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Making sense of complex phenomena
in biology
Philip K. Maini

Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB

Abstract. The remarkable advances in biotechnology over the past two decades have
resulted in the generation of a huge amount of experimental data. It is now recognized
that, in many cases, to extract information from this data requires the development of
computational models, Models can help gain insight on various mechanisms and can be
used to process outcomes of complex biological interactions. To do the latter, models
must become increasingly complex and, in many cases, they also become mathematically
intractable. With the vast increase in computing power these models can now be
numerically solved and can be made more and more sophisticated. A number of models
can now successfully reproduce detailed observed biological phenomena and make
important testable predictions. This naturally raises the question of what we mean by
understanding a phenomenon by modelling it computationally. This paper briefly
considers some selected examples of how simple mathematical models have provided
deep insights into complicated chemical and biological phenomena and addresses the
issue of what role, if any, mathematics has to play in computational biology.

2002 ‘In silico’ simulation of biolegical processes. Wiley, Chichester (Novartis Fouandation
Symposinm 247 ) p 53-65

The enormous advances in molecular and cellular biology over the last two decades
have led to an explosion of experimental data in the biomedical sciences. We now
have the complete (or almost complete) mapping of the genome of a number of
organisms and we can determine when in development certain genes are switched
on; we can investigate at the molecular level complex interactions leading to cell
differentiation and we can accurately follow the fate of single cells. However, we
have to be careful not to fall into the practices of the 19th century, when biology
was steeped in the mode of classification and thete was a tremendous amount of list-
making activity. This was recognized by D’ Arcy Thompson, in his classic work Oz
growth and form, first published in 1917 (see Thompson 1992 for the abridged
version). He had the vision to realize that, although simply cataloguing different
forms was an essential data-collecting exercise, it was also vitally important to
develop theories as to how certain forms arose. Only then could one really
comprehend the phenomenon under study.

53
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Of course, the identification of a gene that causes a cettain deformity, or affects an
ion channel making an individual susceptible to certain diseases, has huge benefits
for medicine. At the same time, one must recognize that collecting data is, in some
sense, only the beginning. Knowing the spatiotemporal dynamics of the
expression of a certain gene leads to the inevitable question of why that gene was
switched on at that particular time and place. Genes contain the information to
synthesize proteins. It is the physicochemical interactions of proteins and cells
that lead to, for example, the development of structure and form in the eatly
embryo. Cell fate can be determined by environmental factors as cells respond to
signalling cues. Thereforte, a study at the molecular level alone will not help us to
understand how cells interact. Such interactions are highly non-linear, may be non-
local, certainly involve multiple feedback loops and may even incorporate delays.
Therefore they must be couched in a language that is able to compute the results of
complex interactions. Presently, the best language we have for carrying out such
calculations is mathematics. Mathematics has been extremely successful in helping
us to understand physics. It is now becoming clear that mathematics and
computation have a similar role to play in the life sciences.

Mathematics can play a number of important roles in making sense of complex
phenomena. For example, in a phenomenon in which the microscopic elements are
known in detail, the integration of interactions at this level to yield the observed
macroscopic behaviour can be undetstood by capturing the essence of the whole
process through focusing on the key elements, which form a small subset of the full
microscopic system. Two examples of this are given in the next section.
Mathematical analysis can show that several microscopic representations can give
sise to the same macroscopic behaviour (see the third section), and that the
behaviour at the macroscopic level may be greater than the sum of the individual
microscopic parts (see the Tuting model section).

Belousov—Zhabotinskii reaction

The phenomenon of temporal oscillations in chemical systems was first observed
by Belousov in 1951 in the reaction now known as the Belousov—Zhabotinskii
(BZ) reaction (for details see Field & Berger 1985). The classical BZ reaction
consists of oxidation by bromate ions in an acidic medium catalysed by metal ion
oxidants. For example, the oxidation of malonicacid inan acid medium by bromate
ions, BrO5, and catalysed by cetium, which has two states Ce3* and Ce*t. With
other metal ion catalysts and approptiate dyes, the reaction can be followed by
observing changes in colour. This system is capable of producing a spectacular
array of spatiotemporal dynamics, including two-dimensional target patterns and
outwardly rotating spiral waves, three-dimensional scroll waves and, most
recently, two-dimensional inwardly rotating spirals (Vanag & Epstein 2001). All
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the steps in this reaction are still not fully determined and understood and, to date
there are of the order of about 50 reaction steps known. Detailed mathematicai
models have been written down for this reaction (see, for example, Field et al
1972) consisting of several coupled non-linear ordinary differential equations.
Remarkably, a vast range of the dynamics of the full reaction can be understood
by a simplified model consisting of only three coupled, non-linear differential
equations, which can be further reduced to two equations. The reduction atises
due to a mixture of caricaturizing certain complex interactions and using the fact
that a number of reactions operate on different time scales, so that one can use a
quasi-steady-state approach to reduce some differential equations to simpler
algebraic equations, allowing for the elimination of certain varjables.

