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Abstract

Many infectious diseases exist in several pathogenic variants, or strains, which interact via cross-immunity. It is observed that

strains tend to self-organise into groups, or clusters. The aim of this paper is to investigate cluster formation. Computations

demonstrate that clustering is independent of the model used, and is an intrinsic feature of the strain system itself. We observe that

an ordered strain system, if it is sufficiently complex, admits several cluster structures of different types. Appearance of a particular

cluster structure depends on levels of cross-immunity and, in some cases, on initial conditions. Clusters, once formed, are stable, and

behave remarkably regularly (in contrast to the generally chaotic behaviour of the strains themselves). In general, clustering is a type

of self-organisation having many features in common with pattern formation.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many pathogens have several different antigenic
variants, or strains, present in a host population
simultaneously. The classic example is influenza (An-
dreasen et al., 1997; Lin et al., 1999; Plotkin et al., 2002;
Gog and Grenfell, 2002; Cliff et al., 1986), where there
are several circulating subtypes, with many minor
variants within each subtype. Other important examples
e front matter r 2004 Elsevier Ltd. All rights reserved.
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are meningitis (Gupta et al., 1996; Gupta and Anderson,
1999), dengue (Gog and Grenfell, 2002) and malaria
(Gupta et al., 1994).
Because of similarities in, for example, their mechan-

isms of infection, strains may interact with each other
(Gupta et al., 1996). Infection with one strain may
partially protect the host against infection with other
strains. Cross-immunity is included in different ways in
different models, but the general idea is the same:
infection with one strain of the disease produces a
lasting immune memory in the host which acts to
protect against subsequent infection by other strains.
That is, for two sufficiently close strains A and B,
infection by strain A reduces the chance of a secondary
infection by strain B: For instance, in the case of
influenza, the surface protein hemagglutinin seems to be
under strong positive selection because it is the target of
the immune response, and therefore it presents high
antigenic diversity in the virus population (Andreasen
et al., 1997; Lin et al., 1999; Plotkin et al., 2002; Gog
and Grenfell, 2002). This immune response may be

www.elsevier.com/locate/yjtbi
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enhanced because of a previous infection with a close
variant.
There are different approaches to the cross-immunity

problem (Gog and Swinton, 2002). For instance, we can
assume that a fraction, say gBA; of individuals infected
with strain A gain complete immunity to strain B;
alternatively, all the individuals infected with strain A

may be assumed to acquire partial immunity against B

(with a consequence that the force of secondary B-
infection is reduced by a factor gBA). Another possible
hypothesis is that the secondary infection is weaker and
thus less transmissible by the infective host. These
differences in the approaches to cross-immunity lead to
a variety of models which can provide controversial
outcomes. Under such circumstances it is reasonable to
look for such features of the multi-strain system which
are intrinsic to this system and are robust irrespective of
model choice.
A system of multiple strains interacting via host cross-

immunity tends to self-organise into groups, or clusters.
The tendency for strains to occur in clusters reflects the
observed influenza dynamics (Gog and Grenfell, 2002;
Plotkin et al., 2002). Cluster formation was observed
and discussed by Gupta et al. (1996, 1998). The
phenomenon of clustering appears to be typical for
many systems with internal order and may occur in such
systems as multi-species predator–prey systems. For
example, it was observed in neuronal networks (Rubin
and Terman, 2000a,b; Terman and Lee, 1997; Terman
et al., 1998).
In this paper we consider formation of clusters in

ordered multi-strain systems. We show that for complex
systems several different types of cluster structure may
arise. We also demonstrate that cluster structures are
not specific to a particular model—on the contrary, they
appear to be intrinsic to the given strain system. In
general, cluster formation is a self-organisation phe-
nomenon bearing many similarities to pattern forma-
tion. A remarkable feature of clusters is that they exhibit
exceptional regularity even when the dynamics of every
strain is chaotic.
2. Model

