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Periodic pattern formation in reaction–diffusion systems: 
An introduction for numerical simulation
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Abstract
The aim of the present review is to provide a comprehensive explanation of Turing reaction–diffusion systems
in sufficient detail to allow readers to perform numerical calculations themselves. The reaction–diffusion
model is widely studied in the field of mathematical biology, serves as a powerful paradigm model for self-
organization and is beginning to be applied to actual experimental systems in developmental biology. Despite
the increase in current interest, the model is not well understood among experimental biologists, partly
because appropriate introductory texts are lacking. In the present review, we provide a detailed description
of the definition of the Turing reaction–diffusion model that is comprehensible without a special mathemat-
ical background, then illustrate a method for reproducing numerical calculations with Microsoft Excel. We
then show some examples of the patterns generated by the model. Finally, we discuss future prospects for
the interdisciplinary field of research involving mathematical approaches in developmental biology.
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Introduction: Periodic pattern formation 
in biological systems and the Turing 
reaction–diffusion model

It has been reported that, in many cases during
development, periodic patterns emerge. Examples
include the skin pigment pattern in zebra (Bard,
1981; Murray, 2003), angelfish (Kondo & Asai, 1995;
Shoji et al., 2003), zebrafish (Asai et al., 1999) and
sea shells (Meinhardt, 1995), feather follicle forma-
tion (Jung et al., 1998), tooth development (Salazar-
Ciudad & Jernvall, 2002) and digit formation during
limb development (Newman & Frisch, 1979; Maini &
Solursh, 1991; Dowine and Newman, 1994, 1995;
Miura and Shiota, 2000a, 2000b; Miura et al., 2000;
Moftah et al., 2002). Certain aspects of these pattern
formation processes cannot be easily explained
simply by the combination of morphogen gradients.

Recently, some developmental biologists have
started using the Turing reaction–diffusion model for
this type of pattern formation. This model was origin-
ally proposed by the British mathematician Alan
Turing (Turing, 1952) and a significant amount of

work has been done using this idea in the field of
mathematical biology (for reviews, see Bard, 1990;
Meinhardt, 1995; Murray, 2003). This model hypo-
thesizes the existence of two molecules, an activator
and an inhibitor, and, if they interact with each other
in a specific manner (see below), a periodic pattern
is formed from a homogeneous initial spatial distribu-
tion of activator and inhibitor. The qualitative expla-
nation of pattern formation is as follows: because
the activator has an ability to enhance its own pro-
duction, any small peak of activator in the initial
distribution is amplified. As the activator peaks grow,
inhibitor peaks should also grow in response because
the activator promotes the production of inhibitor.
Inhibitor peaks should be less steep than activator
peaks owing to the assumption that the inhibitor has a
larger diffusion coefficient, which results in the inhibi-
tion of new activator peak formation near pre-existing
peaks. This results in a periodic pattern of activator
and inhibitor peaks (Meinhardt, 1995; Kondo, 2002).

This explanation itself has become well known to
developmental biologists and some standard devel-
opmental biology textbooks have started to take up
this topic (see Wolpert, 1998; Gilbert, 2000). Most
experimental biologists can follow the description
of the logic, but very few actually use the model
because it is necessary to at least reproduce the
numerical simulation results to do any serious scien-
tific research using the model. One obstacle for this
is that there is virtually no introductory review that is
suitable for this purpose. Therefore, the aim of this
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text is to provide enough information for the reader
to perform actual numerical calculations on reaction–
diffusion models. We will provide an actual program
written by Microsoft Excel (Redmond, WA, USA) and
will provide a Mathematica program on request. The
authors strongly encourage readers to read Murray
(2003; Volume II, Chapter 2), which contains the
basic mathematical explanation of why periodic pat-
terns are formed in the model.

Model equations

What is a differential equation?

Most of the aforementioned texts that deal with
reaction–diffusion systems are aimed at readers with
a mathematical background, so they immediately
plunge into the mantra-like string:

u ′ = f(u, v) + du ∆u
v ′ = g(u, v) + dv ∆v [1]

which is very puzzling for most experimental biolog-
ists at first glance. These equations are called differ-
ential equations (more specifically, partial differential
equations) and describe the rate of change of an
internal state of a certain physical system in both
time and space. To fully specify the problem requires
three factors: (i) initial conditions; (ii) governing equa-
tions; and (iii) boundary conditions.