A phase-plane analysis of the simplified model leads to an understanding of the
essence of the pattern generator within the BZ reaction, namely the relaxation
oscillator. This relies on the presence of a slow variable and a fast variable with
certain characteristic dynamics (see, for example, Murray 1993). The introduction
of diffusion into this model, leading to a system of coupled partial differential
equations, allows for the model to capture a bewildering atray of the
spatiotemporal phenomena observed experimentally, such as propagating fronts,
spiral waves, target patterns and toroidal scrolls.

These reduced models have proved to be an invaluable tool for the
understanding of the essential mechanisms underlying the patterning processes
in the BZ reaction in the way that the study of a detailed computational model
would have been impossible. With over 50 reactions and a myriad of parameters

(many unknown), the number of simulations required to carry out a full study
would be astronomical.

Models for electrical activity

The problem of how a nerve impulse travels along an axon is central to the
understanding of neural communication. The Hodgkin-Huxley model for
electrical firing in the axon of the giant squid (see, for example, Cronin 1987) was
a triumph of mathematical modelling in physiology and they later received the
Nobel Prize for their work. The model, describing the temporal dynamics of a
number of key ionic species which contribute to the transmembrane potential,
consists of four complicated, highly non-linear coupled ordinary differential
equations. A well-studied reduction of the model, the FitzZHugh-Nagumo
model, is a caricature and consists of only two equations (FitzHugh 1961,
Nagumo et al 1962). Again, a phase-plane analysis of this model reveals the
essential phenomenon of excitability by which a neuron ‘fires’ and determines the
kinetic properties required to exhibit this behaviour.
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Models for aggregation in
Dictyostelium discoideum

The amoeba Dictyostelium discoidenm is one of the most studied organisms in
developmental biology from both experimental and theoretical aspects and
serves as a model paradigm for development in higher organisms. In response to
starvation conditions, these unicellular organisms chemically signal each other via
cAMP leading to a multicellular aggregation in which the amoebae undergo
differentiation into a stalk type and a spore type. The latter can survive for many
years until conditions are favourable. '

Intercellular signalling in this system, which involves relay and transduction,
has been widely studied and modelled. For example, the Martiel & Goldbeter
(1987) model consists of nine ordinary differential equations. By exploiting the
different timescales on which reactions occur, this model can be reduced to
simpler two- and three-variable systems which not only capture most of t.thc
experimental behaviour, but also allow one to determine unde.r which
parameter constraints certain phenomena arise (Goldbeter 1996). This mod'el
turns out to exhibit excitable behaviour, similar in essence to that observed in
electrical propagation in nerves. .

Such reduced, ot caricature models, can then serve as ‘modules’ to be plugged in
to behaviour at 2 higher level in a layered model to understand, for example, t}%e
phenomenon of cell streaming and aggregation in response to chemotactic
signalling (Hofer et al 1995a,b, Hofer & Maini 1997). Assuming that the cells can
be modelled as a continuum, it was shown that the resultant model could exhibit
behaviour in agreement with experimental observations. Moreover, the model
provided a simple (and counterintuitive) explanation for why the speed ‘of.\wwe
propagation slows down with increasing wave number. More sol?blstlcatcd
computational models, in which cells are assumed to be discrete entities, have
been shown to give tise to similar behaviour (Dallon & Othmer 1997). Such
detailed models can be used to compare the movement of individual cells with
experimental observations and therefore allow for a degree of verification that is
impossible for models at the continuum level. Howevet, the. latter ar‘e
mathematically tractable and therefore can be used to determine generic
behaviours.

