , we
readily find

ψ
ρ3β1∗ =

(
ρ3β1 + 1

ρ2ρ3β
2
1

ψ1

) ρ3β1
ρ3β1+1

. (48)

Recall that the anzatz is valid providing

ψ
ρ3β1∗ =

(
ρ3β1 + 1

ρ2ρ3β
2
1

ψ1

) ρ3β1
ρ3β1+1

=
(
ρ3β1 + 1

ρ2ρ3β
2
1

(
k5ρ4

ρ3β1
ε5

) 1
ρ3β1

) ρ3β1
ρ3β1+1

×
(

1 +O

(
ε

1 + ρ3β1

))
� 1 (49)

which typically holds for biologically reasonable parameter values. With the pa-
rameters in Table 1, the left-hand side of (49) is approximately 0.02, and does not
exceed 0.05, on varying β1, within the interval [3, 16]. Thus, we have at leading
order in ε,

nmax = k2

k3

(
1 − ρ2B∗

)
= k2

k3

(
1 − ρ2β1ψ

ρ3β1∗ (1 +O(ψ
ρ3β1∗ ))

)
(50)

where ψρ3β1∗ is given in equation (49) (and the factor of k2/k3 arises from the
rescaling (20)).

4.5.2. Numerical verification
In Figure 6 we compare the approximation (50) to the numerical value of Nmax
keeping all parameters are fixed as given in Table 1, except for β which is varied
within the extent of its biologically plausible range [3, 15], which results in a varia-
tion of β1 over the range [3.7, 15.7]. In Figure 7 we compare the approximation (50)
to the numerical value ofNmax keeping all parameters fixed as given in Table 1 ex-
cept, this time, for variations of k5. The motivation for varying β and k5 is due to the
fact these parameters are difficult to estimate empirically. One can readily observe
that both Figures 6 and 7 show the approximation (50) yields the same qualitative
trends as the numerical results for their respective parameter variations. The errors
involved are relatively large for an O(ε) approximation; this is speculated to be
due to the fact that the maximum of N is particularly sensitive to the behaviour of
the system close to the inner-outer wavefront interface, where the approximations
implicit in the patching procedure are relatively inaccurate. One could improve
these approximations by performing a matching, rather than a patching, procedure
but this is not pursued for reasons of simplicity and as we are more interested in
the endothelial cell density maximum, which is less sensitive to inaccuracies in the
approximations at the interfaces inherent in the patching procedure.
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Fig. 6. Comparison of numerical maximum ofN (individually plotted) with approximation
given in equation (50) (plotted as a solid line). All parameters are fixed as in Table 1, except
β1, which is varied in the interval [4, 16]

Fig. 7. Comparison of numerical maximum ofN (individually plotted) with approximation
given in equation (50) (plotted as a solid line). All parameters are fixed as in Table 1, except
k5, which is varied in the interval [0.1, 1]

4.6. Endothelial cell density maximum

In this section we investigate analytically the endothelial cell density maximum,
which is a measure of the angiogenic ability of the system and its ability to sup-
ply nutrients to the wound healing structural unit. We will find, for example, that
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this maximum depends, at leading orders, on only a few parameter groupings. The
implications of this, in the context of how one may attempt to induce a greater
angiogenic response, will be investigated in detail in section (5.3).

4.6.1. Perturbation theory
We seek an approximation to B(2). Using (41) to eliminateN(2) from equation (42)
gives, on rearrangement

B(2) = ρ4ε
4 + β1[ψ−1

2 ρ3(D +H(B(1), B(2)))]

ρ4ε4 + [ψ−1
2 ρ3(D +H(B(1), B(2)))]

where

ψ2 =
(

B(2)

β1 − B(2)

) 1
ρ3β1

.

Thus one has either that

B(2) = β1 −O(ε4)

or, noting D ∼ O(ε4), that

H(B(1), B(2)) ≤ O(ε4) � 1.

All observations from our numerical simulations indicate that B(2) �= β1 −O(ε4),
and thus we consider the latter. Neglecting orders of ε4, and using (46) we have

(1 − ρ2β1)ψ2 + ρ2β1

∫ ψ2

0

dx

1 + xρ3β1
= (1 − ρ2β1)ψ1 + ρ2β1

∫ ψ1

0

dx

1 + xρ3β1

= ψ1 +O

(
ψ1ψ

ρ3β1
1

β1
∼ ε5

β2
1

)
. (51)

As usual, we neglect terms of order ε4. The above equation forψ2 has two solutions;
the smaller one gives ψ2 ∼ 0, Bmax � 1, which is inappropriate and hence we
seek the larger solution. In general, one should seek the solution to (51) to obtain
the asymptotic estimate for ψ2, and hence Bmax . However, noting ψ1 � 1 one
may consider an expansion in terms of ψ1, which will be valid in quite general
circumstances, as investigated below. Defining the function

F(p) = (1 − ρ2β1)p + ρ2β1

∫ p

0

dx

1 + xρ3β1

we have F(ψ2) = ψ1 (neglecting the O(ε5/β2
1 ) term). Treating ψ1 as asymptoti-

cally small, and writing ψ2 as power series in ψ1 gives, via standard perturbation
techniques, that

ψ2 = ψ0
2 + ψ1

F ′(ψ0
2 )

− F ′′(ψ0
2 )ψ

2
1

2F ′2(ψ0
2 )

+ ... (52)
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where

1

ψ0
2

∫ ψ0
2

0

dx

1 + xρ3β1
= ρ2β1 − 1

ρ2β1
. (53)

This gives, at leading order in ψ1 and ε,

ψ2 = ψ0
2

Bmax = B0
(2) +O(ε,ψ1), B0

(2) = β1(ψ
0
2 )
ρ3β1

1 + (ψ0
2 )
ρ3β1

. (54)

This constitutes a particularly useful perturbative approximation for Bmax which,
as we will investigate below, is valid for biologically relevant parameters whenever
β1 is sufficiently small. For example, one requiresβ1 < 9 when all other parameters
are as given in Table 1).