Initial conditions mean the values of the given sys-
tem at the very beginning. The governing equations
define the rules on how these values will change in
time and space. Boundary conditions define how the
system behaves at its boundary; for example, the
system may be confined within a certain domain, so
there would be no flux out of the boundaries. We will
explain what these terms actually mean by using
the simplest example. To facilitate understanding, the
definitions of each variable are given in the Appendix.

Initial conditions

For simplicity, we will think about a quasi one-dimen-
sional rod-like embryonic tissue (Fig. 1). We define
horizontal length as 1 and vertical length as dy (<< 1,

much smaller than 1) and suppose the distribution
of molecules in the vertical direction is negligible.
Cells inside this tissue produce two diffusible sign-
aling molecules, the activator and the inhibitor, and
these molecules control the production (or degrada-
tion) of both molecules and diffuse to neighboring
cells. The distribution can be homogeneous or can
have some prepattern, as shown in later sections,
depending on the actual experimental situation.

Discretization

Because it is quite difficult to think directly about the
time-course of spatial distribution of the molecules,
at first we divide this rod-like structure into small
pieces that have horizontal length dx (dx << 1, mean-
ing dx is much smaller than 1) and suppose the
spatial distribution of activator and inhibitor in these
small pieces to be homogeneous. Then, we will
think about the concentration change of activator
and inhibitor in these small elements. There are two
factors that affect the concentration of activator and
inhibitor in these small pieces: (i) the interaction of
activator and inhibitor within each element; and (ii)
the transfer of activator and inhibitor between each
element and its two nearest neighbors.

We consider the sum of these two factors as the
concentration change of these molecules within a
specific element in a short period of time.

Basically, time should be continuous, but we con-
sider updating the system in discrete time steps, dt.
So, at time step m (where m is a positive integer),
a time of m × dt has actually passed (see Fig. 2). We
can define the concentration of activator molecule in
the n th tissue element from the left-hand boundary
at time m × dt as p(n, m) and the concentration of
inhibitor as q(n, m).

Reaction term

At first we suppose the spatial distributions of activator
and inhibitor at time m × dt are known and think about
what will happen in each small tissue element after
the short time period dt. Then, we will consider the
events that occur solely inside each tissue piece. There
are two types of Turing reaction–diffusion model that
are known to generate spatial patterns: (i) the activator–
inhibitor type; and (ii) the substrate–depletion type.
In the activator–inhibitor type reaction–diffusion model
(Fig. 3), the activator promotes its own production and
promotes the production of inhibitor and the inhibitor
inhibits the activator production and decays with time.

So, for example, if we set the rate of change of
activator and inhibitor as f(p, q) and g(p, q), respect-
ively, and consider:

f (p, q) = 0.6p − q
g (p, q) = 1.5p − 2q [2]

Figure 1. Definition of initial conditions and discretization in
space.
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we then have a system in which p is the activator
and q is the inhibitor. These are called the ‘reaction
terms’.

Actual biologically relevant functions will have
saturation limits for the concentration of activator
and inhibitor, so the reaction terms will have more
complex form. For mathematical simplicity, we allow
negative values for p and q and set their initial values
to 0. If we set actual concentrations of activator and
inhibitor as P and Q, they will then be transformed
to p and q, with p = P − P0 and q = Q − Q0, where P0

and Q0 are certain positive constants.
We can calculate the amount of change of activ-

ator and inhibitor during the time interval spanning
(m × dt, (m + 1) × dt) as:

f (p(m, n), q(m, n)) × dt
g(p(m, n), q(m, n)) × dt [3]

respectively. The dt term arises from observing that the
actual increase in chemical concentration is obtained
by multiplying the net rate of production by time.

Diffusion term

Next, we will consider the interaction between a
tissue element and its two nearest neighboring tissue

elements during the time interval (m × dt, (m + 1) × dt).
In the biological context, there are many ways to
transmit signals spatially but, for simplicity, here we
consider that both activator and inhibitor diffuse
passively between tissue elements.

