
J. Math. Biol. (1990) 28:307-315 ,Journal of  

Mathematical 
Biology 

© Springer-Verlag 1990 

Superposition of modes in a caricature of a model 
for morphogenesis 
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Abstract. In a model proposed for cell pattern formation by Nagorcka et al. 
(J. Theor. Biol. 1987) linear analysis revealed the possibility of an initially 
spatially uniform cell density going unstable to perturbations of two distinct 
spatial modes. Here we examine a simple one-dimensional caricature of their 
model which exhibits similar linear behaviour and present a nonlinear 
analysis which shows the possibility of superposition of modes subject to 
appropriate parameter values and initial conditions. 
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1. Introduction 

Recently, several models for cell patterning have been proposed based on the 
mechanochemical processes occurring in the early embryo. Such models have 
been applied to the formation of bones or of skin organ primordia, for example, 
feathers and scales [1-5]. These models are mathematically complex and their 
initial analyses has been based mainly on linear.theory or numerical simulation 
[6]. However, recently, simple versions of the nonlinear models have been 
analysed [7-9]. These analyses have been carried out in parameter domains 
where the linear theory predicts the initial growth of a single spatial mode, and 
have studied the evolution of such a mode. In other parameter regimes, however, 
linear theory suggests that it is possible to isolate two spatial modes which may 
superimpose giving rise to a pattern which has two characteristic wavelengths. 
This has been observed in numerical simulations of one of the models [5, 10], 
proposed for scale pattern formation in the armadillo. To analyse the full 
nonlinear system in this case is a formidable task. Recently, such an analysis has 
been carried out for special simple cases of the model [ 10]. In this paper, we 
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study a simple one-dimensional caricature model that gives similar predictions 
from linear analysis to the models mentioned above. In Sect. 2 we present the 
model and its linear analysis. In Sect. 3 we analyse the full nonlinear model for 
a restricted set of initial conditions and show that, depending on the initial 
conditions and the parameters of the model, it is possible either to get mode 
isolation or superposition of modes. The results of the nonlinear analysis are 
compared to those from numerical simulation in Sect. 4. 

2. Model and linear analysis 

The model mentioned above is a very complex system, consisting of  five highly 
nonlinear equations. In an attempt to analyse such a system, we look at a much 
simpler model which captures the linear behaviour of the more complex system. 
The idea of  setting up a simple caricature equation to study a more complicated 
system is not unusual (see, for example, [ 11]). We chose a caricature model of the 
form 

where 

L u  = - u p 

3u 
L u  = ~ + ~ u  - 2u ,  

(2.1) 

where x and t are space and time respectively, u = u ( x ,  t),  ~, f l  and 2 are real 
numbers (without loss of generality we take ~ </1, ~, /1 positive) and p is an 
integer greater than 1. The right hand side of (2.1) is the simplest possible type 
of nonlinearity, chosen to simplify the analysis. 

The spatially uniform steady states of (2.1) satisfy 

(O~4fl 4 -  ,~)U = - - U  p 

that is 

u = 0  or u = ( 2 - a 4 f 1 4 )  1 / (p - l ) .  (2.2) 

We examine the linear stability of the zero steady state by considering small 
perturbations from u = 0 for which nonlinear terms may be neglected. Letting 

u(x,  t) = a(x,  t), In(x, t) I ,~ 1 (2.3) 

and substituting into (2.1) and neglecting nonlinear terms, we have the linearised 
equation 

d~ 
O---t + ~ a  - 2n = 0. (2.4) 