4.6.2. Correction terms and validity of the approximation Bmax = B0
(2).

Before numerically investigating the above approximations for Bmax we consider
the validity of taking ψ1 as asymptotically small in equation (54) by investigating
the corrective terms in (52).

We consider the first correction term initially. As shown in Appendix (C), via
the inequalities (70) and (71), one has∣∣∣∣ ψ1

F ′(ψ0
2 )

∣∣∣∣ < Aψ1 ≤ (9/5)ψ1 � 1 (55)

whereA
def= 1 for β1 ≥ 5 andA

def= 9/5 for β1 ∈ [7/2, 5], and all other parameters
consistent with the parameter estimations given in Appendix (A). Hence the first
correction term is small.

However, the second and higher correction terms need not be negligible for
biologically relevant parameters. Noting B0

(2) ∈ [0, β1], the second correction term
gives∣∣∣∣ψ2

1F
′′(ψ0

2 )

2F ′2(ψ0
2 )

∣∣∣∣ = ψ2
1ρ2ρ3β

2
1 (ψ

0
2 )
ρ3β1−1

2(1 + (ψ0
2 )
ρ3β1)2|F ′2(ψ0

2 )|

=
ψ2

1ρ2ρ3(B
0
(2))

1− 1
ρ3β1 (β1 − B0

(2))
1+ 1

ρ3β1

2|F ′2(ψ0
2 )|

<∼ A2ψ2
1ρ2ρ3β

2
1

2

This indicates that ψ2 = ψ0
2 is a good approximation provided A2ψ2

1ρ2ρ3β
2
1 � 1.

For higher order terms, simple power counting indicates that the nth correction
term is O(ρ2ρ

n−1
3 βn1A

nψn1 ). Consequently, if A2ψ2
1ρ

2
3β

2
1 � min(1, ρ3/ρ2), pow-

er counting would subsequently indicate that all correction terms are small and thus
that the approximationψ2 = ψ0

2 is accurate. Note that on varying β1, with all other
parameters as in Table 1, we always have ρ3/ρ2 < 1, while A2ψ2

1ρ2ρ3β
2
1 < ε for

β1 < 9, but A2ψ2
1ρ2ρ3β

2
1 > 0.75 for β1 > 11.5. This indicates that ψ2 = ψ0

2
is a good approximation for biologically reasonable parameters provided β1 does
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not lie towards the upper end of its biological bounds. For higher values of β1, one
must solve (51) to obtain a perturbative approximation for Bmax which unfortu-
nately does not possess a simpler, but accurate, representation. However note that
it is straightforward to deduce from equation (51) that an increase in the value of
ψ1 always results in a decrease in the value of Bmax .

4.6.3. Numerical verification
Figures 8, 9 and 10 compare the numerical value of Bmax to the perturbative
approximation given by equation (54), which is represented by the dashed line in
all figures, and the perturbative approximation given by the solution of equation
(51), which is denoted by the solid line in all figures.

In Figure 8 we consider the effect of varying β1, fixing all other parameters as
given in Table 1. The approximations are excellent for smaller values of β1. For
larger values of β1, the approximation given by (54) loses accuracy. The solution of
(51) yields an improved approximation for larger values of β1, which is consistent
with the above observations.

In Figure 9 we consider the variation of k2 = k3 in the interval [0.3, 0.83],
fixing all other parameters as given in Table 1. We do not exceed k2 = k3 = 0.83,
because of the constraint k4 > k2, as discussed in Appendix A.2. We see that for
relatively small k2 = k3 the estimate given by the solution of (51) is substantial-
ly more accurate. Note that while reducing k2 = k3 does not affect ψ1, we have
ρ3ρ2 ∼ k−1

2 k−1
3 and hence the condition ψ2

1ρ2ρ3β
2
1 � 1 is eventually violated.

Consequently, for smaller values of k2 = k3 one must use the solution of (51). One
can observe from Figure 9 that the solution of (51) does indeed yield an estimate
for Bmax consistent with a term at leading order in ε. We note from Figure 8 that

Fig. 8. Comparison of numerical maximum of B (individually plotted) with the approxi-
mation given in equation (54) (dashed line) and the solution to equation (51) (solid line) on
varying β1. All other parameters are fixed as in Table 1
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Fig. 9. Comparison of numerical maximum of B (individually plotted) with the approxi-
mation given in equation (54) (dashed line) and the solution to equation (51) (solid line) on
varying k2 = k3. All parameters are fixed as in Table 1, except k2 = k3, which are varied in
the interval [0.3, 0.83]

Fig. 10. Comparison of numerical maximum of B (individually plotted) with the approxi-
mation given in equation (54) (dashed line) and the solution to equation (51) (solid line) on
varying k2 = k3. All parameters are fixed as in Table 1, except that β1 = 5 and k2 = k3 are
varied in the interval [0.3, 0.83]

the analytical approximations for Bmax are more accurate for smaller β1; in figure
10, we see further evidence of this, where we consider the variation of k2 = k3 in
the interval [0.3, 0.83], but now with β1 = 5.0, while fixing all other parameters as
given in Table 1. Obviously, one should also consider the variation of Bmax with
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k5; this is addressed below, as part of an investigation as to whether amending cell
motility parameters can affect the angiogenic response.