If we suppose the concentration of activator in the
n th tissue element is p(n, m), then the concentration
of activator in the tissue element to the right will be
p(n + 1, m). In the case of simple diffusion, the amount
of molecule transferred from element n to n + 1 is
proportional to the concentration gradient (p(n + 1, m) −
p(n, m))/dx and transverse length of the element dy
(Fick’s Law). Therefore, the amount of activator that
is transferred from the right neighboring piece (arrow
in Fig. 4) is:

[4]

where dp represents the diffusion coefficient of the
activator. The concentration change induced by this
transfer can be obtained by dividing this value by
the area of the tissue element (dx × dy).

[5]

[6]

Figure 2. Discretization in space and time.

Figure 3. Schematic representation of the reaction term.

Figure 4. Transfer of activator or inhibitor between neighboring
tissue pieces.
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Similarly, we can obtain the amount of activator trans-
ferred from the left neighboring element as:

[7]

and the concentration change induced by the trans-
fer as:

[8]

Taken together, the change of activator concentration
in element n between time m × dt and (m + 1) × dt is:

[9]

Similarly, the concentration change of inhibitor is:

[10
]

in which dq is the diffusion coefficient of the inhibitor.
This part, which represents the effect of diffusion,

is called the ‘diffusion term’ in the reaction–diffusion
system.

Governing equations

Taking both reaction and diffusion into consideration,
the changes of concentrations of activator and inhib-
itor during the time interval (m × dt,  (m + 1) × dt) are:

p(n, m + 1) − p(n, m) = (f(p(n, m), q(n, m)) + 
dp(p(n + 1, m) + p(n − 1, m) − 2 × p(n, m))/dx2) × dt

q(n, m + 1) − q(n, m) = (g(p(n, m), q(n, m)) + 
dq(q(n + 1, m) + q(n − 1, m) − 2 × q(n, m))/dx2) × dt

[11]

From these, we can calculate the concentrations of
activator and inhibitor at time (m + 1) × dt as:

p(n, m + 1) = p(n, m) + (f(p(n, m), q(n, m)) + 
dp(p(n + 1, m) + p(n − 1, m) − 2 × p(n, m))/dx2) × dt

q(n, m + 1) = q(n, m) + (g(p(n, m), q(n, m)) + 
dq(q(n + 1, m) + q(n − 1, m) − 2 × q(n, m))/dx2) × dt

[12]

Therefore, if we know the initial spatial distribution of
activator and inhibitor, we can obtain the concentra-
tion distribution of activator and inhibitor at arbitrary
time by repeatedly applying this equation at each time
step dt.

Boundary conditions

Not all tissue pieces obey the rule described above.
In the left-most and right-most tissue we have to define
special conditions. There are several ways to do this,
depending on the biological situation. If the total
number of tissue elements is Ntotal , then p(1, m) and

p(Ntotal , m) have only one neighbor and we cannot
treat them as above; that is, equations 12 only hold
for integer n with n greater than 1 and less than
Ntotal .

This condition poses a constraint on the number
of waves in a certain region. Specifically, the number
of waves has to be an integer in the defined region.
The effect of the boundary becomes stronger when
there are only a small number of structures in the
defined region.

Periodic boundary condition
We define the values of p(1, m) and p(Ntotal, m) to
be equal for all m, so that the left-most tissue and
right-most tissue are connected.

Zero-flux boundary condition
We assume that the boundary is impermeable; that
is, no material is transferred across it. In this case, we
have to define the change of p(1, m) and p(Ntotal, m)
as follows:

p(1, m + 1) = p(1, m) + (f(p(1, m), q(1, m)) 
+ dp(p(2, m) − p(1, m))/dx 2) × dt [13]

p(Ntotal , m + 1) = p(1, m) + (f(p(Ntotal , m), q(Ntotal , m)) 
+ dp(p(Ntotal − 1, m) − p(Ntotal , m))/dx 2) × dt

[14]

This condition is also called the Newmann boundary
condition.

Fixed boundary condition
In this case, we have to set p(1, m) and p(Ntotal , m)
to specific values for all time. Hence:

p(1, m + 1) = α
p(Ntotal , m + 1) = β [15]

for each iteration of the simulation where α and β
are fixed (non-negative) numbers. This is also called
a Dirichlet condition.