As usual we look for solutions of the form 

n o t  e ' '  + ikx (2.5) 
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Fig. 1. Sketch of the dispersion relation 
(2.6) for different 2. For 2 < 0, 
a(k 2) < 0 Vk 2 and the uniform steady 
state u = 0 is linearly stable. For 2 = 0, 
tr(k 2) = 0 at k 2 = ct 2, #2 and u = 0 is 
marginally stable. For 2 > 0, u = 0 is 
linearly unstable to perturbations of 
wave numbers in the neighbourhood of 
~t o r f l  

where a is the t empora l  g rowth  rate o f  an initial per tu rba t ion  o f  wave  number  k 
(see, for  example,  [12]). Substi tut ing (2.5) into (2.4), the solvabili ty condi t ion 
leads to the dispersion relat ion 

a(k  2) = 2 - (k 2 - e2)2(k2 - fl2)2 (2.6) 

which is sketched in Fig. 1. Clearly, 2 plays the role o f  the bifurcat ion pa rame te r  
in this case with 2 = 0 being the bifurcat ion value. I f  2 < 0, then a(k  2) < 0 Vk 2. 
Thus  all initial per turba t ions  die away  exponential ly in t ime and the un i fo rm 
steady state u = 0 is l inearly stable. Fo r  2 -- 0, the un i form steady state u = 0 is 
marginal ly  stable because per turba t ions  of  wave n u m b e r  ~t or  fl have zero linear 
t empora l  growth.  I f  2 > 0, then tr(k 2) > 0 for  two sets o f  wave  numbers ,  one in 
the ne ighbourhood  o f  e, the other  in the ne ighbourhood  o f  ft. Linear  analysis 
predicts tha t  these wave numbers  will grow unboundedly .  This  type o f  linear 
behav iour  is similar to that  o f  the original model  [5]. As these wave  numbers  
grow, the nonl inear  te rm in (2.1) becomes impor t an t  and  the linear analysis is no 
longer valid. We now examine nonl inear  effects. 

3. The weakly nonlinear ease 

We shall restrict our  analysis to the case o f  a cubic nonlineari ty,  that  is, p = 3 in 
(2.1), and consider the case o f  a domain ,  normal ised to unit  length, with zero flux 
b o u n d a r y  condit ions.  Thus,  we consider the p rob lem 

L u =  - u  3 x e ( O ,  1) 
(3.1) 

O" 
O"u(0,  t ) =  u with Ox----- ~ ~ (1, t) = 0 Vt, n = 1, 3, 5, 7. 

T o  analyse the weakly  nonl inear  case we assume 2 is very close to its bifurcat ion 
value o f  0 and use a mult i t ime scale per tu rba t ion  procedure  (see, for  example,  
[13]). In  order  to find the asympto t ic  solution in t ime we introduce a long t ime 
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scale T. That is, we set 

2 = e 2, T = e2t, u(x, t, T)  = ~ eiui(x, t, T) (3.2) 
i=1 

where 0 < E ,~ 1. Substituting (3.2) into (3.1) gives 

Lo(EUl+£2u2+ "'') = , z ( 1 -  ~T)(EUl "q-,2U2 + " "  " ) -  (,Ul -Ji- E2U2 + • • ") 3 

(3.3) 

where Lou = (Ou/Ot) + Nu. 
Equating coefficients of  powers of E in (3.3) leads to a hierarchy of equations 

to determine the functions uv At O(E), (3.3) is 

Loul = 0 

with boundary conditions 

dnUl ( o, t, T) = O, O"ul(1, t , T ) = O ,  n = 1,3, 5,7. 
OX n OX n 

The general solution of such a problem is 

u~ = Y~ e'(k'~'X(z, r, kin) 
m 

where NX(x ,  T, km) = 0 and X satisfies the boundary conditions. 
The linear analysis predicts that only wavelengths • and /~ grow (at the 

slightly supercritical conditions considered here). We assume that 

0e = mr, /~ = mrr (3.4) 

where n and m are integers (n < m), and that we can ignore the t time scale and 
consider temporal growth on the T time scale since only modes with wavelength 

o r / / g r o w ,  and they grow slowly. To simplify the analysis further, we restrict 
ourselves to purely periodic disturbances (in space). Thus, the solution at O(~) is 

Ul(X, T) = A(T)  cos ~x + B(T)  cos/~x (3.5) 

where A(T)  and B(T)  are functions of T to be determined. The O(E z) terms give 
a similar expression for u2(x, T). The O(E 3) terms are 

Lou3 = ul - u 3 c~ul OT" (3.6) 

Secular terms arise at this stage and must be suppressed in order for u3 to 
remain bounded. Note that the cubic term in (3.6) contains terms of the form 
cos 3ex, and cos(2e -/~)x. These terms will be secular if/~ = 3e. We consider the 
two cases/~ ¢ 3e,/~ = 3e. 