5. Discussion

5.1. Qualitative predictions and the propagation Speed

By consideration of the main cellular processes involved in wound-healing angio-
genesis, we have developed and analysed a new model for wound-healing angio-
genesis. It differs from previous models in that it focuses only on the endothelial
cells and the capillary tips, thus constituting a minimal model for which analytical
insight can, and should, be developed, before extension and generalisation.

All our simulations of the model show the development of a wave-like profile
progressing towards the centre of the wound, exhibiting the qualitative features
empirically observed in cutaneous wound healing. There is a definite ‘structural
unit’, consisting of a peak of capillary tips, closely followed by a peak in blood ves-
sel density, moving in concert towards the wound centre. Additionally, the whole
wounded region exhibits elevated endothelial cell density, as one would expect with
the formation of granulation tissue in the wound. Thus the model’s qualitative pre-
dictions are in complete accord with observation. Consequently, one is interested
in the quantitative predictions of the model, and how these may be interpreted in
terms of a healing wound.

The first quantitative prediction of this model is that the speed of the structural
unit is given by the theoretical minimum travelling wave speed,

√
4C1k2. Numeri-

cally, one always observes that the actual speed of the structural unit asymptotically
tends to

√
4C1k2 on the biological domain. One must note that the validity of this

observation is not necessarily obvious given the model does not evolve to a trav-
elling wave on the biological domain. Nonetheless, the minimum travelling wave
speed has proven to be a very accurate predictor for the structural unit’s speed of
propagation in the model. Thus, the structural unit’s speed is determined simply by
the rateC1 of capillary tip diffusive random motion and the rate k2 of tip branching.
We note that a stochastic model of angiogenesis has produced a similar prediction;
that the rate of vessel ingrowth is strongly dependent on the rate of endothelial cell
migration, but not on the rate of proliferation (as long as some takes place) [15,18].

5.2. Predictions for the capillary tip density maximum

Despite the relative complexity of this multiparameter model, one can apply per-
turbative techniques to obtain information concerning travelling wave solutions,
which in turn, give useful information concerning the structural unit. One can de-
termine that a crude approximation for the maximum of the capillary tip density, is
given by

Nmax = k2

k3

(
1 − ρ2β1ψ

ρ3β1∗
)

ψ
ρ3β1∗ =

(
ρ3β1 + 1

ρ2ρ3β
2
1

(
k5ρ4

ρ3β1
ε5

) 1
ρ3β1

) ρ3β1
ρ3β1+1

, (56)
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and this has explicitly been shown to agree, at least approximately, with the numer-
ical simulations for a wide range of parameter values. This agreement is useful for
two reasons. Firstly, it lends support to our hypothesis that one can determine use-
ful information concerning the structural unit from the minimum speed travelling
wave. Secondly, it should be noted that increasing capillary tip densities within the
structural unit relies primarily upon increasing k2/k3, and on reducing ρ2β1ψ

ρ3β1∗ .
The fact that k2/k3 strongly influences Nmax is not surprising; however, the fact
that the other parameters influence Nmax by the parameter grouping ρ2β1ψ

ρ3β1∗
would be difficult to predict other than by analytical means.

5.3. Predictions for the endothelial cell density maximum

Detailed consideration of Nmax is not as relevant or interesting as investigating
the maximum of the endothelial cell density, Bmax , within the structural unit, as
this constitutes a measure of the angiogenic ability of the system and its ability to
supply nutrients to the wound healing structural unit. First of all, the perturbative
framework enables us to make the modelling prediction that altering aspects of the
endothelial cell density remodelling mechanism will not increase the strength of the
angiogenic response. This is because the terms governing this mechanism within
the model are pre-multiplied by ρ4ε

4 so, increasing the effects of this mechanism by
a factor of 50 will not change the perturbative structure of the model. Furthermore,
if β1 is small, so that ψ2

1ρ
2
3β

2
1 � min (1, ρ3/ρ2), upregulating the remodelling

mechanism, corresponding to altering parameters so as to increase ρ4, simply will
not affect the angiogenic response. If the parameters however are such that ψ1 is
not negligible, then increasing ρ4 will increase ψ1, which will lead to a counter
intuitive decrease in Bmax . However, this reduction will be relatively small as the

dependence of Bmax on ρ4 is via ψ1 ∼ ρ
(ρ3β1)

−1

4 , and thus is weak due to the fact
that ρ3β1 is large when ψ2

1ρ
2
3β

2
1 �� min (1, ρ3/ρ2). Thus, we have the prediction

that increasing the remodelling response will, at best, have no effect or, at worst,
be mildly counter-productive.

In Figure 11 we test this observation numerically by fixing all parameters, ex-
cept ν, as in Table 1, and observing that increasing ν by a factor of 50 results only
in a small decrease of Bmax , as predicted above.