Due to different approaches to cross-immunity, a
variety of models of multi-strain infections has been
developed. These models sometimes lead to different
outcomes. It is important, therefore, to find such
indicators which are characteristic to the system itself
and robust to choice of model.
We start from a comparatively simple model of a

multi-strain infection suggested by Gupta et al. (1998).
This model is composed of only three compartments
(and, respectively, three differential equations) for each
strain. If ziðtÞ is the fraction of individuals who have
been or are infected with the strain i (either they are
infectious or not), yiðtÞ is the fraction of the infectious
individuals with the strain, and wiðtÞ is the fraction of
individuals who have been infected (or are infected) by
any strain sufficiently close to the strain i including i

itself (that is wi ¼ [j�izj), then the model equations are:

dzi

dt
¼ biyið1� ziÞ � mzi;

dwi

dt
¼
X
j�i

bjyjð1� wiÞ � mwi;

dyi

dt
¼ biyi½ð1� wiÞ þ ð1� gÞðwi � ziÞ	 � ðmþ siÞyi: ð1Þ

For this model, cross-protection does not affect
susceptibility but reduces transmissibility by a factor
1� g (where the parameter g measures the degree of
cross-protection between two strains). Here, j � i means
that the jth strain is related to the ith strain and can
induce cross-protection (that is if j � i then gija0). The
parameters 1=m and 1=s are, respectively, host life
expectancy and average period of infectiousness, b is
transmission rate. We refer to this model as Gupta’s
model. This simple model has been analysed in Gupta
et al. (1998) and provided important insights into
pathogen formation and the genetic organisation of
strains.
To study the phenomenon of clustering we need to

consider several levels of cross-protection. Whereas the
original model implies only one level of cross-protection
(g if two strains are related, or zero if they are not) and
neglects possible multiple infections by strains related
to i. We relax these assumptions below to make the
model more generally applicable, while striving to keep
the model simple. We assume that the probability of
cross-protection between strains i and j is gij (that is,
infection by the strain j reduces the probability that the
host will be infected by the strain i by a factor gij), and
consider the barycentre of gij ; defined as

Gi ¼
X

j�i;jai

gijbjyj

 ! X
j�i;jai

bjyj

 !,
: (2)

We replace the coefficient g in the system (1) with the
barycentre Gi: Substituting the barycentre Gi into (1)
and using the variables V i ¼ 1� zi; X i ¼ 1� wi; Y i ¼
bi

m yi and t ¼ mt; we obtain the system

dVi

dt
¼ 1� ð1þ Y iÞV i;

dX i

dt
¼ 1� 1þ

X
j�i

Y j

 !
X i;

ei

dY i

dt
¼ ðð1� GiÞV i þ GiX i � riÞY i: ð3Þ

Here ei ¼ m=bi and ri ¼ ðmþ siÞ=bi: Obviously, Gi 
 g
for Gupta’s model (when gij is either g; or zero).
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Furthermore, computations show that for this model the
function GiðtÞ mostly takes one of a few constant values,
with rapid shifting between these values (see Fig. 4(b));
this justifies the use of the function GiðtÞ:
2

2
1

(1,2,1)

(1,1,2)

γ
γ

γ

(1,2,2)

(1,1,1)

Fig. 2. Strain space of an eight-strain system: three loci with two

alleles possible at each locus. Here, for instance, ð2; 2; 1Þ means that the
second, the second and the first alleles are, respectively, at the first, the

second and the third locus.
3. Structure of a strain set

Systems of strains were formed as a result of a genetic
process, and they generally inherited some internal order
associated with this process. Having this intrinsic order,
a system of strains may be organised in an ordered set,
or a discrete strain space every point of which represents
a strain. The idea of the strain space allows us to use the
concept of ‘‘immunological distance’’. The immunolo-
gical distance between two strains may be assumed
to depend inversely on their mutual level of cross-
protection.
The structure of the strain space depends on under-

lying immunological and genetic processes. For in-
stance, Gog and Grenfell (2002) considered the simplest
possible strain space: a linear strain space. In this case
strains are arranged in a line, and they postulated gij ¼

expð�ð
i�j
d
Þ
2
Þ; where d is a constant. A multi-dimensional

strain space may be organised in the same way, with
immunological distance defined, for example, as the sum
of horizontal and vertical distances. Dawes and Gog
(2002) and Gog and Swinton (2002) considered a system
of four strains arranged in a circle. In this case, each
strain is assumed to interact more strongly with its
adjacent neighbours than with the strain opposite.
Studying the maintenance of strain structure in a

recombining virus population, Gupta et al. (1996) have
introduced a simple framework where strains are
organised as follows: each strain is characterised by a
combination of alleles at loci which are of immunolo-
gical interest. Strains induce cross-immunity if they
share at least one allele. For example, in the case of two
loci and two possible alleles at each locus (say a or b for
x y