Several models, differing in their interpretation of the telay/transduction
mechanism and/or details of the chemotactic response all exhibit very similar
behaviour (Dallon et al 1997). In one sense this can be thought of as a failure
because modelling has been unable to distinguish between different scenarios. On
the other hand, these modelling efforts illustrate that the phenomenon of
D. discoideum aggregation is very robust and has, at its heart, signal relay and
chemotaxis.
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The Turing model for pattern formation

Diffusion-driven instability was first proposed by Turing in a remarkable paper
(Turing 1952), as a mechanism for generating self-organized spatial patterns. He
considered a pair of chemicals reacting in such a way that the reaction kinetics were
stabilizing, leading to a temporally stable, spatially uniform steady state in chernical
concentrations. As we know, diffusion is a homogenizing process. Yet combined
in the appropriate way, Turing showed mathematically that these two stabilizing
influences could conspire to produce an instability resulting in spatially
heterogeneous chemical profiles—a spatial pattern. This is an example of an
emergent property and led to the general patterning principle of short-range
activation, long-range inbibition (Gierer & Meinhardt 1972). Such patterns were
later discovered in actual chemical systems and this mechanism has been
proposed as a possible biological pattern generator (for a review, see Maini et al
1997, Murray 1993).

Turing’s study raises 2 number of important points. It showed that one cannot
justifiably follow a purely reductionist approach, as the whole may well be greater
than the sum of the parts and that one rules out, at one’s peril, the possibility of
counterintuitive phenomena emerging as a consequence of collective behaviour. It
also illustrates the power of the mathematical technique because, had these results
been shown in a computational model without any mathematical backing, it would
have been assumed that the instability (which is, after all, counterintuitive) could
only have arisen due to a computational artefact. Not only did the mathematics
show that the instability was a true reflection of the model behaviour, but also it
specified exactly the properties the underlying interactions in the system must
possess in order to exhibit the patterning phenomenon. Furthermore,
mathematics served to enhance our intuitive understanding of a complex non-
linear system.

Discussion

For models to be useful in processes such as drug design, they must necessarily
incorporate a level of detail that, on the whole, makes the model mathematically
intractable. The phenomenal increase in computing power over recent years
now means that very sophisticated models involving the interaction of
hundreds of variables in a complex three-dimensional geometry can be solved
numerically. This naturally raises a number of questions. (1) How do we
validate the model? Specifically, if the model exhibits a counterintuitive result,
which is one of the most powerful uses of a model, how do we know that this
is a faithful and generic outcome of the model and not simply the tesult of very
special choice of model parameters, or an error in coding? (2) If we take
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modelling to its ultimate extreme, we simply replace a biological system we do
not understand by a computational model we do not understand. Although the
latter is useful in that it can be used to compute the results of virtual
experiments, can we say that the exercise has furthered our understanding?
Moteover, since it is a model and therefore, by necessity, wrong in the strict
sense of the word, how do we know that we are justified in using the model in
a particular context?

In going from the gene to the whole organism, biological systems consist of an
interaction of processes operating on a wide range of spatial and temporal scales.
It is impossible to compute the effects of all the interactions at any level of this
spatial hierarchy, even if they were all known. The approach to be taken,
therefore, must involve a large degree of caricaturizing (based on experimental
experience) and reduction (based on mathematical analysis). The degree to which
one simplifies a model depends very much on the question one wishes to answer.
For example, to understand in detail the effect of a particular element in the
transduction pathway in D. discoidesm will trequire a detailed model at that
level. However, for understanding aspects of cell movement in response to the
signal, it may be sufficient to consider a very simple model which represents the
behaviour at the signal transduction level, allowing most of the analytical and
computational effort to be spent on investigating cell movement. In this way,
one can go from one spatial level to another by ‘modularizing’ processes at one
level (or layer) to be plugged in to the next level. To do this, it is vital to make
sure that the appropriate approximations have been made and the correct
parameter space and spatiotemporal scales are used. This comes most naturally
via a mathematical treatment. Bventually, this allows for a detailed mathematical
validation of the process before one begins to expand the models to make them
more realistic.

The particular examples considered in this article use the classical techniques of
applied mathematics to help understand model behaviour. Much of the
mathematical theory underlying dynamical systems and reaction—diffusion
equations was motivated by problems in ecology, epidemiology, chemistry and
biology. The excitement behind the Turing theory of pattern formation and
other atreas of non-linear dynamics was that very simple interactions could give
tise to very complex behaviour. However, it is becoming increasingly clear that
often in biology very complex interactions give tise to very simple behaviours.
For example, complex biochemical networks are used to produce only a limited
number of outcomes (von Dassow et al 2000). This suggests that it may be the
interactions, not the parameter values, that determine system behaviour and, in
particular, robustness. This requires perhaps the use of topological or graph
theoretical ideas as tools for investigation. Hence it is clear that it will be
necessary to incorporate tools from other branches of mathematics and to
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develop new mathematical approaches if we are to make sense of the mechanisms
underlying the complexity of biological phenomena.
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DISCUSSION