Looking at how Bmax depends on the model parameters in the perturbative
framework indicates that Bmax is independent of the parameters influencing cell
motility, except possibly via the k5 dependence ofψ1. There are a number of points
to note here. Firstly, k5 is a ratio of carrying capacities, and hence one may an-
ticipate that is is not easily manipulated experimentally. Secondly, it is difficult to
estimate k5. Thirdly, we have the scaling ψ1 ∼ (k5νε

5)1/ρ3β1 and the observation,
from Figure 11, that while varying ν by a factor of 50 does alterψ1, it is only enough
to cause small changes in Bmax . Consequently, varying k5 over one, possibly even
two, orders of magnitude again only results in small changes in Bmax . Thus, we
have following conclusions. Firstly, our inability to estimate k5 accurately does not
affect our ability to make predictions for Bmax . Secondly, we have the modelling
prediction that the angiogenic response of the system, as measured by Bmax is, at
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Fig. 11. Comparison of numerical maximum of B (individually plotted) with the approxi-
mation given in equation (54) (dashed line) and the solution to equation (51) (solid line) on
varying ν in the interval [0.0005, 0.025]. All other parameter values are as in Table (1, except
that β = 5.0. The graph for β = 10.0, not shown, is very similar, though the asymptotic
approximations are less accurate, as observed in section (4.6.3)

leading orders of magnitude, insensitive to parameters influencing cell motility, in-
cluding k5 which only weakly influences Bmax , viaψ1. Such predictions have been
validated against simulations of the full partial differential equation model. For ex-
ample, in Figure 12, we consider the variation in k5, which, as one would anticipate
from the asymptotics, yields results which are very similar to those presented in
Figure 11. One is primarily interested in increasing the angiogenic capabilities of
the system and thus Bmax , which depends on the parameters β1, ρ2β1, ρ3β1 and
ψ1. However, as we have seen in all figures the general trend of how Bmax depends
on parameter values is reproduced by equation (54), with the influence ofψ1 acting
as a corrective term for higher values of β1. To determine how one may manipulate
parameters so as to induce as large an increase as possible in Bmax we therefore
focus on equation (54), and hence the parameters β1, ρ2 and ρ3.

The parameter β represents the ratio of the carrying capacity of capillary tip
induced endothelial cell proliferation to the carrying capacity of logistic remodel-
ling endothelial cell proliferation. Consequently, one would intuitively expect that
increasing β will increaseBmax , the (non-dimensionalised) endothelial cell density,
as observed in Figure 8. However, it is likely that manipulation of β is not empiri-
cally possible. Hence we treat β as fixed. Furthermore, we have β1 = β + k5k4/χ .
We consider below only variations induced by manipulating the angiogenic system
such that

δ

(
k5k4

χ

)
� β1 = β + k5k4

χ
. (57)
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Fig. 12. Comparison of numerical maximum of B (individually plotted) with the approx-
imation given in equation (54) (dashed line) and the solution to equation (51) (solid line)
on varying k5 in the interval [0.1, 1.0]. All other parameter values are as in Table (1, except
that β = 5.0. The graph for β = 10.0, not shown, is very similar, though the asymptotic
approximations are less accurate, as observed in section (4.6.3)

i.e. that β1 is essentially unchanged by the variation of k5k4/χ . Note that k5 is a
function of carrying capacities, and is therefore unlikely to be altered by empirical
manipulations of the angiogenesis system. Given that k5k4/χ � β for biologically
reasonable parameters, this restriction is therefore that the empirical manipulations
of the angiogenesis system do not induce changes in (k4/χ) that are orders of mag-
nitude greater than typically measured values of (k4/χ). With this restriction, we
are consequently interested in variations of

ρ2 = k4

k2
, ρ3 = χ

k3
(58)

where k4 governs the strength of anastomosis, k2 governs the proliferation rate of
capillary tips, k2 = k3 and χ governs the rate of capillary tip induced endothelial
cell proliferation.

It is straightforward to deduce from equation (54) that ψ0
2 , and hence B0

(2) ∼
Bmax , is monotonically increasing in ρ3 and monotonically decreasing in ρ2. This
is in complete accord with intuition. For example, it predicts that stimulating cap-
illary tip induced endothelial cell proliferation increases B0

(2) ∼ Bmax , whereas

stimulating anastomosis decreases B0
(2) ∼ Bmax .

Given an angiogenic scenario, one is interested in what specific changes can be
made so as to maximally increase blood vessel formation. Typically, one can alter
cell motility and cell proliferation rates via the stimulation of growth factor produc-
tion, or the exogenous addition of growth factors. Clearly, the model predicts that
adding factors that simply stimulate cell motility will not greatly affect blood ves-
sel formation. Adding growth factors will typically reduce cell cycle times but will
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not affect carrying capacities, which generally are determined by other limitations,
such as requirements for nutrients and physical space. Consider adding growth
factor which uniformly stimulates proliferation for all cell types (without affecting
carrying capacities). One would have the scaling k2 → 3k2, k3 → 3k3, χ → 3χ

and ν → 3ν, with 3 > 1, which will decrease ρ2 but will leave ρ3 unaffected.
Consider instead, adding a cell specific factor that preferentially stimulates capil-
lary tip proliferation, but again does not affect carrying capacities. This will again
decrease ρ2 but it will also decrease ρ3, and consequently cannot give a greater
increase in blood vessel formation than simply increasing cell proliferation uni-
formly. Consider a third possibility, whereby one adds a cell specific factor that
preferentially stimulates cells other than those constituting the capillary tips, and
again does not affect carrying capacities. This will increase χ (and ν) while leaving
k2 and k3 unaffected, and so will increase ρ3, and not affect ρ2. This leaves the
interesting possibility that stimulating all cells to proliferate may be less effective
in increasing blood vessel formation than stimulating all cells except those at cap-
illary tips. One clearly has the requirement that Bmax is more sensitive to changes
in ρ2 than ρ3 for the stimulation of all cells to proliferate is more effective.