(bx) (by)

(ay)(ax)

γ

γ

x y

a

b

a

b

Fig. 1. Strain space of a four-strain system: two loci and two possible

alleles at each locus (see text for details).
the first locus, and x or y for the second one,
respectively) there are four different strains: the original
strains ax and by, and the recombinant strains ay

and bx. To visualise such a strain structure we will use a
multi-dimensional graph where a dimension corre-
sponds to a locus, and vertices represent strains. Fig. 1
illustrates the structure of the above mentioned four-
strain system (two loci and two possible alleles at each
locus). Fig. 2 shows the strain space of an eight-strain
system organised on three loci with two alleles at each
locus.
4. Results

Cross-immunity may structure a set of strains into
groups, or clusters. These groups can behave at least in
three ways: remain in homogeneous equilibrium when
no structure is observed (Fig. 3a), oscillate when the
clusters alternate recurrently in succession (Fig. 3b), or
one group may dominate with the others driven below
survival level (Fig. 3c) (Gupta et al., 1996, 1998). The
phenomenon of clustering is conserved for all suffi-
ciently large levels of cross-protection. Of course, when
g ! 0; the equations are decoupled, and the clustering
disappears.
In the case of the four-strain system shown in Fig. 1 it

is natural to expect the formation of two clusters of non-
overlapping (or discordant) strains, namely ax groups
with by, and ay groups with bx (in Fig. 1 we,
respectively, mark the strains by squares and circles).
Indeed, such clustering has been observed (Gog and
Swinton, 2002; Dawes and Gog, 2002; Gupta et al.,
1996, 1998). Fig. 3 illustrates the strain dynamics: it is
easy to see the formation of two clusters.
However, a multi-strain system with only one level of

cross-protection which is the same for all related strains,
is hardly realistic. As the number of strains grows, and
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Fig. 3. Dynamics of the four-strain system shown in Fig. 1. Here (b)

and (c) illustrate formation of two clusters each consisting of two

strains; in (a) the system is in homogeneous equilibrium, and no

definite clustering can be observed.
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especially if there are several different levels of
cross-protection, the self-organisation of the system
may be more complicated. Furthermore, it may
be different for different levels of cross-protection.
For instance, for the eight-strain system shown in
Fig. 2 at least two different types of clustering are
possible. From now on we will use the terms cluster

structure and type of cluster structure. The difference
between these objects is that different cluster structures
may be of the same type. Below we will show this using
an example.
For a system of eight strains organised in three loci

with two alleles each (Fig. 2) we assume two levels of
cross-protection: namely g1 if the strains share one allele,
or g2 if they share two alleles. Naturally, g1pg2: For this
system one can expect formation of a structure of four
clusters with two discordant strains each (Gupta et al.,
1998). Every cluster of such structure corresponds to
one of the four main diagonals of the cube in Fig. 2.
However, this type of cluster structure was observed
only when g1 and g2 are sufficiently close. As the
difference between g1 and g2 grows, a new type of cluster
structure appears: now there are two clusters, a and b;
with four strains each (a is composed of the strains
ð1; 1; 1Þ; ð1; 2; 2Þ; ð2; 1; 2Þ and ð2; 2; 1Þ; and b of ð2; 2; 2Þ;
ð2; 1; 1Þ; ð1; 2; 1Þ and ð1; 1; 2Þ). In Fig. 2 the strains of
these ‘‘tetrahedral’’ clusters are marked, respectively, by
circles and squares. This second type of clustering can
hardly be expected a priori. However, this cluster
structure exists for a much wider range of g1 and g2
than the first type. Fig. 4 illustrates the dynamics of the
second type of clustering. Here, the logarithm of the
force of infection log Y iðtÞ (Fig. 4(a)) and the effective
cross-protection GaðtÞ (Fig. 4(b)) are shown for e ¼
5� 10�3 (left column) and 5� 10�4 (right column).
Note that the function GaðtÞ remains constant most of
the time, with rapid shifting between two constant
values. Also note the remarkable regularity of the
function GaðtÞ in contrast to the chaotic behaviour of
the forces of infection. The function GbðtÞ is qualitatively
the same.
Fig. 5 shows the results of stochastic perturbation of