Transformation to continuous equation

We can obtain the continuous differential equations
corresponding to the discrete equations above by
making dt and dx infinitely small. At first, we define
the concentration of activator and inhibitor as u(x, t)
and v(x, t), which are now continuous functions (x
and t are now real values instead of integers). Then,
the above discrete governing equations become:

[16]

[17]
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If dt and dx tend to zero, the left-hand side becomes a
first-order time differentiation and the right-hand side
becomes a second-order spatial differentiation as
follows:

∂u(x, t )/∂ t = f(u(x, t ), v(x, t )) + dp∂2u(x, t)/∂x2

∂v(x, t )/∂ t = g(u(x, t ), v(x, t )) + dq∂2v(x, t)/∂x2 [18]

These are the governing equations of a reaction–
diffusion system.

Some readers may be puzzled to see the strange
character ‘∂ ’. This is a ‘partial derivative’ and is
defined as a derivative of a function of several
variables when all but one variable (the variable of
interest) are held fixed during the differentiation. For
example, the left-hand side of the equation deals
with a rate of change with time of concentration at
a fixed location in space, which means differentiating
with t while keeping x fixed.

Moreover, if you remember the following conventions,
you can decipher equations 1: (i) first-order time dif-
ferentiation ∂u /∂ t is sometimes written as u ′; (ii) first-
order space differentiation ∂u /∂x is sometimes written
as ∇u (‘∇’ is called ‘del’ or ‘Nabla’); (iii) second-order
space differentiation ∂2u /∂x2 is sometimes written as
∆u (‘∆’ is called Laplacian).

Equations 18 are based on the assumption that
the domain is one-dimensional. The equations can
be generalized to fully three-dimensional space,
where they take the following form:

[19]

The symbol ∇2u is short-hand for ((∂2/∂x2)u) +
((∂2/∂y 2)u) + ((∂2/∂z2)u), sometimes also written as
∆. In this case, u = u(x, y, z, t) and v = v(x, y, z, t),
where (x, y, z) is position in three-dimensional space.

We describe the continuous equations only for
deciphering equation 1, but actually an analytical
treatment of the system is possible for the continuous
case (see Murray, 2003). This is beyond the scope
of the present paper so, from now on, we concen-
trate on the numerical calculation of the discrete
version of the model.

Numerical calculation of the reaction–
diffusion system

Parameters and equations used in the 
numerical calculations

The reaction–diffusion system we now focus on is
as follows:

[20]

on spatial domain size [0, 1] with zero-flux boundary
conditions.

Numerical calculation in Microsoft Excel

To construct the numerical calculation program, we
use Microsoft Excel, which is one of the most widely
available programs for biologists. As we will see
below, it is too time consuming to undertake all the
simulations with Excel, but it is worth trying at least
once by yourself to get a better understanding of the
numerical calculation and an appreciation of the pit-
falls involved.

Initial conditions
Suppose we are using the system in equations 20
with domain size 1 and we discretize it with dx = 0.05
and dt = 0.1. In that case, we have 20 pieces of tis-
sue (1/0.05 = 20) that contain both activator and
inhibitor, so we define the initial distribution of activ-
ator and inhibitor by assigning 20 random numbers
to each tissue piece. To describe this in an Excel
spreadsheet, we assume each column represents
the concentration of activator or inhibitor in a specific
tissue piece. So, the initial concentration of the activ-
ator and inhibitor can be expressed as a 20 × 2
matrix of numbers in the spreadsheet, as shown in
Fig. 5. In the case below, we use cell B1 − U2 to
define the initial distribution of activator and inhibitor.
This set of random numbers represents the small
noise that should exist in the actual system and, as
we will see later, any set of random numbers as the
initial condition will eventually lead to a similar peri-
odic pattern in this simulation.
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Governing equation
First, we will calculate the concentration of activator
(p) and inhibitor (q) at a certain tissue piece after
time dt has passed. For dx = 0.05 and dt = 0.1, the
discrete version of the system is:

p(n, m + 1) = p(n, m) + (0.6p(n, m) − q(n, m) 
− p(n, m)3 + 0.0002(p(n + 1, m) 
+ p(n − 1, m) − 2 × p(n, m))/0.052) 
× 0.01

q(n, m + 1) = q(n, m) + (1.5p(n, m) − 2q(n, m) 
+ 0.01(q(n + 1, m) + q(n − 1, m) 
− 2 × q(n, m))/0.052) × 0.01 [21]