However, the relative sensitivities of Bmax to the parameters ρ2 and ρ3 is not
immediately obvious, even when considering the perturbative approximations for
Bmax . We consider the simplest approximation, namely B0

(2), as given by equation
(54), since it is relatively easy to manipulate and yet, as we have seen above on nu-
merous occasions, successfully predicts the general dependence of Bmax on model
parameters. Working with this approximation, one can show, after some algebra,
that

4
def=

∣∣∣∣∂B0
(2)/∂ρ2

∂B0
(2)/∂ρ3

∣∣∣∣ =
[
ρ2

2β
2
1 (ψ

0
2 )
ρ3β1

∫ 0

−∞
dz

ze(ρ3β1+1)z

(1 + (ψ0
2 )
ρ3β1eρ3β1z)2

]−1

.

(59)

For (ψ0
2 )
ρ3β1 � 1, one can readily approximate the integral to determine that

4approx ∼ (ρ3β1 + 1)2

ρ2
2β

2
1 (ψ

0
2 )
ρ3β1

(60)

and, via numerical integration, one can confirm that4 = 4approx holds to a within
a relative error of ∼ 35% for (ψ0

2 )
ρ3β1 < 1.

Therefore, when

4approx < 1 and (ψ0
2 )
ρ3β1 < 1 (61)

one has a leading order prediction that B0
(2) is more sensitive to the parameter ρ3

than ρ2. Consequently one has the leading order prediction that targeting prolif-
erative stimulation of cells other than those at capillary tips would, under such
circumstances, be more effective than unspecific proliferative stimulation. We pro-
ceed to verify this with the improved approximation to Bmax , given by the solution
of equation (51).
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Fig. 13. In these graphs, β1 = 5.5 and ρ2, ρ3 are varied. For the upper left graph we plot

H
(
(ρ3β1 + 1)2)/(ρ2

2β
2
1 (ψ

0
2 )
ρ3β1)

)
, where the function H is given in equation (62). For the

upper right graph, we plot H(|(∂B(2)/∂ρ2)/(∂B(2)/∂ρ3)|), where B(2) ∼ Bmax is calculated
via the improved perturbative approximation, equation (51). B0

(2) is plotted on the lower
graph. Note the similarity between the upper left and right graphs, and that the region (in
blue) where H = −1 in these graphs corresponds to regions where B0

(2) < β1/2 = 2.75 on
the right-hand graph, i.e. (ψ0

2 )
ρ3β1 < 1. See text for further details

In all graphs of Figure 13, β1 = 5.5, while the parameters ρ2 and ρ3 are varied.
In the upper left hand graph of Figure 13 we plot the function

H

(
(ρ3β1 + 1)2

ρ2
2β

2
1ψ

ρ3β1

)
where H(y)

def=
{−1 y ≤ 1

1 y > 1
, (62)

while in the upper right graph we plot

H

(∣∣∣∣∂B(2)/∂ρ2

∂B(2)/∂ρ3

∣∣∣∣)
where B(2) ∼ Bmax and its derivatives are calculated via the improved perturbative
approximation, equation (51). One can see that there is a good correlation between
the approximation arising from the use of4approx and from equation (51) as to the
regions of parameter space whereBmax is more sensitive to changes in ρ3. Consider
the lower graph of Figure 13, which is a plot of B0

(2). One can see that the region
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where B0
(2) is predicted to be more sensitive to ρ3 (in blue in the upper graphs of

Figure (13)) are regions where B0
(2) < β1/2 (= 2.75), i.e. (ψ0

2 )
ρ3β1 < 1. Hence,

as required, the second of the conditions in equation (61) holds in this region.
Consequently, we have a modelling prediction that the region of parameter space

where preferential proliferative stimulation of cells excluding those at capillary tips
induces a greater angiogenic response is characterised by1

1 > 4approx = (ρ3β1 + 1)2

ρ2
2β

2
1ψ

ρ3β1
= ρ2

3

ρ2
2ψ

ρ3β1

(
1 + 1

β1

)2

= χ2k2
2

k2
3k

2
4ψ

ρ3β1

(
1 + 1

β1

)2

= χ2

k2
4ψ

ρ3β1

(
1 + 1

β1

)2

Furthermore, for ψρ3β1 � 1 one has, from equation (54), ψρ3β1 ∼ ρ3/ρ2 ∼
χ/k4. Noting that β−1

1 is small, the above condition can be refined to

ψρ3β1 � 1, or 1 >
χ2

k2
4

for ψρ3β1 ∼ 1. (63)

Consequently, we can summarise the above by making the modelling predic-
tion that, subject to the weak restriction given by equation (57), the preferential
proliferative stimulation of cells excluding those at capillary tips induces a greater
angiogenic response in scenarios characterised by one of the following. There is
either an extremely low level of angiogenic response (ψρ3β1 � 1) or there is a low
angiogenic response (ψρ3β1 ≤∼ 1) coupled with high levels of anastomosis (k4)

and/or low levels of proliferation in the vicinity of capillary tips (χ).