Noble: We will almost certainly revisit the question of levels and teduction
versus integration at some stage during this meeting. But it’s important to clarify
here that you and your mathematical colleagues ate using the term ‘reduction’ ina
different sense to that which we biologists use. Let me clatify: when you ‘reduce’
the Hodgkin-Huxley equations to FitzHugh-Nagumo equations, you are not
doing what would be regarded as reduction in biology, which would be to say
that we can explain the Hodgkin—Huxley kinetics in terms of the molecular
structure of the channels. You are asking whether we can use fewer differential
equations, and whether as a result of that we get an understanding. It is extremely
important to see those senses of reduction as being completely different.

Maini: 1 agree; that’s an important point.

Noble: Does mathematical reduction always go that way? I was intrigued by the
fact that even you, as 2 mathematician, said you had to understand how that graph
worked, in order to understand the mathematics. I always had this naive idea that
mathematicians just understood! I take it there are different sorts of
mathematicians, as well as different kinds of biologists, and some will be able to
understand things from just the equations. Presumably, the question of
understanding in maths is also an issue.

Maini: What I meant by ‘understanding’ is that we need to determine what are
the crucial properties of the system that make it behave in the way that it does. The
casiest method for doing that in this case is a phase-plane analysis. This tells us that
the behaviour observed is generic for a wide class of interactions, enabling us to
determine how accurately parameters must be measured. My talk focused on the
differential equation approach to modelling. However, there may be cases where
other forms of modelling and/or analysis— for example, graph theory, networks
or topology — may be more apptoptiate. An issue here is how do we expose these
problems to those communities?

Loew: I would assert that the kind of mathematical reduction you were talking
about — basically, extending your mathematical insights to produce a minimal
model — may provide insights to mathematicians, but in most cases it wouldn’t
be very useful to a biologist. This is because in creating the minimal model you
have climinated many of the parameters that may tie the model to the actual
biology. In the BZ reaction you mentioned, you were able to list all of the
individual reactions. A biologist would want to see this list of reactions, and see
what happens if there is 2 mutant that behaves a little differently. What does this do
to the overall behaviour? You wouldn’t be able to use the model, at least as not as
directly, if you had your minimal model instead. I feel that it takes us one step
further away from biology if we produce these kinds of minimal models.
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Maini: It depends what sort of reduction you do. If you use quasi-steady-state
assumptions, the parameters in the reduced model ate actually algebraically related
to the parameters in the full model, so you can still follow through and compute the
effects of changing parameters at the level of the full model. Very little information
is lost. My concern about very detailed computational models is that one is
replacing a complicated biological system one wishes to understand by a
complicated computational model one does not understand. Of course, in the
very detailed model one can see the outcome of changing a specific patameter,
but how do you know whether the answer is correct if you cannot determine on
what processes in the model the outcome depends?

Loew: 1 think it is important because of the issue Denis Noble raised at the
beginning of the meeting: about whether there is the possibility for a theoretical
biology. If you can produce minimal equations that you can somehow use in a
useful way to describe a2 whole class of biology, this would be very important. I
can see analogies in chemistry, where there are some people who like to do ab
initio calculations in theoretical chemistry, trying to understand molecular
structure in the greatest detail. But sometimes it is more useful to get a broader
view of the patterns of behaviour and look at things in terms of interaction of
otbitals. There it is very useful. Chemistry has found what you call the
‘reductionist’ approach very useful. It remains to be seen whether this will be
useful in biology.

Maini: 1 would argue that it has already been shown in Kees Weijer’s work that
such an approach is very useful. He has beautiful models for Dictyosteliam. He is an
experimentalist, and works with mathematicians in the modelling. When it comes
to looking at how the cells interact with each other, he will use reductions such as
FitzHugh—Nagumo. His approach has resulted in a very detailed understanding of
pattern formation processes in Dictyostelium discoidenm.