Case ~ ~ 3~. In this case, the Landau equations are 

dA 3AB 2 
d T -  A - 3A3 -- ---- f- ,  (3.7a) 

dB 3AZB 
d T -  B - ¼B 3 -- - - 2  (3.7b) 
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Fig. 2. Sketch of phase plane for (3.7) 
showing that  the states (0, 4- 2/V/3) 
and ( _  2/x/~, 0) are the only stable 
solutions. Thus, as T--, oo, u I (x) 
asymptotically approaches one of  the 
forms (3.8), that  is, a spatial pattern 
of one wavelength 

This coupled system of Landau equations has steady states (0, 0), (0, ___2/x/~ ), 
(+__2/x/~, 0), (___2, ___2) and (+2,-T-E). It can easily be shown that (0,0) is an 

2 2 2 2 unstable node, (+~,_+~) and (+3,  T-z) are unstable saddle points and (0, 
___ 2/x//3) and ( _ 2 / ` / 3 ,  0) are stable nodes. The phase plane for (3.7) is sketched 
in Fig. 2. Clearly the solution for u~(x) as T ~ oo can take one of  the forms 

2 2 
+ - - = c o s ~ x  or + - - c o s f l x .  (3.8) 
-,/3 -,fi 

Case fl = 3~. In this case, the Landau equations are 

dA - - •  3zf3 3AR2  3 2 (3.9a) 
dT A - ~ . .  -~ . . ,~  - ~ A  B, 

dB A 3 
- - =  - s A  B 4 dT  B--3B3 3 2 (3.9b) 

This system has steady states (0, 0) [unstable node], (0, ___2/x/~ ) [stable node] 
and states (Ao, Bo) where 

147Ao 6 - 336Ao 4 + 192A 2 - 32 = 0, 
(3.10) 

4 - 7 . 4 o  2 , 
So = (fl o  )ao. 

Numerical solution of  (3.10) gives steady states (+0.572,-T-0.866) and 
(+0.661,  -T-0.524) [all saddle points] and (___ 1.233, -T-0.342) [stable nodes]. The 
phase plane is sketched in Fig. 3. Clearly, in this case, the possible stable states 
for ul(x) as T--, oo in (3.10) are 

2 
+ - - =  cos 30t, T-1.233cos~ +0.342cos3~t.  (3.11) 
- x / 3  

Note, that in this case, superposition of  the unstable modes is possible. 
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B 

Fig. 3. Sketch of phase plane for (3.9). 
In this case, states (0, +2/x/~ ) and 
(+ 1.233, -T-0.342) are the stable solu- 
tions. Thus, as T--* oo, ul(x) asymptoti- 
cally approaches one of the forms 
(3.11). Clearly, depending on the initial 
conditions at T = 0, it is possible for ul 
to tend to a spatial pattern with two 
superimposed wavelengths 

4. Numerical results 

To solve (3.1) numerically, we use the pseudo-spectral method (see [14], for 
example). Briefly the pseudo-spectral method approximates the solution to (3.1) 
by 

N 

u(x, t) ~- ~, aj(t)~bj(x) (4.1) 
j = l  

where tpj(x) are the eigenfunctions of  the operator ~ defined in (2.1) satisfying 
the boundary conditions (3.1). Clearly 

q~j(x) = cosjgx. 

Substituting for u(x, t) into (3.1) we have one nonlinear equation which describes 
the time evolution of  the amplitudes aj(t). We then assume that this holds at 
the points xl ,  x2 . . . . .  xn (the collocation points). Thus, we now have N coupled 
nonlinear evolution equations for the N amplitudes and these are easily solved 
using standard ordinary differential equation solvers. Not  only is this a fast 
and efficient method to solve such a system, it also enables us to compare 
the amplitudes directly with those predicted by the nonlinear analysis of  
Sect. 3. 

We examine the two cases presented in Sect. 3. 