Acknowledgements. It is a pleasure to acknowledge useful advice from Professor Jonathan
Sherratt concerning this work. Part of this work was undertaken while EAG was funded
by The Wellcome Trust, Grant No 047521. KP acknowledges support from a EPSRC Pool
Studentship.

A. Appendix. Non-dimensionalisation and parameter estimation

A.1. Dimensional model

The dimensional model is

∂n

∂t
= ∂

∂x

[
D1
∂n

∂x

]
+ ∂

∂x
[D2n] + λ1n+ λ2n− λ3n

2 − λ4nb

1 One may consider increasing β1: the analogous graphs to those presented in Figure 13,
but with β1 = 10 (not shown), illustrate that the trends depicted in Figure 13 are unchanged,
though the correlation between the analogues of the upper left and the upper right graphs of
Figure 13 is slightly weaker. This is not surprising from the fact that B(2), given in equation
(54), becomes a less accurate predictor for the solution of (51) as β1 increases (see section
(4.6.2) and Figure 8). Similarly, one would also expect that the correlation between 4 and
|(∂Bmax/∂ρ2)/(∂Bmax/∂ρ3)| will decrease in accuracy as β1 increases, but will nonetheless
predict the correct trends.
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∂b

∂t
= λ5

∂

∂x

[
D1
∂n

∂x
+D2n

∂b

∂x

]
+ λ6χnb(b1 − b)

+λ6νb(b0 − b)+ λ5(λ3n
2 + λ4nb)

n(x, 0) =
{

0 x ∈ [0, x0)

ninit x = x0

b(x, 0) =
{

0 x ∈ [0, x0)

b0 x = x0

We nondimensionalise the model using the following scalings for the variables:

ñ = n

n0
, b̃ = b

b0
, t̃ = t

T
, x̃ = x

x0
.

Dimensionless parameters are defined as follows:

C1 = D1T

x2
0

, C2 = D2T b0

x2
0

, k2 = λ2T , k3 = λ3n0T , (64)

k4 = λ4b0T , k5 = λ5n0

b0
, χ̃ = λ6T b1n0χ, ν̃ = λ6T b0ν, β = b1

b0
, ς̃ = ς

x0
,

ñinit = ninit

n0
.

This enables one to write down the non-dimensionalised equations, which are given
at the end of section (2), where tildes are dropped for convenience.

A.2. Parameter Estimates

In the following, the estimation of n0, x0, T and the non-dimensionalised parame-
ters listed in (64) is discussed in detail. The results of the section are summarised
in Table 1.

The value x0 used in the non-dimensionalisation is the half-width of the wound
and taken to be 0.5cm. T is taken to be 1 day = 86400 seconds.

Without loss of generality, one may conveniently define n0 to be the dimen-
sionalised carrying capacity of capillary tips. To the authors’ knowledge it is not
possible to estimate this carrying capacity from empirical observation as there is
currently no experimental data for capillary tip densities. However, it serves only
one purpose in the model, namely to scale from the non-dimensionalised model
predictions of capillary tip density to give dimensionalised predictions. Thus, as
long as we need only consider relative, rather than absolute, values of capillary
tip and endothelial cell densities for our modelling observations and conclusions,
such restrictions do not affect the modelling. Note that with this definition of n0
we require k2 = k3.

Variations of ς̃ and ñinit do not affect the model greatly, in that they deter-
mine initial conditions, which are “forgotten” as the solution moves towards its
travelling wave attractor (provided the initial conditions still lie in the basin of the
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travelling wave attractor). We take ς̃ and ñinit to be small (relative to unity) with
typical values of 0.25. This simply represents the fact that the preliminary elevated
capillary tip density does not extend extensively into the unwounded area, and does
not exceed nmax at t = 0. The latter can be verified a posteriori, by consideration
of Figure 2 for example. The diffusion coefficient associated with individual and
independent cells is typically between 10−9 and 10−8cm2s−1 [6]. The lower bound
is particularly appropriate for this case, as the motion of the endothelial cells consti-
tuting the capillary tips involves the orchestrated movement of a number of cells in
unison, which may reduce the effective diffusion coefficient, possibly below even
10−9cm2s−1. Taking D1 = 10−9cm2s−1 yields C1 = 3.5 × 10−4 for the non-di-
mensionalised diffusion coefficient (though this may be an overestimate). We note
that C1 is the key diffusion coefficient, as together with k2, it dictates the travelling
wave speed (see section (4.1)). We estimate C2 simply by C1 = C2 so that neither
of the capillary tip transport mechanisms, i.e. random motion and convection down
endothelial cell gradients, dominate in the model.

The parameter grouping λ6νb0 can be estimated by considering the normal slow
remodelling of the vasculature, with n = 0. Ignoring spatial terms, and at low endo-
thelial cell densities, we have approximately db/dt ∼ λ6νb0b. On average λ6νb0b

new cells are created per unit length per unit time. In a study [7] of endothelial cell
proliferation in various normal and cancerous tissues, tritated thymidine injections
were used to label proliferating cells, differentiating endothelial cells from other
cell types by morphology. In normal skin it was found that the number of labelled
cells per hundred endothelial cells increased by about 0.25 per day over seven days.
Thus, by considering a one day time interval, we have

ν̃ = λ6νb0T ∼ ln
(100 + 0.25

100

)
∼ 1

400

giving an estimate for ν̃. We are, of course, ignoring cell cycle subtleties by using
the number of cells entering S-phase in any given time period as an estimate for
the number of cells that would have entered M-phase. However, such numbers are
of the same order of magnitude, and hence the methodology is legitimate for order
of magnitude estimates.