Crampin: One of the things mathematics is useful for is to abstract phenomena
from specific models to reveal general properties of particular types of system. For
example, if you combine an excitable kinetic system with chemotaxis for cell
movement, then you will always get the sorts of behaviour that Philip Maini is
describing. In this respect, the biological details become unimportant. However,
if you do start with a complicated model and use mathematical techniques to reduce
the model to a mathematically tractable form, then you can keep track of where
different parameters have gone. Some of the variables will turn out not to have
very much bearing on what goes on. These you can eliminate happily, knowing
that if the biologist goes away and does an experiment, then changing these
parameters is not going to have a strong effect. But the important ones you will
keep, and they will still appear in the final equations. You should be able to predict
what effect varying these parameters in experiments will have. Reducing the
mathematical complexity doesn’t necessarily throw out all of the biology.
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Hunter: If you accept that both apptroaches are needed (I think they are
complementary), who is doing the process of linking the two? Having got the
dispersion relation and the parameter range that leads to instability, how does
one map this back to the biological system? And how do we deduce general ways
of moving between the state space of 11 equations to the state space of two
equations?

Maini: That’s an issue we have been trying to tackle. There are certain
approaches such as homogenization techniques for looking at these sorts of
issues. But most of the homogenization techniques that I have seen in the
materials context tend to be very specialized. 1 think it is a challenging problem.
Most mathematicians are more interested in proving theorems and are not really
interested in such messy applications. They will happily take the sort of equations
that I wrote down and throw out a few more terms, so they can just prove some
theorem, without caring whete the equations arrived from. That is fine, because
good mathematics may come out of it, but it is not mathematical biology. Perhaps
it will be the physicists who will help to bridge the gap that exists.

Noble: There are obviously different demands here. Part of what you said in
relation to helping the biologists was highly significant. It was determining
whete there was robustness, which I think is extremely important. This may
cotrespond to part of what we call the logic of life. If, through comparing
different reductions and the topology of different models, we can end up with a
demonstration of robustness, then we have an insight that is biologically
important whether or not anyone else goes on to use those mathematical
reductions in any of their modelling. Another success is as follows. Whete in our
computationally heavy modelling we have come up with counterintuitive results,
then going back to the mathematicians and asking them to look at it has proven
extremely valuable. One example of this is in relation to investigating one of the
transporters involved in ischaemic heart disease, where we came across what still
seems to me to be a counterintuitive result when we down-regulated or up-
regulated this transporter. We gave this problem to Rob Hinch, to see whether
he could look at it mathematically. He demonstrated that it was a necessary
feature of what it is that is being modelled. This is another respect in which
mathematical reduction (as distinct from the biological kind) must be a help to us
where we are puzzled by the behaviour of our more complicated models. So we
have some unalloyed successes that we can chalk up, even if people don’t go on
to use the reductions in their modelling.

Hinch: 'The idea of all modelling, if it is to be useful and predictive, is for it to
come up with some original ideas. If you have a very complex simulation model
which comes up with a new idea, you do not know whether that is an artefact of the
actual model, or if it is a teal mechanism occurring. The power of mathematics and
the mathematical analysis where these counterintuitive results come up, is that you
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can pinpoint what is causing this novel behaviour to happen. This would be a
much better way to direct the experimental work. The idea is that by having
these reduced models we can understand the mechanism of this interesting
behaviour, which will immediately make it much easier for an experimentalist to
see whether this is a real phenomenon, or just an artefact of the modelling.

Crampin: In addition to what Philip Maini said, I want to draw a distinction
between on the one hand this type of mathematical reduction (formal ways of
moving between complicated models and simpler representations), and on the
other hand the ‘art’ of modelling— using scientific insight to do that same
process. I am not sute whether there will ever be general formal methods for
taking a complicated model and generating a simpler one. In practice one uses a
combination of approaches, both formally manipulating the equations and using
knowledge of the system you are working on. There is also an interesting difference
between simulation models and analytical models. The tradition in applied
mathematics is that 2 model is developed to answer a specific question, just for
that purpose. It is unlikely for people to expect that model to be used in all sorts
of different contexts. In contrast, if we are talking about generating simulation
tools, models must be sufficiently general to be applicable in all sorts of different
areas, even if you are building computational tools where you can construct models
on an ad hoe basis for each problem.

Noble: Yes, the modellers are building a jigsaw.

Loew: T certainly appreciate the value of producing a minimal model, both
from the point of view of the mathematical insight that it provides, and also from
the practical point of view of being able to use a reduced form of a model as a
building block for a more complex model. This is certainly an important
modelling technique. But the reason I was deliberately being provocative was
because we need to be able to connect to the laboratory biologist. It is important
not only to avoid just being mathematicians who prove theorems but also to
always be practical about how the models are being used as aids for biology. If
they get too abstract, then the biologists get very quickly turned off to what we
are doing.