Let us calculate the activator and inhibitor concen-
trations for a certain column (C) and write the values
to C4 and C5. In this case, p(n, m) = C1, p(n + 1, m)
= D1, p(n − 1, m) = B1, q(n, m) = C2, q(n + 1, m) = D2
and q(n − 1, m) = B2. By substituting into equations
21, we can obtain the equation in cells C4 and C5:

C4: = C1 + (0.6*C1 − C2 − C1*C1*C1 
+ 0.0002*(D1 + B1 − 2*C1)/0.05/0.05)*0.01

C5: = C2 + (1.5*C1 − 2*C2 + 0.01*(D2 + B2 
− 2*C2)/0.05/0.05)*0.01

By evaluating these cells, we can obtain the concen-
tration of activator and inhibitor in the tissue at column
C. We can obtain values in other cells by applying the
same equation (Fig. 6). Fortunately, Excel automatically
converts these equations to appropriate forms by simply
copying and pasting cells C4 and C5 to other cells.

Boundary conditions
As we have seen above, the tissues at the boundary
should be treated separately. In this case, we use
zero-flux conditions and define B4 and B5 as:

B4: = B1 + (0.6*B1 − B2 − B1*B1*B1 
+ 0.0002*(C1 − B1)/0.05/0.05)*0.01

B5: = B2 + (1.5*B1 − 2*B2 + 0.01*(C2 
− B2)/0.05/0.05)*0.01

and U4 and U5 as:

U4: = U1 + (0.6*U1 − B2 − U1*U1*U1 
+ 0.0002*(T1 − U1)/0.05/0.05)*0.01

U5: = U2 + (1.5*U1 − 2*U2 + 0.01*(T2 
− U2)/0.05/0.05)*0.01

By evaluating these cells, we can obtain the complete
spatial distribution of activator and inhibitor at time dt.

Numerical calculation
To obtain the distribution of activator and inhibitor
at a later time t, we have to carry out the process
repeatedly (if t = ndt we must iterate n times). Fortun-
ately Excel again automatically converts the equa-
tions to appropriate forms by simply copying and
pasting the whole row to the rows below. By doing
this 100–200 times repeatedly, you can observe that
the concentrations gradually form a periodic struc-
ture, as shown in Fig. 7.

Numerical calculation with Mathematica

Obviously, it is too labor consuming to undertake the
above procedure, so we generally use Mathematica
(Wolfram Research, Champaign, IL, USA) to calcu-
late the results. The result of the numerical calcula-
tion corresponding to the above example is shown
in Fig. 8. You can see the emergence of a periodic
structure from a nearly homogeneous initial state.

The details of the program can be provided elec-
tronically. (All the calculations in the present paper
are performed by Mathematica and the source code
(with additional instructions on linear stability ana-
lysis) is freely available on request from the authors.)

Properties of Turing reaction–diffusion 
systems

Relationship between domain size and number 
of structures

One characteristic of reaction–diffusion systems is
that they tend to form structures of similar size (wave-
length), so if the domain size is changed the number
of structures should change, not the size of each
structure. As can be seen in Fig. 9, a change in domain
size results in a change in the number of structures.
As can be seen in Murray (2003), the number of struc-
tures is dependent on the size of the whole domain.
This property is reported considering the number of
digits in a mutant mouse or chick, where it seems
that larger limbs result in polydactyly, an increased
number of digits.

Figure 6. Entering governing equations of the reaction–diffusion system (equations 20) in the Excel spreadsheet.
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Changing initial conditions

One characteristic of the Turing reaction–diffusion
system is that it has the ability to form de novo stable
periodic patterns; that is, without any prepattern. This
is because the reaction–diffusion system forms pat-
terns by amplifying specific wavelengths of the small
minute fluctuations present in the initial conditions.

(The detail of this explanation is described in Murray
(2003).)