Case fl ~ 3~t. In this case, if the initial conditions favour one of  the unstable 
modes, then the solution evolves to that mode, with amplitude very close to that 
predicted by (3.8). However, if both unstable modes have the same initial 
amplitude, the solution evolves to a mixed mode, with each amplitude approxi- 
mately 2 (see Fig. 4a). In this case, the solution seems to be moving towards a 
saddle point in the phase plane of  Fig. 2. 
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Fig. 4a-c. Numerical solution of (3.1) 
using the pseudo-spectral method with 
20 collocation points. Initially, all 
modes had amplitude 0.05. 
a ~t = n, fl = 5~t. In this case, all 
amplitudes die out very quickly, 
except for those of cos nx and 
cos 5nx. The solution converges to 
0.667 cos nx + 0.667 cos 57ix. This 
superposition of modes is qualitatively 
similar to that obtained in [10] for 
the more complex model. 
b,c ~t = 2n, fl = 6n. Depending on the 
initial conditions, the solution either 
converges to a mixed mode (b), or a 
single mode, (c). In both cases, the 
results are in very good agreement with 
the analytic predictions of (3.11). In all 
the above cases, E = 0.1 

C a s e  fl = 3~.  In  this case,  the  n u m e r i c a l  so lu t ions  are  in ve ry  c lose  a g r e e m e n t  

w i t h  the  n o n l i n e a r  analysis .  D e p e n d e n t  on  ini t ia l  cond i t i ons ,  the  so lu t ions  

e v o l v e  to  e i ther  a m i x e d  m o d e  o r  a single m o d e ,  as  p r e d i c t e d  by  (3.11)  

(F ig .  4b,c).  

5. Discussion 

Recen t ly ,  severa l  m o d e l s  fo r  cell  p a t t e r n  f o r m a t i o n  based  on  m e c h a n o c h e m i c a l  

p rocesses  h a v e  been  p r o p o s e d .  These  m o d e l s  exh ib i t  v e r y  v a r i e d  a n d  c o m p l e x  
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behaviour. One type of  behaviour that has not yet been fully studied analyti- 
cally for these models is that which arises from a dispersion relation of  the 
form sketched in Fig. 1. This predicts linear growth of  two modes. This type of  
situation arises in fluid mechanics and the nonlinear interaction of  such modes 
has been studied, giving rise to a phase plane similar to that in Fig. 2 [15, 16]. 
In that case, the linearly unstable wavenumbers were consecutive. The form of  
the dispersion relation in Fig. 1, however, enables one to vary the sizes of  the 
linearly unstable wave numbers independently of each other. Numerical simula- 
tion of  this case in one and two dimensions shows the possibility of  superposi- 
tion of  modes of  different wavelengths [5, 10]. This particular model, based on 
a cell movement system coupled to a reaction diffusion system, has been 
proposed as a mechanism for scale pattern formation in the armadillo. Prelimi- 
nary numerical analyses shows that it predicts patterns qualitatively similar to 
observed scale patterns [10]. 

The complexity of  these models makes an analytic study for such a case a 
formidable task. Recently, a nonlinear analysis has been carried out for the full 
system [10]. The analysis excludes cases where there is a special relation 
between the two unstable wave numbers which would give rise to extra secular 
terms. In this paper, in an attempt to gain some insight into the expected 
behaviour of  such systems, we have analysed a simple caricature model giving 
rise to similar linear behaviour and have included the case where extra secular 
terms do arise. To simplify our analysis, we restricted our attention to the case 
of  a cubic nonlinearity (p = 3) and to periodic spatial disturbances. 

The nonlinear analysis of  Sect. 3 shows that it is possible to get super- 
position of  modes, depending on initial conditions and the relationship between 
the unstable modes. The results are in good agreement with numerical solu- 
tions. This analysis suggests that superposition of  modes occurs only in special 
cases. In the original model it is possible to get superposition of  modes in 
the case fl = 5~ independent of  the initial conditions (see [10]) whereas, in 
the caricature model, this occurs only for special initial conditions (Fig. 4a). 
Thus, the caricature model does not capture all of  the behaviour of  the full 
system, but does enable analysis of  certain cases which are formidable in the 
full system. 
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