The parameter χ̃ can be estimated by considering the maximum endothelial
cell proliferation rate permitted by the model. For b small, and n relatively large
we have

db

dt
∼ λ6(νb0 + nmaxχb1)b. (65)

The same study [7] also included a study of endothelial cell proliferation in near
optimal conditions during placental growth. It was found that within two days of be-
ginning the tritiated thymidine injections 79.5% of endothelial cells were labelled.
Thus we have the estimate

χ̃
n∗
n0

∼ χλ6n∗χb1T ∼ 1

2
ln(1.8)− ν̃ ∼ 1

2
ln(1.8) (66)
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where n∗ denotes the capillary tip density attained under optimal conditions, which
is the carrying capacity density assuming capillary tip loss due to anastomosis is
minimal. We thus take n∗ ∼ n0 giving an estimate that

χ̃ ∼ 1

2
ln(1.8) ∼ 0.3. (67)

Dyson et al. [5] used both cell counts and microangiography combined with com-
puter-assisted image analysis to measure vascularization of porcine dermal wounds
in moist and dry environments. Using endothelial cell counts, it was found that the
maximum ratio of the number of endothelial cells per unit area in the wound space
(mean ± standard deviation) compared to the number in uninjured dermis was
6.7 ± 1.8 for a moist wound environment, and 4.5 ± 1.5 for a dry wound environ-
ment. The corresponding results using microangiography were 14.3 from vessel
counts and 5.0 from percentage area measurements. These give an estimate for β
in the approximate range [3.5, 15]. We initially work with β in the middle of this
range, taking β = 9.29 (with the 3SF accuracy specified so that the ubiquitous

parameter β1
def= β + k5k4/χ is equal to 10.0, a convenient round number, for the

reference set of parameters).
The parameter k2 can be estimated from the doubling time of capillary tips.

This is estimated via the typical doubling time of a proliferating cell (20–24 hours),
as capillary tip proliferation is ultimately driven by endothelial cell proliferation.
Thus, we take k2 = (24/20) ln 2 ∼ 0.8, which gives us k3. The parameter k4 is
more difficult to estimate. We now motivate the constraint k4 ≥ k2. One should
consider the travelling wave connecting the wounded steady-state (n, b) = (0, 0)
to the unwounded steady-state (n, b) = (0, 1) in the phase-plane. The equation for
n decouples from b in a linear expansion about these steady-states, giving

C1n
′′ − cn′ + k2n = 0 (n, b) ∼ (0, 0)

C1n
′′ − cn′ + k2n− k4n = 0 (n, b) ∼ (0, 1). (68)

Given c, k4 > 0, and with c2 ≥ 4C1k2 as required for non-negativity near (0, 0),
the eigenvalues at (0, 0) and (0, 1) are all of the same sign for k4 < k2, mak-
ing a connection between the two steady-states impossible. Thus, one must take
k4 ≥ k2 for a connection between the above two steady-states. We briefly note
that with k4 < k2 another non-negative steady-state exists, and with k4 = k2, this
steady-state confluences with the steady-state (n, b) = (0, 1). Consequently, for
k4 ≤ k2 there is a bifurcation in phase space. We do not consider this in the present
paper. Further work is required to investigate whether it represents a mathemati-
cal artefact, or a bifurcation yielding travelling waves linking (0,0) to a different,
possibly pathological, steady-state. We therefore take k4 > k2 in this paper. Fur-
thermore, if k4 is excessively larger than k2, the model would be likely to be trivial
with no capillary tip growth owing to excessive tip-sprout anastomosis, and thus k4
and k2 should be of the same order of magnitude. Consequently, we initially take
k4 = 0.85.

Estimating k5 is difficult; all we can do is present a upper bound for k5. Recall-
ing that the parameter λ5 is the number of endothelial cells within a capillary tip,
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the parameter k5
def= λ5n0/b0 represents the ratio of endothelial cells at the carry-

ing capacity limits of capillary tip density and remodelled endothelial cell density.
During the formation of the granular tissue only a minority of the endothelial cells
should arise indirectly, via capillary tip proliferation and subsequent anastomosis
for the following reason. If anastomosis and other means of endothelial cell prolif-
eration or migration introduced cells into localised endothelial cell compartments at
similar rates one would produce a blood vessel network with comparable densities
of blood vessel junctions and endothelial cells, which would be inconsistent with
typical blood vessel networks. The bulk of the formation of the structural unit with-
in the granular tissue in the model occurs in the inner region described in section
(4.3), as minimal angiogenesis occurs in the wavefront region, while the waveback
region is predominantly governed by the remodelling process. Consequently, one
anticipates that in the inner region the increase in endothelial cell density due to
anastomosis is subleading compared to the increase in endothelial cell density due
to other mechanisms in the model, the dominant one of which is proliferation. With
the definitions ρ3 = χ̃/k3 and β1 = β + k5k4/χ̃ , this requires that k5/(ρ3β1) in
equation (27) is asymptotically small, giving a bound for k5. Thus we only con-
sider values of k5 for which k5/ρ3β ≤ O(ε), where ε (= 1/4) is the asymptotic
parameter in our perturbative expansion. This reasoning underlies the derivation
of equation (28). For definiteness, we take k5 = 1/4 in Table 1 which, of course,
satisfies the above constraint.