the system. Here we assume that 1=e ¼ 200þ dðtÞ; where
dðtÞ is a Gaussian-distributed noise of magnitude 1 (a),
10 (b) and 20 (c). It is easy to see that the cluster
structure is robust to such stochastic perturbations.
A cluster structure may be qualitatively defined by the

clustering matrix M: we set mij equal to 1 if the strains i

and j belong to the same cluster, and mij ¼ 0 otherwise.
Naturally, the matrix is symmetric and mii ¼ 1: For
instance, if the vertices of the cube in Fig. 2 are ordered
as follows:

then the clustering matrices for the first and second
types of clustering are

MI ¼

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

and
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Fig. 4. Dynamics of the logarithm of the forces of infection Y iðtÞ (a) and the effective cross-protection GaðtÞ (b) for the ‘‘tetrahedric’’ cluster structure

(two clusters with four strains each). The bold lines in (a) are for the forces of infection of the four strains of the cluster a: Here e ¼ 5� 10�3 (left

column) and 5� 10�4 (right column); g1 ¼ 0:4 and g2 ¼ 0:8: Note the remarkable synchronisation of the forces of infection for each cluster for
e ¼ 5� 10�3 and regularity of the function GaðtÞ contrasting to the chaotic behaviour of the forces of infection for e ¼ 5� 10�4:
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MII ¼

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

respectively. The idea of clustering matrix allows
us to define the concepts of cluster structure and type

of cluster structure rigorously. The cluster structures
are of the same type if their clustering matrices
can be transformed one into another by row and
column permutations. We also define the effective
correlation matrix R with the coefficients (Anishchenko
et al., 2002)

Rij ¼
hY iðtÞ;Y jðtÞiT � hY iðtÞiT hY jðtÞiTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhY iðtÞ
2
iT � hY iðtÞi

2
T ÞðhY jðtÞ

2
iT � hY jðtÞi

2
T Þ

q :
Here hY ðtÞiT is the mean average

hY ðtÞiT ¼
1

T

Z
I

Y ðtÞdt:

The time interval I should be sufficiently long
and exclude the transient regime. The correlation
coefficient Rij is a measure of synchronisation of the
time series for the forces of infection; Rij ¼ 1 when
complete synchronization occurs, and Rij ¼ �1 when
the strains are in antiphase. Naturally, Rii ¼ 1: For
example, for the case shown in Fig. 4, Rij is equal to 1
for the strains of the same cluster and to �0:6 otherwise
when e ¼ 5� 10�3 (left column), and Rij is between 0:75
and 1 for the strains in the same cluster and between
�0:45 and �0:19 otherwise when e ¼ 5� 10�4 (right
column).
It is thereby a fairly straightforward procedure

to relate the coefficients Rij to the coefficients of
clustering mij : For instance, a threshold function
of the form HðrÞ ¼ expðaðr�aÞÞ

1þexpðaðr�aÞÞ
; where a40 is suffi-

ciently large and 0pao1; can be applied to the
elements of the matrix R. Fig. 6 illustrates the
Euclidean distance between the effective correlation
matrix HðRÞ and the second type clustering
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Fig. 5. The logarithm of the forces of infection Y iðtÞ for the

‘‘tetrahedric’’ cluster structure with stochastic perturbations. Here

1=e ¼ 200þ dðtÞ; where dðtÞ is the Gaussian-distributed noise of

magnitudes 1 (a), 10 (b) and 20 (c); r ¼ 0:25; g1 ¼ 0:5 and g2 ¼ 0:8:
The bold lines are for the strains of the first cluster.

0.4 0.5 0.8 0.9
0.4

0.5

0.8

0.9

γ
1

γ 2

Fig. 6. Euclidean distance D between the effective correlation matrix

HðRÞ and the clustering matrix MII as a function of g1 and g2: In the
black area D ¼ 1; that is the matrix HðRÞ coincides with MII : In the
grey area D ¼ 0; the first type of clustering occurs in this area. The
white area corresponds to the biologically unfeasible case g14g2 (the
third type of clustering, mentioned in the text, occurs in this area).