But what will happen if a prepattern does exist in
this system? To see this, we change the initial value
of p at the left-most point, which corresponds to, for
example, application of activator molecule to a certain
embryonic tissue by using a bead. As you can see
in Fig. 10, if the initial condition is not homogeneous,

Figure 7. Numerical calculation results of the reaction–diffusion system (equations 20) by Excel.

Figure 8. Time-course of numerical simulation
of the reaction–diffusion model (equations
20). The thick line represents the distribution of
the activator and the thin line represents the
distribution of the inhibitor. See text for details.

Figure 9. The numerical result of the reaction–diffusion model
(equations 20) where the domain size is changed from 0.5 to
2.0. Distribution of the activator is depicted. Each structure
stays the same size, but the number of structures increases with
an increase in domain length.

Figure 10. Numerical simulation of the reaction–diffusion model
(equations 20) where the initial value of p at the left-most point
is increased.
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pattern formation can occur sequentially. How-
ever, the final periodic structure is more or less the
same.

Even if we change the whole initial condition, the
system quickly goes back to the uniform equilibrium
value and then a stable periodic pattern begins to
evolve in this case (Fig. 11). Moreover, it seems that
it takes time to go back to the uniform equilibrium
point and start the pattern formation process, so this
suggests that adding activator molecule to the culture
medium does not necessarily accelerate the pattern
formation process. Detailed analysis on the pattern
appearance speed has been recently undertaken in
Miura and Maini (2004).

Changing diffusion coefficients

As you can see from the above discussion, the
reaction–diffusion system has the ability to make a
periodic pattern from an almost homogeneous initial
state and the wavelength of the pattern is decided
by the parameters in the reaction and diffusion terms.
How is the wavelength of the pattern influenced if
we change some of the parameters? Here, we deal
with the simplest case, where the result can be pre-
dicted without detailed mathematical analysis.

At first, what will happen if the diffusion coeffi-
cients of both activator and inhibitor are decreased?
This is experimentally assayed by Miura and Shiota
(2000a) in a limb bud mesenchyme cell culture sys-
tem. To implement this modification, we can multiply
the diffusion coefficient by the scaling parameter, so
the governing equations become:

∂u(x, t)/∂ t = f(u(x, t), v(x, t)) + dpγ∂ 2u(x, t)/∂x2

∂v(x, t)/∂ t = g(u(x, t), v(x, t)) + dqγ∂ 2v(x, t)/∂x2 [22]

where 0 < γ < 1. Actually, the result is easy to understand
without numerical calculation. If we set , the
above equation becomes:

∂u(ξ, t)/∂ t = f(u(ξ, t), v(ξ, t)) + dp∂2u(ξ, t)/∂ξ2

∂v(ξ, t)/∂ t = g(u(ξ, t), v(ξ, t)) + dq∂2v(ξ, t)/∂ξ2 [23]

which is identical to the γ = 1 case. Therefore, we
are simply changing the spatial scale and, in this
case, if we decrease γ, a greater number of struc-
tures should be formed in the domain. The result is
confirmed by numerical calculation (Fig. 12).

Cross-type reaction–diffusion model

The activator–inhibitor scheme is well known among
developmental biologists, but actually there is another
type of reaction–diffusion model that has the ability
to generate periodic pattern. This system, usually
called the substrate-depletion system, also consists
of two hypothetical molecules, the substrate and the
enzyme. These molecules are hypothesized to inter-
act in the following way (see Fig. 3): (i) substrate is
consumed by the enzyme; and (ii) the enzyme pro-
duces itself by consuming substrate.

An example is:

[24]

where u is the enzyme and v is the substrate. Numer-
ical simulations are shown in Fig. 13.

In the standard activator–inhibitor scheme, u and
v must be in phase; u peaks should be at the same
place as v peaks. However, in the above scheme
(equations 24), the u peaks are at v valleys. Experi-
mentally, this may be very important. For example,
several studies suggest the molecular nature of the
activator in digit formation during limb development
(Dowine & Newman, 1994; Miura & Shiota, 2000b), but

Figure 11. Numerical simulation of the reaction–diffusion model
(equations 20) where the initial value of p is increased uniformly.
The thick line represents the distribution of the activator and the
thin line represents the distribution of the inhibitor.