Winslow: There is another sense in which model reduction can be performed. It
doesn’t involve reducing the number of equations used to describe a system, but
rather involves using computational techniques to study the generic properties of
those equations. These approaches have been used with some success. One example
is bifurcation theory to understand the generic behaviours of non-linear systems
subject to parameter variation. This kind of model reduction is where a complex,
oscillating cell may be equivalent to a much simpler oscillating system by virtue of
the way in which it undergoes oscillation, perhaps by a half-bifurcation. There is no
reduction in the number of equations here, but lumping of systems into those that
share these general dynamical properties.



64 DISCUSSION

Paterson: Les Loew, you commented that for the lab biologist, we need to
present models in a form they see as relevant. There is a whole branch of biology
that looks at people as opposed to cells! Thave people on my staff who you can show
gene expression data until you are blue in the face, but they want to understand a
complex disease state such as diabetes where there are huge unanswered questions
of integrated physiology that can only be answered by investigations at the clinical
level. In terms of tying models to the biology you are right, and for bench scientists
working with high-throughput in vitro data, I think the types of very detailed
models we are talking about are very necessary. But in terms of tying it to
extremely relevant data at the clinical level, for understanding the manifestation
of disease states, you can’t afford to build a model at the gene expression level for
a complicated disease state such as diabetes. While gene expression data in key
pathways may be relevant, clinical data of the diverse phenotype must be linked
as well. How this relates to Peter Hunter’s point about the transition, is that
biology gives us a wonderful stepping stone—the cell. There is a tremendous
amount of detail within the cell. I would be interested to hear estimates of the
fraction of the proteins coded by the genome that actually participate in
communication outside the cell membrane. My guess is that it is an extremely
small fraction. If you look at the cell as a highly self-organized information and
resource-processing entity, and consider that it is participating in many different
activities taking place in the organism, then there are opportunities to operate at a
more highly aggregated level where you are looking at aggregated cellular
functions that link up to clinical data. Then you go into the more detailed cellular
models to link into initro and gene expression data, In this way you can have your
cake and eat it too. The fact that the cell represents a nice bridging point between
these two extremes can help us provide multiple modelling domains that are
relevant to molecular cell biologists and clinical biologists.

Cassman: Philip Maini, what did you mean by the term ‘robustness’? This is
another term that is thrown around 2 lot. It usually means that the output is
insensitive to the actual parameterization of the model. I'm not sure this is what
you meant.

Maini: What I meant in this particular context is that in some of these models you
could change the parameter values by several orders of magnitude and it would not
qualitatively change the outcome.

Noble: There’s another possible sense, which I regard as extremely important.
Between the different models we determine what is essential, and, having done the
mathematical analysis, we can say that the robustness lies within a certain domain
and these models are inside it, but another model is outside it.

Berridge: For those of us who are simple-minded biologists, when we come
across something like Dictyostelium with five or six models all capable of
explaining the same phenomenon but apparently slightly different, which one are
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we going to adopt? There needs to be some kind of seal of approval so we know
which one to opt for.

Crampin: To turn that on its head, as a modeller reading the primary
experimental literature, I often find completely conflicting results!

Berridge: One of the nice things about Philip Maini’s paper was that he was able
to explain this very complicated behaviour of cells aggregating, including complex
spiral waves, using just two ideas. One was the excitable medium idea, and the
other one was chemotaxis. While he used chemotaxis as part of the model, I don’t
think there is anything in the model that actually explains the phenomenon of
chemotaxis. This is a complex phenomenon, for which I don’t think there is a
mathematical model. How is it that a cell can detect a minute gradient between its
front end and back end? While those working on eukaryotes don’t have a good
model, people working on bacteria do. This is whete we really need some help
from the mathematicians, to give us a clue as to the sorts of parameters a cell
might use to detect minute gradients and move in the right direction.

Maini: There are mathematicians trying to model the movement of individual
cells.

Berridge: It’s not the movement I’'m referring to, but the actual detection of the
gradient.

Shimizu: The gradient-sensing mechanism is very well understood in bacteria.
The cell compares the concentration that is being detected at present to the
concentration that was detected a few seconds ago in the past. So in bacteria, it is
by temporal comparisons that the gradient is measured. This is different from the
spatial comparisons that Diczyostelium makes.

Berridge: 1 understand the bacterial system; it is the eukaryotic cell where it isn’t
clear. There isn’t 2 model that adequately explains how this is done.