4Here and through this paper, by the term ‘‘chaos’’ we imply

deterministic chaos.
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matrix MII ;

D ¼ kHðRÞ � MIIk2 ¼
X

i;j

ðRij � MijÞ
2

 !1
2

;

for different values of g1 and g2: (Here a ¼ 20 and
a ¼ 0:7:) It is easy to see that when g1 � g2; the rapid
shift between the two types of clustering occurs.
In some cases, for instance when the system is near an

equilibrium state, calculation of the coefficients Rij may
be difficult. Then a similarity matrix with the coefficients

S2ij ¼
hðY iðtÞ � Y jðtÞÞ

2
iTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hY iðtÞ
2
iT hY jðtÞ

2
iT

q
may be calculated.
New types of clustering may be obtained by breaking
the natural constraint g1pg2 or by introducing a
non-zero level of cross-protection g0 between the
discordant strains. For instance, the extremal case
g25g1 generates a new type of cluster structure: four
clusters of two neighbouring strains. Three different
cluster structures,

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

and

1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0

1 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

are possible for this type. (It is noteworthy that these
cluster structures are in the same orbit under the action
of cube rotations.)
For a multi-strain system, the dynamics of a single

strain is sometimes chaotic4 (Gupta et al., 1998).
However, under the same conditions which cause
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chaotic strain dynamics, clusters usually behave in a
surprisingly regular fashion. This regularity is hardly to
be expected a priori. To describe the cluster dynamics,
for each cluster, e.g. a; we define the relative force of

infection YaðtÞ of the cluster as

YaðtÞ ¼
X
j2a

Y j

Xn

i¼1

Y i

,
:

Naturally, 0pYap1; Ya ! 1 when the cluster a
dominates, and it tends to zero when one of the other
clusters dominates. Fig. 7 illustrates the dynamics of the
cluster a of the eight-strain system: it is easy to see that
the evolution of the relative force of infection of the
cluster YaðtÞ is notably regular, while the dynamics of
single strains is chaotic. The behaviour of the cluster b is
qualitatively the same.
The tendency of the strains to self-organise into

clusters, and the remarkable regularity of the dynamics
of these clusters, contrasting to the chaotic behaviour of
a single strain, remains as the number of strains grows.
With an increasing number of strains, the number of
cluster structures possible for the system grows as well,
and new types of cluster structures appear. The 16-strain
system, such that for each strain there are four loci with
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Fig. 7. Dynamics of forces of infection and relative force of infection

YaðtÞ of the cluster a of the eight-strain system (Fig. 2) for the second

type of clustering. (Here e ¼ 1� 10�3; g1 ¼ 0:64 and g2 ¼ 0:8:) Note
that while the dynamics of each single strain is chaotic, the cluster as a

whole behaves remarkably regularly.
two alleles possible at each locus, may be visualised as a
four-dimensional cube. We assume three levels of cross-
protection for this system: g1 if the strains share one
allele, g2 if the strains share two alleles and g3 for the
strains sharing three alleles (naturally, g1pg2pg3). At
least six cluster structures of three different types are
possible for this system. Particularly, if g3; g2 and g1 are
approximately equal, a structure of eight clusters with
two discordant strains each appears (each cluster
corresponds to a main diagonal of the four-dimensional
cube; strains of a cluster are the ends of the diagonal). If
g3 is sufficiently large compared with g1 and g2; then the
system self-organises into two clusters of eight strains
each. In this case the strains of a cluster share either no
allele at all, or two alleles; there is no cluster with strains
sharing one allele in this case. If both g3 and g2 are large
compared with g1; then a new stable type of cluster
structure appears. In this case eight clusters with two
strains each form. A structure of this type differs from
the above mentioned structure of the first type (eight
clusters with two discordant strains each) as follows: in
this case the strains of each cluster share one allele which
is at the same locus for every cluster of the structure.
That is for this cluster structure, the strains belong to the
diagonal of the three-dimensional sides of the four-
dimensional cube whereas for the cluster structure of the
first type the strains are those on the main diagonal of
the four-dimensional cube. Since there are four loci for
this system, four different structures of this type are
possible.
For this system one may also expect formation of a

cluster structure of four clusters with four strains each.
However, such a cluster structure was not found for
biologically feasible coefficients g (that is for
g1pg2pg3). We have been able to generate this cluster
structure only for g2 larger than g1 and g3:
Self-organisation of strains into clusters is not a

particular feature of the model considered. Computa-
tions show that, for an ordered strain system given,
the same cluster structures arise for other models,
even if the dynamics of these clusters differ. It appears
that a cluster structure is intrinsic to an ordered strain
system.
For comparison purposes, we considered the models

suggested by Gog and Grenfell (2002), and Gog and
Swinton (2002). The Gog and Grenfell model is a
comparatively simple SIR model composed for 2n

classes and purposed to investigate the role of cross-
immunity in antigenic drift with a large number of
strains. The model equations are

dSi

dt
¼ m� Si

Xn

j¼1

gijbjI j � mSi;

d I i

dt
¼ biI iSi � riI i; ð4Þ
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where Si and I i are, respectively, the fractions of
susceptibles and infectives for the ith strain, and gii is
postulated to be equal to one. In contrast, the Gog and
Swinton model is a very complex model comprising n þ