B. Numerics

The equations of this model constitute a set of non-linear coupled with convec-
tive-diffusion equations, with non-linear kinetics. A minor point to note is that, in
practice, the initial conditions are slightly smoothed to facilitate numerical solu-
tion. The key difficulty with numerically solving these equations is the presence
of diffusion and convection simultaneously, which tends to yield artefact oscilla-
tions in many numerical schemes. Computer speed is not particularly important
with one-dimensional simulations, and hence we used an explicit, rather than an
implicit, method. Artefact numerical oscillations are avoided by use of upwinding.
This, however, introduces the possibility of excessive artefactual numerical diffu-
sion. This can typically be avoided in two ways. Use of a sufficiently small mesh,
if possible, is adequate; otherwise, one can resort to recovery methods. It proved
possible to use an explicit scheme, with upwinding, and a sufficiently small mesh
to avoid numerical artefact diffusion for this model. Further details on these, and
other, numerical techniques for convection-diffusion equations can be found in [9].

C. Error bounds in perturbation theory

We consider the first correction term in section (4.6.2), with parameter values such
that β1 > 5, in which case ρ3β1 > 5/3 and ρ2β1 > 5. These constitute all but
extreme values of the parameter space outlined in Appendix (A.2). Let

K(ψ, ρ3β1, b) =
∫ ψ

0

dx

1 + xρ3β1
− ψ

1 + ψρ3β1
− 1

b

(
ψψρ3β1

1 + ψρ3β1

)
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with ψ ≥ 0 and b ≥ 2, where b should be considered a parameter, which can,
if required, be adjusted to fine tune any bound deduced below. We have that
K(0, ρ3β1, b) = 0 and

∂K

∂ψ
= ψρ3β1

b(1 + (ψ)ρ3β1)

(
ρ3β1(b − 1)− 1 − ψρ3β1

)
.

Hence ∂K/∂ψ > 0 for any sufficiently small ψ > 0; thus K(ψ, ρ3β1, b) > 0 for
ψ ∈ (0, ψ∗] where ψ∗ is the value of ψ at the only turning point for ψ > 0, and is
given by ψρ3β1∗ = ρ3β1(b − 1)− 1. Noting that

1

ψ0
2

∫ ψ0
2

0

dx

1 + xρ3β1
= ρ2β1 − 1

ρ2β1

we have

K(ψ0
2 , ρ3β1, b) = ψ0

2

ρ2β1(1 + (ψ0
2 )
ρ3β1)

(
ρ2β1

(
1 − 1

b

)
− 1

)

×
[
(ψ0

2 )
ρ3β1 − 1

ρ2β1
(
1 − 1

b

) − 1

]
.

Note that we have (
ρ2β1

(
1 − 1

b

)
− 1

)
> 0.

Set b = 2. Suppose (ψ0
2 )
ρ3β1 ≤ (

ρ2β1
(
1 − 1

b

) − 1
)−1

.

Then K(ψ0
2 , ρ3β1, b) ≤ 0. Hence one must have ψ0

2 > ψ∗, i.e. (ψ0
2 )
ρ3β1 >

(ρ3β1(b − 1)− 1). This gives an immediate contradiction if ρ3β1(b − 1) − 1 >(
ρ2β1

(
1 − b−1

) − 1
)−1

, i.e. if

(ρ3β1(b − 1)− 1)

(
ρ2β1

(
1 − 1

b

)
− 1

)
− 1 > 0. (69)

It is a straightforward matter to check that, given ρ3β1 > 5/3, ρ2β1 > 5, taking
b = 2 is sufficient to enforce the above inequality. Hence for b = 2 we have, by
contradiction, (ψ0

2 )
ρ3β1 > (ρ2β1

(
1 − 1

b

) − 1)−1.

Recall that

F(p) = (1 − ρ2β1)p + ρ2β1

∫ p

0

dx

1 + xρ3β1
,

ψ1 = (B(1)/(β1 − B(1)))
1/(ρ3β1) =

(
k5ρ4

ρ3β1
ε5

) 1
ρ3β1

(
1 +O

( ε

ρ3β1

))
� 1
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A straightforward rearrangement of the inequality (ψ0
2 )
ρ3β1 >

(
ρ2β1

(
1 − b−1

)−1

− 1
)−1 yields ∣∣∣F ′(ψ0

2 )

∣∣∣ = ρ2β1(ψ
0
2 )
ρ3β1

1 + (ψ0
2 )
ρ3β1

− 1 >
1

b − 1

and hence, with β1 > 5 and thus b = 2, one has∣∣∣∣ ψ1

F ′(ψ0
2 )

∣∣∣∣ < ψ1. (70)

It is straightforward to use the same technique with b = 14/5 and β1 ∈ [7/2, 5] and
hence ρ3β1 > 5/4 and ρ2β1 > 7/2. The resulting bound is valid for any parameter
values consistent with the estimation in Appendix (A) above. For b = 14/5 one
can deduce that (ψ0

2 )
ρ3β1 > (ρ2β1

(
1 − 1

b

) − 1)−1 and thus∣∣∣∣ ψ1

F ′(ψ0
2 )

∣∣∣∣ < 9/5ψ1. (71)

when β1 ∈ [7/2, 5]. Inequalities (70) and (71) give the required bounds for section
(4.6.2).
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