  ξ γ  /= x

Figure 12. Numerical simulation of the reaction–diffusion model
(equations 22) showing p where γ is changed from 1 to 1/4.
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Figure 13. Numerical simulations of the reaction–diffusion
model (equations 24). The thick line represents the distribution
of p and the thin line represents the distribution of q.
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plausible candidates for the inhibitor have not been
found. In the activator–inhibitor system, the inhibitor
should be expressed at chondrogenic sites and
have an ability to inhibit chondrogenesis. However,
in the substrate-depletion system, the molecule that
is expressed in the interdigital area and known to
promote chondrogenesis also has an ability to generate
pattern, which considerably increases the number of
candidate molecules.

Reaggregated tissue experiment

As we saw in the previous subsection, one important
characteristic of the Turing reaction–diffusion system
is an ability to form a periodic pattern from various
initial states and the process is quite robust. What
will happen if the pattern is perturbed experiment-
ally? Here, we try to emulate the most extreme case,
where the tissue is dissociated into single cells and
reaggregated. It has been shown that such a system
can regenerate periodic structure in limb (Ros et al.,
1994) and skin (Jiang et al., 1999).

The result is shown in Fig. 14. At t = 30, tissue is
dissociated into single pieces and randomly reag-
gregated again. This simulation shows that even if
we severely perturb the pattern during the pattern
formation process, the final periodic structure is more
or less the same. This property is quite difficult to
understand under the standard positional information
hypothesis in which a graded morphogen profile is
set up due to specialized structures forming a source–
sink system. However, the Turing-type reaction–diffusion
model can easily reproduce and help explain the
experimental result.

Accuracy of the pattern formation mechanism

Notice that the number of structures created by this
system has a certain variance. If we perform numer-
ical calculations with different random initial distribu-
tions, we can see a variation in the number of peaks.
For example, in Fig. 15, the number of waves is
approximately four, but you can observe a variation

in the number of waves. Periodic structures in a
biological system sometimes have variation in the
number of elements (e.g. the number of hair follicles
in the skin and the number of digits in the polydac-
tylous mutant mice). It is difficult to explain this vari-
ance if we assume specific master genes exist that
correspond to each structural element, but, using a
reaction–diffusion system, it arises quite naturally. In
contrast, if the number of structures is quite stable,
we have to couple the reaction–diffusion system with
other mechanisms to explain the stability. The reliab-
ility of the pattern formation mechanism was first dis-
cussed by Bard and Lauder (1974) and a possible
scenario for robust pattern formation is proposed by
Crampin et al. (1999). We introduce the latter in the
following subsection.

Growing domain

In actual biological systems (especially embryonic
tissue), the size and shape of the pattern formation
field is usually not constant, but grows. The Turing
reaction–diffusion system has the property that it
retains the periodic structure of fixed wavelength, so
if the tissue grows we can expect that the pattern
will change according to the growth. This can be
illustrated in Fig. 16, where additional peaks are
inserted between the originally formed periodic peaks
to keep the wavelength fixed (Fig. 16a; we call the
white part a ‘peak’).

Figure 14. Numerical simulation of the reaction–diffusion model
(equations 22). At t = 30, the tissue is dissociated and then
reaggregated. The disturbed pattern quickly reverts to normal.
The thick line represents the distribution of the activator and the
thin line represents the distribution of the inhibitor.

Figure 15. Numerical simulations of the reaction–diffusion
model (equations 22). See text for details.

Figure 16. Numerical simulations of the reaction–diffusion model
(equations 22) on growing domain. See text for details.
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Next, we slightly modify the reaction term of the
system (Fig. 16b). Note the number of peaks increases
as in the previous simulation, but the way they
increase is different. In the previous simulation,
additional peaks are inserted between pre-existing
peaks, but this time each peak is split into two peaks.
The type of transition is dependent on the form of
the reaction terms. This distinction of peak increase
(called ‘mode doubling’) is investigated analytically
by Crampin et al. (2002).