2n classes. If ZJ denotes the individuals who are immune
to all the strains of the set J � f1; . . . ; ng (thus they are
susceptibles to all the strains which are not in the set J)
then the system equations are:

_I i ¼ biI i

X
J:ieJ

ZJ � ðmþ siÞI i;

_ZJ ¼
X
i;K

CðK ; J; iÞbiI iZK �
X
ieJ

biI iZJ

� mZJ þ mdJ;;: ð5Þ

The term CðK ; J; iÞ represent the effect of cross-
immunity. In fact, it is the rate of transfer from
compartment K to compartment J after infection by
the strain i.
Despite the huge difference in model complexity, both

models demonstrate similarities in cluster formation.
The behaviour of both these systems is somewhat
simpler than that of Gupta’s model. Particularly, no
alternation of clusters was observed for these models:
depending on the system parameters, the phase trajec-
tories of the system converge towards one of the system
equilibria with damped oscillations. Nevertheless, the
same cluster structures were formed for both of these
models. These cluster structures coincide with those for
the modified Gupta’s model (3), and the values of the
cross-protection parameters at which the system shifts
from one type of structure to another vary insignif-
icantly from one model to the others. For instance, for
the eight-strain system Fig. 2, the type of cluster
structure formed depends on the comparative values of
gij : As in the case of the system (3), a structure of four
clusters with two discordant strains each appears when
g1 and g2 are comparatively close and, as the difference
between g2 and g1 grows, a shift to the structure of the
second type (two clusters with four strains each) occurs.
However, in contrast to the model (3), no regular
oscillation of the clusters was observed: for both types of
cluster structures solutions of the models tend to an
equilibrium state.
5. Conclusion

Strains of a multi-strain infection tend to self-organise
into groups, or clusters. For a complex strain system
several different types of cluster structures are possible
and may arise. Which cluster structure occurs in reality
depends mostly on levels of cross-protection and, in
some cases, on initial conditions. It is important to note
the distinction between the terms ‘‘cluster structure’’ and
‘‘type of cluster structure’’, as several structures of the
same type are possible for complex strain systems.
Cluster structures which are possible for a strain system
do not depend on the particular model used. In fact, the
structures are fairly robust to different models. It
appears that cluster structures of a particular strain
system depend on the structure of the strain space and
on levels of cross-protection.
It is not clear why some cluster structures arise while

others do not. While clustering in the four-strain system
is transparent enough, it is already not so clear why in
the eight-strain system the cluster structure of second
type (two clusters of four strains) appears. More
complex systems, such as the sixteen-strain system, raise
even more questions. For instance, it is not clear why no
structure of four clusters with four strains each is
possible for biologically feasible coefficients of cross-
protection. It is a challenge to provide an exhaustive list
of type of clustering which may occur for a given set of
strain.
One possible interpretation of the phenomenon is that

cross-immunity, suppressing some strains, forms nega-
tive feedback between the corresponding vertices of the
graph (such as in Figs. 1 and 2). This, in turn, induces a
positive feedback on other vertices. The phenomenon of
self-organisation of elements of an ordered system into
clusters does not only occur in epidemiology: for
instance, similar examples are observed in neural
networks, and we believe that it may occur in other
applications. In fact, it appears to be general for coupled
dynamical systems. Clustering is a type of self-organisa-
tion similar to pattern formation.
The most remarkable feature of the clusters is that

they behave remarkably regularly (at least for ordered
strain sets), in contrast to the generally chaotic
behaviour of isolated strains. Furthermore, a cluster
structure, once formed, appears to be exceptionally
stable. This stability implies that in many cases we can
(and even should) consider the dynamics of a few
clusters, instead of the dynamics of multiple separate
strains, reducing in this way the system size.
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