Two dimensions: stripe–spot selection

We can easily modify the above program for simu-
lation on a two-dimensional spatial domain (a flat
surface). In this case, one finds stripes, spots or more
complex patterns. For example, we can see, in Fig. 17,
a stripe- and spot-like pattern. Stripe–spot selection
has been studied in a special case (Ermentrout,
1991; Lyons & Harrison, 1992), but the mechanism,
in general, is not fully understood.

Numerical calculations on two-dimensional curved
surfaces (Varea et al., 1999) and three dimensions
(Leppänen et al., 2002) have been done recently and
some interesting features are observed concerning
the connectivity of the periodic pattern.

Future prospects

As a closing remark, we describe the current status
and some future prospects of the application of math-
ematical models to developmental biology, especially
in the pattern formation field.

First, developmental biology itself is still booming
by using molecular genetics technology. However,
there are several groups of researchers who are trying
to understand biological pattern formation using math-
ematical models. The largest among these groups is
that of mathematical biologists, whose background
is applied mathematics. The field is expanding
rapidly and a considerable number of researchers
(although much less than in developmental biology)
is involved. This academic area deals with biolog-
ical phenomena as a whole and includes ecology,

population biology and electrophysiology, so only some
of the researchers are involved in pattern formation.
Another group is that of theoretical physicists, who
are doing research on pattern formation in physical
phenomena and see biological systems as a subject
of application of their theory. There are also sporadic
‘mutant’ people, who have various backgrounds but
are somehow interested in theoretical models of pat-
tern formation. In summary, there is no established
course to study pattern formation during develop-
ment and the number of researchers who take this
approach is quite limited.

There exists a huge cultural gap between devel-
opmental biologists and theoretical biologists. First,
the vocabulary is quite different and these two groups
speak ‘different languages’. For example, if you put
up the equation ‘∂u /∂ t = f(u, v) + ∆u ’ on slides for
developmental biologists, approximately 20% of the
audience falls asleep instantaneously. (This is not
meant to insult experimental people. Putting the names
of more than four molecules in a presentation slide
for theoretical people results in a quite similar
phenomenon.) In both cases, the actual content is
straightforward to understand with proper introduc-
tion, but this is difficult to find currently.

The next difference is more fundamental. The goal
of research is quite different for experimentalists and
theoreticians. In some cases, theoreticians construct
models without taking care to explore their biological
plausibility. For example, one of the authors (T.M.)
has performed some modelling work on certain pat-
tern formation phenomena during development and
undertook some experiments to specify which mole-
cule corresponds to which factor in the theoretical
model (Miura & Shiota, 2002). However, when he
presented the data, a theoretical physicist asked,
‘Judging from the morphological pattern, it’s reaction–
diffusion. Self-evident. Why do you bother looking for
an actual molecule like an FGF?’.

It seems that the experimental application of math-
ematical models to biological pattern formation is
quite a promising area because the lack of progress
is more or less due to technical reasons described
above, not the lack of importance. There are already
plenty of active mathematical biologists working on
this topic, which proves the importance of the field.
However, there are very few experimental groups who
try to apply mathematical models to actual biolog-
ical experimental systems. As far as we know, there
are only two to three groups in the world that can
deal with this kind of problem both theoretically and
experimentally. Why? It seems that the two cultural
differences described above can be an energy
barrier for experimental people to enter this field.
We hope this text contributes to lowering the first
barrier.

Figure 17. Numerical simulations of the reaction–diffusion
model (equations 22) in two spatial dimensions.
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Appendix I
 Table of variables used in the present review.

Variable Meaning

x Horizontal length
y Vertical length
dx Horizontal length of small tissue elements
dy Vertical length of small tissue elements
t Time
dt Small interval of time used for numerical calculation
p (n, m) or p Concentration of activator molecule at time m × dt in n th tissue element
q (n, m) or q Concentration of inhibitor molecule at time m × dt in n th tissue element
m Integer number that represents the horizontal position of the tissue
n Integer number that represents time
u (x, t ) or u Concentration of activator molecule at time t in position x
v (x, t ) or v Concentration of inhibitor molecule at time t in position x
f (p, q) or f (u, v) Function that determines the rate of activator concentration change
g (p, q) or g (u, v) Function that determines the rate of inhibitor concentration change
dp Diffusion coefficient of the activator
dq Diffusion coefficient of the inhibitor


